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This paper presents Multiple Input Multiple Output (MIMO) detection steps using tree search based 
method known as the ‘K’ best algorithm. This low complexity algorithm is based on probabilistic 
approach of sphere decoding with self adjustable capability depending on the levels (root, branch, leaf 
etc.) of a tree. While the tree was searched to estimate the transmitted symbols level by level, the 
algorithm took into account the effect of the undetected symbols in the search criteria. Simulation 
results showed that the proposed method reduced complexity (in terms of the average number of 
visited nodes) about 10% for higher (medium to high) signal to noise ratio (SNR) values without 
degrading the system BER performance. 
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INTRODUCTION 
 
The field of Multiple Input Multiple Output (MIMO) 
systems is, currently, an active research area where 
spectral efficiency can be enhanced without changing 
power or bandwidth. In a spatial multiplexing system, 
independent data streams are sent from the transmitter 
antennas. Spectral efficiency grows linearly with the 
minimum number of transmission and receive antennas, 

 and , respectively,  assuming a rich scattering 

wireless channel (Foschini and Gans, 1998; Burg et al., 
2006). This performance improvement offered by MIMO 
systems comes at the price of higher computational 
complexity detectors. Great amount of research has been 
directed toward the design and implementation of less 
complex detectors within the  constraints  of  various  real  
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Abbreviations: , transpose with complex conjugation of 

the vector (matrix) a (A); i.i.d, independently and identically 
distributed; , probability density function (pdf) of a; , the 

second norm of a. 

applications. The most demanding maximum likelihood 
(ML) solution minimizes the bit error rate (BER) and 
makes use of the system’s full available diversity order of 

 (Maurer et al., 2007); its complexity is exponentially 

proportional to the modulation constellation size and the 
number of the transmitter antennas. Many suboptimal 
solutions have been proposed in the literature such as V 
Blast (Wolniansky et al., 1998) and linear equalizers with 
quantization (Harold et al., 2003) with a performance 
inferior to that of the ML. ML solution can be obtained 
using the depth first tree search based detector, sphere 
decoder (Fincke and Pohst, 1985) at low complexity 
compared with the exhaustive search. Therefore, to 
reduce the detector complexity in MIMO systems while 
maintaining the BER is in demand. Hence, in this paper, 
focus is given to solve the aforementioned problem by 
proposing a lower complexity ‘K’ best algorithm for MIMO 
detection. The paper is organized as follows: 
subsequently, MIMO system model is introduced, the tree 
search algorithms as MIMO detectors are briefly 
reviewed; the probabilistic tree pruning and its application 
with K best search method is given, then simulation 
results is presented, lastly, the conclusion is presented. 



 
 
 
 
SYSTEM MODEL 
 
The flat fading, complex valued, baseband equivalent MIMO 
system is represented by: 
 

                                                                   (1) 
 

Where  is the  received vector,  is the  

transmitted vector,  is the  ( ) complex channel 

matrix, the element  is the propagation coefficient between 

 antenna i and transmit antenna j with mean value  and 

unit variance under the rich scattering channel assumption,  is 

the  noise vector whose elements are i.i.d circularly 

symmetric complex Gaussian with zero mean and variance  and 

covariance matrix . 

The elements of the vector  are independently drawn from a 

complex constellation of size  where  is the number of 

bits per symbol whose average power is assumed to be unity or 

 and I is the identity matrix with the indicated 

dimensions.  is the expectation operator, and  or  is the 

element at the ith row and the jth column of the matrix A. Assuming 

the full knowledge of the channel matrix  at the receiver side, the 

optimal ML solution is to find the transmitted vector  that 

maximizes the conditional posteriori probability  

(Hanzo  and Keller, 2006): 
 

                                    (2) 
 

Now,  where  is an 

independent constant. The maximization in Equation 2 reduces to 
the minimization of the Euclidian distance: 
   

 
 
 
TREE SEARCH BASED DETECTORS 
 
The complex model of Equation 1 can be converted into a real form 
as Damen et al. (2003): 
 

 (3) 

 
Where: 
 

 , ,  

 

 
 

And ,  stands for the real, imaginary parts of (), 

respectively. The Euclidian distance can now be rewritten as: 
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In which: , , s is  vector with 

integer entries,  is a finite subset of the infinite lattice  and  

is the set of integers (Hassibi and Vikalo, 2005). There are two main 
tree based search algorithms; the sphere decoder and the K best 
detector. The sphere decoder (Fincke and Pohst, 1985) restricts the 

search for the ML solution of . It examines the 

lattice points  within the  dimensions hyper sphere of radius 

 centered at the received vector  as: 

 

                                            (4) 

 
The choice of the search radius, d is critical for the complexity of the 
detector, because for large d, there will be too many points to be 
examined, otherwise, there may be no points at all inside the 
sphere. There are many suggestions for that choice mentioned in 
Hassibi and Vikalo (2005) and Hochwald and Brink (2003). 

Assuming, for simplicity that: ,  and performing 

the QR factorization on H: 
 

 
 

Where R is a  upper triangular matrix,  is a 

 orthogonal matrix with sub matrices  and . Now, 

Equation 4 becomes: 
 

                 (5) 

 

 
 

 
 

                                        (6) 

 

Where: ,   and  if   . 

Using the structure of matrix R in Equation 6: 
 

                                           (7) 
 
Equation 7 is used to search over a tree with v levels: each level 

corresponds to one element of the vector s, where  and  are 

the highest and lowest levels, respectively (Figure 1). The radius 
constraint becomes tighter as the search moves down the tree; at 

the top level v, the bounds for the symbol  are decided according 

to: 
 

                                                             (8) 
 

And for next lower level,  ,  is estimated with: 
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Figure 1. Levels of the depth first tree search. 

 
 
 
In general, for the level  , , the bounds for 

are derived on the basis of the inequality: 

 

      (8) 
 
Here, the second term of the RHS corresponds to the group of i 

detected symbols from  down to the  level:  ,…., 

.  

According to Figure 1, Equation 8 has two metrics at each level. 

The first is the branch metric, , , that originates from 

a certain node and depends on the symbol  for that branch and 

level: 
 

                                                     (9) 
 
The second metric is the partial total or accumulated path metric, 

 . It is the right most term in Equation 8 and describes the sum 

of the branch metrics starting from the top level  to the level 

. At each level, except the top, the branches that originate 

from the same node share the same parent path metric, . 

Hence: 
 

                                                                  (10) 
 

The top level  with has equal branch and path metrics. 

The search algorithm deals with one node at a time starting from 

the top level v, and if   , then, the node k and all branches 

below it (dashed lines in Figure 1) will be pruned from the tree since 
all the terms in  
Equation 7 are positive. The full paths matrices (if there is any), 
starting from top to bottom level, that satisfy the radius constraint 
are considered as candidates and their minimum is considered as 
the ML solution. Each such candidate corresponds to a different 
path from the top of the tree (named as the root), to its bottom 
(known as the leaves). If no such candidates are found, then, the 
search radius is increased and the search is restarted again. Once 
a candidate that satisfies the radius constraint is found, the search 
radius is reduced to the path metric of that candidate and the 
search is continued (Viterbo and Boutros, 1999).  
To reduce complexity, the K best, breadth first tree search (Zhan 
and Nilsson, 2006), selects those K branches at each tree level with 
the lowest path metrics to be extended further down the tree and 
the candidate at the bottom level with the minimum path metric is 
considered as the solution. The total number of the considered 

candidates is  instead of  (in an exhaustive search 

with square QAM constellations). The factor K is chosen to tune the 
performance-complexity tradeoff with better performance and 
higher complexity for larger K values. Inherently, the K best method 
does not guarantee finding the ML vector candidate s that 

minimizes . This is due to the fact that the solution 

minimizing the metric in Equation 9 for a certain branch and level, 
does not necessarily lead to minimization of the other branch 
metrics within the same path. Figure 2 shows a scenario of K best 

breadth algorithm with and 16 QAM. 

 
 
SPHERE DECODING WITH PROBABILISTIC TREE PRUNING 

 
In Byonghyo and  Insung  (2008),  an  aggressive  pruning  strategy 
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Figure 2. Breadth first, K best, tree search (four levels). 

 
 
 
was suggested by reconsidering Equation 8 and taking into account 
the effect of the undetected symbols at each layer. The condition to 

be satisfied at the layer  is: 

 

 
 

Taking the effect of the  undetected layers by considering 

their branch metrics of Equation 9: 
 

                                                       (11) 
 
This will impose the desired effect of tightening the radius constraint 
at each layer by a variable amount according to the number of 

undetected layers which varies between  at the top level and 

zero at the bottom. Since , each of such 

metrics can be represented by the noise properties as: 

 

                                                    (12) 

The elements  are Gaussian random variable with zero mean 

and variance of   and hence the aforementioned sum of their 

squares is a chi-square variable with  degrees of 

freedom: 
 

; 

 

 
 

The pruning probability  is defined with: 

 

                                              (13) 
 

Any branch that satisfies Equation 13 is pruned from the tree and  

is a predefined value selected to adjust the complexity-performance 
tradeoff. Now, in terms of the cumulative distribution function 

(CDF),  of the chi-square random variable , the 

condition in Equation 13 becomes: 
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Figure 3. Effect of the radius constraint on complexity for a  MIMO 

system with 64 QAM. 

 
 
 

                                           (14) 

  
 

This becomes the terms of the branch metric : 

 

 
 

                    (15) 
 
Any branch that satisfies Equation 15 is pruned from the tree. We 
apply the probabilistic approach to the tree search using the K best 
algorithm: to do that, we have imposed a search radius constraint 
that should be satisfied by all path metrics at each level. The search 

radius is selected as: according to the noise 

variance  and  based on Equation 3 assuming equal number 

of transmit and receive antenna with . This radius selection is 

suggested in Hochwald and Brink (2003) and it is the mean value of 

the  degrees of freedom, chi-square random variable described 

by . The complexity reduction is due to the fact that, with this 

added constraint, the selected branches at each level for further 
extension towards the bottom of the tree may be less than K. 

RESULTS AND DISCUSSION 
 
We used Matlab 7.7.0 for our simulations. The channel 
was assumed to have a block fading model; it remains 
unchanged within each block consisting of a number of 
transmitted vectors and then, changes independently 
from one block to another. The values of  in 

Equation 15 were computed offline for each value of SNR 
with degrees of freedom ranging between 1 and . 

For a tree search algorithm, it is usual to describe 
complexity in terms of the number of visited nodes 
(Byonghyo and Insung, 2008; Burg et al., 2005). The 
effect of the radius constraint on the complexity of the K 
best algorithm ( ) is shown in Figure 3 and the 

corresponding BER curves are shown in Figure 4, for the 
 MIMO system with 64 QAM and the indicated 

values of K. Without having the radius constraint, the 
number of visited nodes usually remains constant ( ), 

regardless of SNR value, which is 8K (that is, 64, 56, 48 
nodes for  and 6, respectively) in this case (  has 

double the size of ). On the other hand, with radius 

constraint, the search radius is selected according to the 
noise variance and number of receiver antennas. The 
search usually restarts if there are no  
possible candidates, at any of the tree levels that satisfy 
the radius constraint. The number of visited nodes during  
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Figure 4. BER of the   MIMO system with 64 QAM; without (unmarked) 

and with radius constraint (marked). 

 

 
 

Figure 5.  Number of visited nodes vs. SNR for a MIMO  

system with 64 QAM and K = 8. 

 
 
 
such uncompleted trials is included in complexity 
measurements. Figure 3 shows that the inclusion of such 
nodes is behind the larger number of visited nodes for 

15 dB. It also shows a lower complexity in terms of 

the average number of visited nodes of 57, 52 and 46 
compared to the case without radius constraint with 

percentage savings of about 10, 7 and 3 for K values of 
8, 7 and 6, respectively. The BER performances are the 
same as that without radius constraint for the same 
values of K as shown in Figure 4. For the same system, 
Figure 5 shows the effect of ε value on the complexity 
with K = 8 as an example. As ε increases  from  0  (which  
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Figure 6. BER vs. SNR for a  MIMO system with 64 QAM 

and K = 8 compared to that of the ZF, mmse and Blast detectors. 

 
 
 

 

 
Figure 7. Average Number of visited nodes vs. SNR for a MIMO  

 system with 16 QAM and K = 4. 

 
 
 
corresponds to the uppermost curve in Figure 3), the 
average number of visited nodes is further decreased to 
55 and 51 with percentage saving of 15 and 19, that is, 
an additional saving of complexity about 5 and 9% 
compared to the case of K = 8, and ε = 0 (Figure 3) by 
setting the pruning probability parameter ε to 0.2 and 0.5 
respectively. But the BER values are almost the same for 
all ε as shown in Figure 6 along with those of the zero 
forcing (ZF), minimum mean square (mmse) (Harold et 

al., 2003) and the mmse based successive interference 
cancellation (Blast) (Wolniansky et al., 1998) detectors. 
This shows, the BER is unaffected and remains 
essentially the same due to the change of ε and using 
radius constraint while it is improved compared to ZF, 
mmse and Blast. 

A similar comparison is made for the  MIMO 

system with 16 QAM in Figures 7and 8 with the indicated 
values of K and ε. In Figure 7, for the case of    =  0,  the 
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Figure 8. BER vs. SNR for a  MIMO system with 16 

QAM and K = 4 compared to that of the ZF, mmse and 
Blast detectors. 

 
 
 
average number of visited nodes is 27 and the complexity 
reduction is around 15% compared to that without radius 
constraint (where the average number of visited nodes is 
32). The figure shows that the average numbers of visited 
nodes are 26, 25, 24 and 23 implying an additional 
complexity savings of around 5, 8, 9 and 12% using  = 

0.2, 0.4, 0.5 and 0.6, respectively. Figure 8 shows the 
BER for this case reduced significantly compared to that 
of the ZF, mmse and Blast detectors. 
 
 

Conclusion 
 
A lower complexity K best detector, in terms of the 
average number of the visited nodes has been proposed 
for MIMO systems. According to the suitable K values 
and modulation scheme in order to maintain low BER, it 
is possible to reduce complexity around 10 to 12% for a 

 MIMO system using ‘radius constraint’ and by 

adjusting the value of a probability threshold (ε) that takes 
into account noise statistics. It is shown that for the  

MIMO systems with 16 and 64 QAM cases, this 
complexity reduction is achievable while maintaining the 
BER performance. 
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