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Industrial robots often use planetary gear system to have high joint torques; therefore,
the influence of the rotary inertia of the number of the equally spaced planet-gears on
the dynamical behavior of the robot is very important. The main objective of this paper
is to develop the dynamic modeling of robot actuated by (n) equally spaced planet-gears
in the case where the planet-carrier is fixed, no closed solution has been reported for this
dynamic modeling, and to compare between the dynamic behavior of robot actuated by
(n+1) and (n) equally spaced planet-gears for a same trajectory planning. The authors
derive the explicit dynamic model for an elbow down of 2-R manipulator holding an
external mass. Finally, the obtained simulation results by using Matlab/Simulink of
the dynamic modeling are verified by modeling the same robot and using an advanced
simulation via SolidWorks (2014).
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1. Introduction

Industrial Robots are active systems that require a source of energy to power all
their functions. The energy needed for operation must be distributed to the various
functions and opportunely modulated, by power converters, which are themselves
managed by a suitable low level controller. The power converters provide energy
to actuators that transduce the electrical energy supplied by the source into the
mechanical energy needed to perform the various tasks [1-4]. The actuators provide
power to act on the mechanical structure against gravity, inertia, and other external
forces to modify the pose of the robot’s hand [5].

To choose the components of an actuating system, it is worth starting from the re-
quirements imposed on the mechanical power by the force and velocity that describe
the joint motion [6].

The execution of joint motions of a manipulator demands low speeds with high
torques [6]. In general, such requirements do not allow an effective use of the
mechanical features of electrical motors, which typically provide high speeds with
low torques in optimal operating conditions. It is then necessary to interpose
a transmission (gear) to optimize the transfer of mechanical power from the motor
to the joint. During this transfer, the power is dissipated as a result of friction.

The use of gearing is a well-established means for accomplishing such an objective
because it is possible to use smaller actuators to deliver larger torques [7].

However, one of the biggest disadvantages of the addition of gearing is the
presence of backlash that reduces the effective bandwidth of the controller since
high frequency content in the control produces noisy and destructive operation [8].

Most industrial robot manipulators are driven by motors through gears with high
reductions ratios (from tens to a few hundreds). The use of gears permits an
optimization of manipulator static and dynamic performance since the motors can
be located on the link preceding the actuated joints along the kinematic chain.
Further, typical robot applications require motions with large torques and relatively
small velocities, and thus the use of gears allows joint actuation by motors of reduced
size [8].

The planetary gear system is widely used in robotics [9, 10], it is composed of
one or more outer gears or planet gears, revolving around a sun gear driven by
motor. Typically, the planets are mounted on a movable carrier, which rotates
relatively to the sun gear. The planetary gearing systems may also include an
outer ring gear or annulus, which meshes with the planet gears [9-11]. A planetary
gear example modeled by SolidWorks (2014) is shown in Fig. 1. The advan-
tages of planetary gears over parallel axis gears include high power density, large
gear reduction in a small volume, multiple kinematic combinations, pure torsional
reactions, and coaxial shafting. Among the disadvantages, one can note high bear-
ing loads, inaccessibility and design complexity [9, 10].

The rotary inertia of the sun gear had a very significant influence on the dynamic
behavior of planetary gear train [12]. The effect of gear dynamics and gear ratios
on the inverse and forward dynamic models is a problem that is of current interest.
For the inverse dynamics, the gear dynamics are most commonly approximated by
a diagonal matrix added to the mass matrix [13-15]. Spong [16] explicitly assumes
that the gyroscopic effects of the spinning rotor and gears are negligible. Springer
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et. Al [17] and Chen [18] used energy methods to add additional terms to the simple
rigid model to account for the effects of gear ratios and gyroscopic forces. Walker
and Orin[19] developed methods for the fast calculation of the manipulator mass
matrix that could include the common gear approximation.
We model the actuator with planetary gear system by using SolidWorks (2014)
with no backlash. The planetary gear serves to deliver high output torques. The
sun-gear has as input the torque given by the motor and gives torque to the outer
ring gear through planet-gears, the output of the outer ring gear connected with
the successive link as shown Fig. 1.
In this paper, we are interested on the effects of the rotary inertia of the number of
the equally spaced planet-gears on the dynamic of the robot and we will consider
that the planet carrier is fixed. A two-revolute (2-R) planar robot is modeled using
the SolidWorks (2014) as shown in Fig. 1. Motors on each joint coupled with
a planetary gear system actuate the manipulator that holds an external mass on
the end effector.
The rest of this paper is organized as follows: in the section 2 dynamic modeling
of the manipulator, section 3 presents the dynamic simulation and in section 4
discussion of the simulation results followed by a conclusion in section 5.

Figure 1 The joint of robot’s link actuated by planetary gear system

2. Dynamics modeling of robot actuated by (n) equally spaced planet-
gears

2.1. Dynamics modeling of robot actuated by the 3 equally spaced planet-
gears

2.1.1. Computation of Kinetic energy of robot

T =

n∑
i=0

(
Tli + Tsgi+1 + Tpg2i+1 + 2Tpg1i+1

)
(1)
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It can be assumed that the contribution in the calculation of the kinetic energy of
the (ring-gear) is included in that of the link on which the (ring-gear) is located,
and thus the sole contribution of the sun-gear and planet-gears are to be computed.
The sun-gears are located on the joint axes, the sun-gear (1) and planet-gears (1)
are sitting on the ground and their weight will not affect the dynamics of the
manipulators [5, 20].

Figure 2 Characterization of augmented link (i) (link+sun-gear+planet-gears) for kinetic energy

The total kinetic energy contribution of Link (i) is given by:

T = Tli + Tsgi+1 + Tpg2i+1 + 2Tpg1i+1 (2)

Tli =
1

2
mli ṗ
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ṗpg1i+1+
1

2
ωT
pgi+1

Ipgiωpgi+1 (4)

Tpg2i+1 =
1

2
mpgi+1 ṗ
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ϑsgi+1 and ϑpgi+1 are the angular position of the sun-gear and planet-gear respec-
tively.

ϑ̇sgi+1 = Gsgri+1 ϑ̇i (6)

ϑ̇pgi+1 = Gpgri+1 ϑ̇i (7)

here Gsgri+1 and Gpgri+1 are the gear reduction ratios.
In our case, the planet carrier is fixed, the gear reduction ratios can be calculated
by using the relation of Willis [24-26]:

Gsgri+1 = Gsgri =
Zrg

Zsg
=

ϑsgi

ϑi
(8)

Gpgri+1 = Gpgri =
Zrg

Zpg
=

ϑpgi

ϑi
(9)
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Where Zsgthe number of sun-gear teeth is, Zrg is the number of ring-gear teeth, and
Zpg is the number of planet-gear teeth. The ring-gear rotates at the rate Gsgri+1 in
the negative direction of the sun-gear because the sun gear and the ring gear rotate
through a planet gear.

In similar fashion, the kinetic energy of the augmented link (Link+sun-gear+planet-
gears) actuated by (n) equally planet-gears:

Ti =
1
2miṗ

iT

i ṗii + ṗi
T
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2 G2
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2
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(10)

2.1.2. Newton–Euler Formulation

The Newton–Euler formulation describes the motion of the link in terms of a balance
of forces and moments acting on it [21, 22], as shown in Fig 3.

Figure 3 Characterization of augmented link (i) for Newton-Euler formulation

2.1.3. The joint exerted at the joint (i) in current frame

The equation of the joint torque of robot’s link actuated by 3 equally spaced planet-
gear:

τ ii = µiT

i Ri−1T

i z0 +Gsgr,iIsgi ω̇
i−1T

sgi zi−1
sgi + 3Gpgr,iIpgi ω̇

i−1T

pgi zi−1
pgi (11)
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In similar fashion, the equation of the joint torque of robot’s link actuated by (n)
equally planet-gears:

τ ii = µiT

i Ri−1T
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Table 1 The mass properties of 2-R robot actuated by (n) equally spaced planet-gears by using
SolidWorks
Parameter Value Unit
Mass of augmented link(1) actuated by 3 ESPG (mi) 29 Kg
Mass of augmented link(1) actuated by 4 ESPG (mi) 29.12 Kg
The inertia tensor of the augmented link(1) actuated by 3

ESPG (I11zz)

0.40 Kgm2

The inertia tensor of the augmented link(1) actuated by 4

ESPG (I11zz)

0.4028 Kgm2

The mass of the augmented link(2) (link+external mass) 29 Kg
The inertia tensor of the augmented link(2)(link+external

mass) (I2o2ozz)

0.43 Kgm2

The inertia tensor of the sun-gear (Isgi+1(zz)
) 0.01574 Kgm2

The inertia tensor of the planet-gear (Ipgi+1(zz)
) 0.00314 Kgm2

The gear reduction ratios between the sun-gear and ring-gear
(Gsgr,i+1 = Gsgr,i)

2

The gear reduction ratios between the planet-gear and ring-
gear (Gpgr,i+1 = Gpgr,i)

4

3. Dynamic simulation

As an example of simulation, we choose an elbow down of 2-R planar robot. The
links of robot have the same length (0.4m) and actuated by 3, 4, 5 and 6 equally
spaced planet-gears. The simulation of the kinetic energy and the joint torque can
be done by using the mass properties shown in Table 1. The links of robot, sun-
gear, planet-gears and external mass are designed by using SolidWorks (2014) in
such way the inertia tensor of link, sun-gear, planet-gears and external mass has
a diagonal matrix about its center of mass in current frame, then the inertia tensor
of the augmented link is also diagonal matrix about its overall center of mass Ci in
current frame.
The 2-R robot moves between two positions during 1s (x = 0.8 m, y = 0 m) to
(x = 0.4499 m, y = 0.5864 m) with jerk zero at start-stop path. Generation of
trajectories with a bounded value of jerk improves the tracking accuracy and will
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allow to reach a higher speed of task execution, with eventually a reduction in the
excitation of the resonant frequencies and the vibrations caused by the planetary
gear system [23-26]. We can compare between the two postures of 2-R robot by
using the equations of the serial planar manipulators [27] in the dynamics modeling
shown in section 2 to choose the posture that has the power saving [28-34].

3.1. Kinetic energy simulation

Figure 4 The kinetic energy of robot actuated by 3 ESPG

Figure 5 The kinetic energy of robot actuated by 4 ESPG
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Figure 6 The kinetic energy of robot actuated by 3 ESPG by using SolidWorks (2014)

Figure 7 The kinetic energy of robot actuated by 4 ESPG by using SolidWorks (2014)
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3.2. Joint torque simulation

Figure 8 The variation of joint torques of links of robot actuated by 3 ESPG

Figure 9 The variation of joint torques of links of robot actuated by 3 ESPG by using SolidWorks
(2014)
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Figure 10 The variation of joint torques of links of robot actuated by 4ESPG

Figure 11 The variation of joint torques of links of robot actuated by 4 ESPG by using SolidWorks
(2014)

4. Discussion

We can notice from the results obtained from the dynamic simulation of a 2-R
robot shown in section 3 that the results obtained whether using simulation results
or SolidWorks (2014) are the same as shown in the Figures from 4 to 11. This
similarity of results confirms the reliability and correctness of the dynamic model
studied. We can also notice from this study that, with the presence of the rotary
inertia of the number of the equally planet gears,

(n)Gpgr,i+1q̇i+1Ipgi+1z
iT

pgi+1
ωi +

(n)
2 G2

pgr,i+1q̇
2
i+1Ipgi+1 in the equation of the kinetic
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energy of link (1) and(n)Gpgr,i+1

(
q

i+1
Ipgi+1z

i
pgi+1

+ q̇i+1Ipgi+1ω
i
i × zipgi+1

)
in the

equation of the joint torque of link (1), the value of ratio between the kinetic
energy and the joint torque actuated by (n+1) and (n) ESPG is 1.05 and 1.025
respectively, this fact is clear from the Figures from 4 to11 (only the simulation
of the kinetic energy and the joint torque of the links actuated by 3 and 4 ESPG
is shown in this paper , and the simulation results are verified also by the links
which is actuated by 5 and 6 ESPG) . Another fact is revealed from these Figures is
that, the absence of the rotary inertia of the number of the ESPG in the equation
of kinetic energy and in the equation of the joint torque of link (2), the values of
the kinetic energy and the joint torque actuated by (n+1) and (n) equally spaced
planet-gears are almost the same.

5. Conclusions

The dynamics modeling of robot actuated by (n) equally spaced planet-gears are
studied. The verification of the dynamic modeling of a 2-R robot actuated by (n)
equally spaced planet-gears by using the software SolidWorks (2014) permitted us
to qualitatively develop and highlight the relevance of the dynamic model studied.
From this research The authors found that the effect of the rotary inertia of the
number of the ESPG on the dynamic of 2-R robot with jerk zero at start-stop path
is the augmentation of the kinetic energy and the joint torque of the robot’s link
actuated by (n+1) ESPG by a percentage of 5% and 2.5% respectively, relative to
the Kinetic energy and the joint torques of the robot’s link actuated by (n) equally
spaced planet-gears for a same trajectory planning.
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Nomenclature:
Ci: Center of mass of augmented link.

Ii: Inertia tensor of augmented link (link+sun-gear+ planet-gears).

Ii0: Inertia tensor of augmented link (link+external mass).
Isgi+1

: Moment of inertia of sun-gear about its center of mass.
Ipgi+1 : Moment of inertia of planet-gear about its center of mass.
ri,Ci : Vector from origin of frame (i) to center of massCi.
ri−1,li : The vector from origin of frame (i− 1) to center of mass of link (i).
rCi,sgi+1 : The vector from the center of mass Ci to the joint axis where the

sun-gear is located.
rCi,em : The vector from the center of mass Ci to center of mass of external mass.

P̈Ci : Linear acceleration of center of mass Ci.
P̈i: Linear acceleration of origin of frame (i).
ω̇i: Angular acceleration of link (i).
ωpgi : Angular velocity of planet-gear.
ω̇pgi : Angular acceleration of planet-gear.
mli : Mass of link (i).
Ili : Moment of inertia of link (i).
msgi+1 : Mass of sun-gear.

mpgi+1
: Mass of planet-gears.

fi: Force exterted by link (i− 1) on link (i).
Psgi+1 : Vector from base coordinate system (x0, y0, z0) to the joint axis where

the sun-gear is located.
ṗsgi+1 : Linear velocity from base coordinate system (x0, y0, z0) to the joint axis

where the sun-gear is located.
Zrg: The number of ring gear teeth.
Zpg: The number of planet-gear teeth.
Ri: The rotation matrix from Frame (i) to base frame (x0, y0, z0).
Tli : The kinetic energy of link (i).
mi: Mass of augmented link (link+sun-gear+planet-gears).
ri−1,Ci : Vector from origin of frame (i− 1) to center of mass Ci.
ri−1,i: Vector from origin of frame (i− 1) to the frame (i).
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rCi,li : The vector from the center of mass Ci to center of mass of link (i).
rCi,pgi+1 : The vector from the center of mass Cito the center of mass of the

planet-gear.
ṖCi : Linear velocity of center of mass Ci.
Ṗi: Linear velocity of origin of frame (i).
ωi: Angular velocity of link (i).
ωsgi : Angular velocity of sun-gear.
ω̇sgi : Angular acceleration of sun-gear.
g0: Gravity accelaration.
−fi+1: Force exterted by link (i+ 1) on link (i).
µi: Moment exterted by link (i − 1) on link (i) with respect to origin of frame

(i− 1).
PCi : Vector from base coordinate system (x0, y0, z0) to position of center of mass

of augmented link (i).
S : Skew symetric matrix.
Zsg: The number of sun-gear teeth.
µi+1: Moment exerted by link (i+ 1) on link (i) with respect to origin of frame

(i).
ṗli : Linear velocity from base coordinate system (x0, y0, z0) to center of mass of

link (i).
Ppgi+1 : Vector from base coordinate system (x0, y0, z0) to the center of mass of

planet-gear.
Gsgri+1 :The gear reduction ratios between sun-gear and ring-gear.
Gpgri+1 :The gear reduction ratios between planet-gear and ring-gear.
Tsgi+1 : The kinetic energy of the sun-gear.
Ti : The Kinetic energy of the augmented link.
Tpgi+1 : The kinetic energy of the planet-gear.
ṗpgi+1 : Linear velocity from base coordinate system (x0, y0, z0) to the center of

mass of planet-gear.
Abbreviation

ESPG: Equally spaced planet-gears.


