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A B S T R A C T

An accuracy in the hydrological modelling will be affected when having limited data sources especially at
ungauged areas. Due to this matter, it will not receiving any significant attention especially on the potential
hydrologic extremes. Thus, the objective was to analyse the accuracy of the long-term projected rainfall at
ungauged rainfall station using integrated Statistical Downscaling Model and Geographic Information System
(SDSM-GIS) model. The SDSM was used as a climate agent to predict the changes of the climate trend in Δ2030s
by gauged and ungauged stations. There were five predictors set have been selected to form the local climate at
the region which provided by NCEP (validated) and CanESM2-RCP4.5 (projected). According to the statistical
analyses, the SDSM was controlled to produce reliable validated results with lesser %MAE (<23%) and higher R.
The projected rainfall was suspected to decrease 14% in Δ2030s. All the RCPs agreed the long term rainfall
pattern was consistent to the historical with lower annual rainfall intensity. The RCP8.5 shows the least rainfall
changes. These findings then used to compare the accuracy of monthly rainfall at control station (Stn 2). The GIS-
Kriging method being as an interpolation agent was successfully to produce similar rainfall trend with the control
station. The accuracy was estimated to reach 84%. Comparing between ungauged and gauged stations, the small
%MAE in the projected monthly results between gauged and ungauged stations as a proved the integrated SDSM-
GIS model can producing a reliable long-term rainfall generation at ungauged station.
1. Introduction

Nowadays, the global warming is unavoidable. Uncontrolled emis-
sions dispersed to the atmosphere as a main factor in increasing the
greenhouse gasses (GHGs) level and contribute to the climate changes
crisis. Nor Aizam and Peter (2011) stated the most river in Malaysia were
frequently affected by flood event due to the unpredictable rainfall
variability. In the year of 2016, the majority part of east coast of
Peninsular Malaysia had been flooded after couple weeks of continuous
rain started on Nov, 2014. Most of the areas which near to the river were
flooded because of abnormal rainfall intensity which 60% higher than
the average monthly rainfall during normal condition. The downstream
rivers became overflow caused by heavy rainfall at an upstream areas.

Focused on Kuantan River Basin, an availability of rainfall stations
were limited and cater only at small parts of the entire basin. Besides, the
quality of the data records was also one of the major concerned and
become critical especially during disaster event. Based on the data
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provided, there were less than 50% of missing rainfall data especially on
Nov and Dec (flood events) which can be as a challenging problem
among analyst and policy makers. Lacking in the rainfall records will
having large impact to the long-term hydrological modelling (Adri�an and
Rolando, 2018).

A large number of statistical approaches such as linear, nonlinear and
hybrid methods have been tested and improvise in effort to generate the
rainfall at ungauged station. However, the hydrological characteristics
and physiometeorological variables are having complex relationship
which could not simply presenting in linear and nonlinear mechanism
(Ouali et al., 2017; Xue and Gui, 2015). Zeynoddin et al., 2018 proved the
hybrid methods which combining the linear stochastic models with
extreme learning machine (ELM) methods has good performance in
improving theaccuracyof rainfall projection.Meanwhile PimanandBabel
(2016) suggested to use transposition and regionalization techniques in
Hec-HMS in treating the rainfall-runoff estimation at ungauged station
and proved the error betweenobserved and estimatedwere less than 11%.
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Fig. 1. Kuantan river basin.
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Thus, statistical downscaling model (SDSM) has been introduced to
understand the changes on present and long-term future climate condi-
tion in responding to the long term dispersion of GHGs and aerosol
emission into the atmospheric system. It was categorised as hybrid model
which implementing the model output statistics and perfect prognosis.
The local climate changes trend can be projected only at the region that
having particular rainfall station.

In the climate assessment, the general circulation models (GCMs)
were implemented as an climatic agent which concerned the potential
GHGs in the long term. The GCMs is a mathematical modeling to describe
the general circulation of the atmosphere and ocean characteristics. It
can be as a platform to monitor the climatic responses in the context of
the GHGs. GCMs is cover the topography area up to 50,000 km2 radius.
The Canadian Climate Data and Scenarios (CCDS) is a climate research
center which provides climate models and observational data named
Coupled Model Intercomparison Project Phase 5, CMIP5 (AR5). The AR5
was used to generate the local climates concerned with the potential
radiation in the long term. The advantage of AR5 is the model does not
requires an additional flux adjustment in producing a good simulation. It
requires a resolution combination of the atmospheric and oceanic
component in producing a good agreement in a prediction. The SDSM
application potentially to provide reliable result while having limited
sources (Shahid et al., 2017). Its implementations were also well
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Fig. 2. Methodology of the study.
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documented and has been successfully tested in numerous studies espe-
cially for the long term Malaysia's climate assessment (Noor et al., 2019;
Tarmizi et al., 2019; Tahir et al., 2018; Tukimat et al., 2018).

Meanwhile, geographic information system (GIS) can be used to
interpolate spatial attribute between available stations in the reasonable
scale. In this case study, the attribute refer to the long term climate
changes trend at ungauged station. Interpolation is the procedure used to
predict cell value for location that lack sample points. There were many
geostatistical interpolation methods available such as Thiessen polygon,
Inverse Distance Weighting (IDW), linear regression and Kriging. Mair
and Fares (2011) proved the Kriging method was successfully to produce
the lowest error and better accuracy in the predictions compared to other
interpolation methods. Comparison of the Kriging method interpolation
map with grided isohyet data indicate that the areas of the greatest
rainfall deficit were confined to the mountainous region of west Oahu.
One of the advantage in the Kriging is the model weightage is not only
based on the distance between the measured points and the prediction
location but also on the overall spatial arrangement of the measured
points. To use the spatial arrangement in the weights, the spatial auto-
correlationmust be quantified. Thus, in Kriging, the weight, depends on a
fitted model to the measured points, the distance to the prediction
location, and the spatial relationships among the measured values
around the prediction location (ESRI, 2016).

Therefore, the integrated SDSM-GIS model has been used to examine
the accuracy of the long-term projected rainfall at ungauged station. It is
very important to evaluate the accuracy of the projected rainfall mapping
at ungauged area.

2. Study area

The study area was focused on Kuantan River Basin. There were 3
rainfall stations which near each other had been selected to achieve the
objective of the study. It was also based on the availability of 30 years
length data record (1984–2013) which having least missing data. The
selected rainfall stations were Pam Paya Pinang station (Stn 1: 3832015),
Paya Besar station (Stn 2: 3732020) and Kg Sg Soi station (Stn 3:
3732021) as shown in Fig. 1.

The boundaries cover 102o 230E and a 3o 530N. The total area of the
state is 35965 km2, which is 9.8% of the total area of Peninsular
Malaysia. The state of Pahang consists of diverse surface area, ranging
from sea levels of 0 m–3000m above sea level. Approximately 70% of the
country comprises of low-density land and those lands are less than 200
m above sea level. About 30% of this land was flooded before. The
average wind speed at this area during the flood was 6 mph and had the
average humidity of 80%. The rainfall distributions have two monsoons
known as North-East and South-West monsoons. The average annual
rainfall was in range of 2000mm/year to 4000mm/year and the range of
total average temperature was 27 �C–32 �C. The average monthly rainfall
in this area ranges from 200 mm to 790 mm per month.

3. Methodology

Fig. 2 explains themethodologyof the study. Therewere 2 phases in this
analyses; 1) simulation phase and 2) projection phase. In the simulation
phase, there were 5 predictors (atmospheric characteristics) which pro-
vided by NCEP data required to form the rainfall equation for each rainfall
stations. The predictors’ selection were based on the monthly correlation
values (R) between predictor-predictand (rainfall) relationships. The per-
formance of the rainfall equation was tested during calibration and vali-
dation processes using statistical downscaling model (SDSM).

Next, the Kriging method by GIS was performed to interpolate the
climate trend at Stn 2 which located in between of Stn 1 and Stn 3. This
process was repeated during second phase (projection phase) for pro-
jected climate result. However, this time, the same predictors name
which provided by CanESM2 Data have been used to analyse the pro-
jected climate results.



Fig. 3. Results of (a) calibration (1984–1998) and (b) validation (1999–2013) performances with the historical data for 3 rainfall stations (top: Station 1, middle:
Station 2, bottom: Station 3).

Table 1
Statistical analyses for calibrated and validated performances.

Stations St.D MAE (%) R

Cal Val Cal Val Cal Val

Stn 1 0.5 0.5 2.2 21.3 1.0 0.7
Stn 2 0.8 0.9 2.6 13.7 1.0 0.8
Stn 3 0.6 0.3 6.2 23.2 1.0 0.7
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3.1. Climate projection by SDSM

The SDSM was introduced by Wilby and Dawson (2007) and widely
used in the hydrological issues in varies climate scenarios. The model
provides station scale climate information from the grid resolution
GCM-scale output using multiple regression techniques. Its build up the
relationship between GCMs’ variable (so called as predictors) and the
local scale variable acts (so called as predictants). The SDSM was cate-
gorized as a hybrid model. It utilized a linear regression method and a
stochastic weather generator. A 30-years length period or more as stan-
dard references recommended for climate change and climate variability
study in climatology (Simon et al., 2015).



Fig. 4. Comparison between projected rainfalls by all RCPs with the historical rainfall trend.
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It consists of two steps: 1) determining of the whether rainfall occurs
on each day and 2) determining of the estimated value of rainfall on each
rainy day with considered estimated GHGs. Subsequently, the predictor-
predictand equations were developed using multi-linear regression
approach for generation the long-term climates at the region. The rainfall
(y) on day t can be determined by:

yt ¼F�1½φZt� (1)

Zt ¼ β0 þ
Xn

j¼1
βjbut þ βt�1 þ ε (2)

Where F is the empirical function of yt , ∅ is the normal cumulative dis-
tribution function, Zt is the z-score on day t, β is the regression parameter,
but is normalized predictor and ε is the variable parameter. For the rainfall
4

analysis, the equation was transformed to the fourth root to take account
for the skewed nature of the rainfall distribution.

The rainfall and temperature were modelled using stochastic weather
generator based on the selected predictors. The large-scale predictors for
the meteorological projection employed by the SDSM model were
referred to the NCEP reanalysis for calibration and validation processes
and CanESM2 for the long-term generation. Refering to the IPCC Fifth
Assessment Report (AR5), there were 3 RCPs have been used in this study
to provide plausible future scenarios of anthropogenic forcing spanning a
range from a low emission scenario characterized by active mitigation
(RCP 2.6), through two intermediate scenarios (RCP 4.5 and RCP 6), and
to a high emission scenario (RCP 8.5).

Although the statistical downscaling has several limitations (Wang-
soh et al., 2017), however the SDSM model does not require high



Fig. 5. Comparison of historical monthly rainfall intensity on Jan between ungauged and gauged rainfalls trend.
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computational demand to view the simulation results but has ability to
produce high quality of projection results. These advantages, as a whole,
had made SDSM a reliable tool for climate downscaling (Samadi et al.,
2013, Tukimat and Harun, 2015) and was selected as a downscaling tool
to generate the future climate trend at the study site.

3.2. GIS-Kriging interpolation

A GIS was basically a computerized information system like any other
database, but with an important difference which mean all the infor-
mation in GIS should be linked to a geographic spatial references such as
latitude and longitude, or other spatial coordinates. According to the
Environmental Protection Agency a GIS works by combining database
functions with computer mapping to map and analyses geographic data.
It uses a layering technique to combine various types of data. Special GIS
software was used to analyses layered data and create new layer of data.
Geographical was a geographic reference, means it referred to data of
spatial coordinates on the surface of the earth map. Information system
data base of attribute data corresponding to spatial location and pro-
cedure to provide information for decision making.

GIS consists of two components which were spatial component and
attribute component. Spatial component defined as the location of an
information. Basically it was constructed from three forms which were
lines, points, and polygons. Spatial data was categorized into two which
were lines, points and polygons. Spatial data was categorized into two
which were in raster and vector. Individual cells in a matrix, or grid,
format was used in the raster data to represent real world entities. It was
obtained from satellite from satellite imagery, aerial images of space, and
a map scan. Meanwhile, the coordinate was used in the vector data to
store the shape of spatial data object. It was performing in CAD software,
Shapefile, Map info table, delimited text file with coordinates, Triangu-
lated Irregular Network (TIN). Attribute component was the information
in the database. The information that was mentioned before was related
to geographic information, the position and size of plots of land, the
systems network of road, and railways, drainage, sewerage, ranked rivers
and building.

Interpolation is the procedure used to predict cell value for location
that lack sample points. The Kriging method, the weights are based not
only on the distance between the measured points and the projection
location but also on the overall spatial arrangement of the measured
points. To use the spatial arrangement in the weights, the spatial auto-
correlation must be quantified. Thus, in Kriging method, the weight,
depends on a fitted model to the measured points, the distance to the
projection location, and the spatial relationships among the measured
values around the projection location (ESRI, 2016). The equation of the
Kriging as stated below (Setianto and Triandini, 2013).
5

ZðsoÞ¼
XN

λi:ZðsiÞ (3)

i¼1

Z(si) ¼ the measured value at the location
λi ¼ an unknown weight for the measured value at the location
So ¼ the projection location
N ¼ Number of measured values

Analysis of rainfall data was based on the analysis of space and time.
For the analysis of space, location of rainfall stations was plotted by using
GPS, then the amount of annual rainfall was plotted by each rainfall
station. After that, the isohyet maps that represented the annual rainfall
for each year was predicted by using the interpolation of Kriging method
in GIS software. This interpolation is the procedure used to predict cell
value for location that lack of sample points. The aim of isohyet map
development using GIS was to identify the distribution of rainfall pat-
terns and to compare the rainfall distribution between years. In addition,
the changing patterns of rainfall from year to year can also be analysed.
Other than that, the analysis of changes in rainfall per year was analysed
by using the graph changes in rainfall for each station. The analysis was
then performed to identify the highest rainfall received during the review
period and then the causes and effects of the highest rainfall were
identified.

4. Results and discussion

4.1. Calibrated and validated of climate

There were 5 predictors have been selected based on the stronger
monthly R performances; surface zonal velocity (p_u), surface vorticity
(p_z), temperature (temp), relative humidity at 500hpa (r500) and geo-
potential height at 850hpa (p850). The R values were 0.72–0.81 which
closer to 1.0. These predictors set were used to form the rainfall equations
at each region.

The performances of these equations were evaluated during calibration
and validation processes as shown in Fig. 3. According to the results, all
stationswere successfully toperformwell incalibratedandvalidated results
with minimum error. These performances as stated in Table 1. The best
simulated result was at Stn 2 because successfully to produce the smallest%
MAE with 2.6% and 13.7% in the calibrated and validated results, respec-
tively. Meanwhile at Stn 3, the%MAE in the validated result was estimated
greater reaches 23.2%. The St.D shows the closer wide dispersed range
between calibrated and validated results except at Stn 3. However, all sta-
tions were obtained higher R values as a proved the predictors’ selection
were well organised and huge influence with the local climates.



Fig. 6. Comparison pattern of monthly rainfall distribution during year Δ2030 between ungauged and gauged stations (unit in mm/month).
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4.2. Climate projection by Δ2030s

The local climates were projected using same predictors set however
this time provided by CanESM2. Based on Fig. 4, all the RCPs agreed that
the long term annual rainfall potentially to produce lesser annual rainfall
intensity compared to the historical in all stations. The months of Feb to
Aug were predicted to have reasonable amounts of rainfall in all sce-
narios and the least rainfall projection which are scenario RCP4.5 at Stn 1
with decrement -14.11% due to the Southwest monsoon, which normally
6

dominates the dry season period. Meanwhile the projected rainfall result
was expected to increase to occur during Northeast monsoon especially
in November and December.

Rainfall trend at Stn 2 which projected by RCP2.6 recorded as the
highest rainfall intensity compared to other stations and reached to 2995
mm/year. However, this intensity still lower 2.14% compared to the
historical record. While the lowest rainfall intensity was occurred at Stn 1
with 2120mm/year which expected to decrease 14.11% compared to the
historical data. Meanwhile for the Stn 2 and Stn 3, RCP 8.5 shows the



N.N.A. Tukimat et al. Heliyon 5 (2019) e02456
least rainfall changes in the long term with -11.32% and -6.5%, respec-
tively compared to other RCPs.

4.3. Climate interpolation by GIS

The GIS-Kriging method used to treat the ungauged station. In this
case study, the Stn 2 being as a control station which reacted as an
ungauged station. Fig. 5 indicates the comparison of the historical rain-
fall distribution between gauged and ungauged rainfall stations.

From the analyses, the highest %MAE between ungauged and gauged
station was occurred in Feb with 16.1%. Even the error was slightly
bigger however the rainfall distribution pattern at ungauged station was
still consistent to the gauged station. Meanwhile month of April was
succesfully to produce the lowest error with 0.1% compared to the other
months. The monthly rainfall for this month at ungauged station was in
range of 135.43 mm until 148.7 mm compared to the gauged station was
in range of 132.86 mm until 148.38mm.March, May, and June were also
produced lower percentage error with less than 5%. Thus, as general the
interpolation by GIS-Kriging was succesfully to produce climate trend
which consistent to the historical trend.

Meanwhile Fig. 6 shows the comparison of projected monthly rainfall
by RCP 4.5 for the Δ2030s between ungauged and gauged stations. In
this study, the RCP4.5 was performed because it produced closer simu-
lated result compared to the rest RCPs. The RCP4.5 is referred to the
radiative forcing at 4.5 Wm-2. It provides a common platform for climate
models to explore the climate system response to stabilizing the
anthropogenic components of radiative forcing (Van Vuuren et al.,
2011).

The monthly projected rainfall distribution by ungauged station were
succesfully to produce very small %MAE, which were <1% for every
month. The rainfall patterns were also very closed to rainfall pattern
provided by gauged station. The lowest of %MAE was recorded in
October (0.1%). The range of rainfall intensity at ungauged station was
167.58mm–199.05mm, while at gauged station, the range of rainfall
intensity was in range of 167.33mm and 198.99mm. Consistent trend
were occurred in May, June, July and September with <5% of error.

However, the higher errors was estimated to occur on December
whereby the %MAE between ungauged station and gauged station was
reaches 15.3%, The monthly rainfall for ungauged station in December
was within 479.67mm–547.37mm compared to the gauged station
which in between of 538.38mm and 646.50mm. Followed by Feb
whereby the %MAE reaches to 13.9%. Eventhough, all these critical
month were still succesfully to produce consistent rainfall distribution
pattern to the gauged station with reasonable errors.

5. Conclusion

The finding of this study showed the SDSM-GIS model has huge po-
tential to generate the long term rainfall pattern at ungauged station. The
Kriging method can be performed as interpolation agent to treat the
ungauged station area.

The SDSM was succesfully to provide the long term climate pattern at
the gauged stations with lesser %MAE and higher R value closed to 1.0 in
the simulated results. Due to the projected results, the rainfall intensity
were estimated to reduce in average 14% in Δ2030s compared to the
historical. In general, All the RCPs agreed to produce the similar rainfall
patern throughout a year with small intensity changes. However, the
increment/decrement was varies in different level of radiation forcing.
The RCP2.6 and RCP8.5 were recorded as the highest and least rainfall
changes in the long term records.

The GIS was succesfully to treat the ungauged station. In this study,
Stn 2 was used as control station which reacted as ungauged station. The
interpolation results produced by GIS-Kriging at ungauged station was
slightly similar to the control station with %MAE was 16.1% (historical
comparison) and 15.3% (projection comparison). It proven the inte-
grated SDSM-GIS model can provides the rainfall trend at ungauged
7

station reaches 84% of accuracy.
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