

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering in Manufacturing.

Signature

Stowens

Name of supervisor

÷

: ASSOC. PROF. DR DEWAN MUHAMMAD NURUZZAMAN

Position

: ASSOCIATE PROFESSOR

Date

: 06-06-2017

DESIGN, FABRICATION AND PERFORMANCE TEST OF DIE-PUNCH SET FOR POWDER COMPACTION PROCESS

LOGATARSAN A/L CHANDRAN

Report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

> Faculty of Manufacturing Engineering UNIVERSITI MALAYSIA PAHANG

> > June 2017

PERPUSTAKAAN UNIVERSITI MALAYSIA PAHANG	
No Peroleban	No. Panggilan
Tarikh 0 9 AUG 2017	2017 BC.

ACKNOWLEDGEMENTS

I am grateful and would like to express my sincere gratitude to my supervisor Assoc.Prof.Dr.Dewan Muhammad Nuruzzaman for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. He has always impressed me with his outstanding professional conduct, his strong conviction for science, and his belief that a bachelor degree program is only a start of a life-long learning experience. I appreciate his consistent support from the first day I applied the project that he assigned to me. I am truly grateful for his progressive vision about my progress in completing this project, his tolerance of my naïve mistakes, and his commitment to my future career. I would also like take this opportunity to thank my professor's master program student, Miss.Farah Fazira Binti Kamaruzaman for guiding me a lot in completing this project. She was really helpful and taught me every single detail that I need to know about this project.

My sincere thanks go to all my lab mates and members of the staff of the Manufacturing Engineering Department, UMP, who helped me in many ways and made my stay at UMP pleasant and unforgettable. Many special thanks go to other lecturers and friends whom were there when I need any help. Nevertheless, my batchmates and friends were all being a great strength to me during my tough time. Very special thanks to them for being a great pillar for me.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals.

ABSTRACT

This study is mainly about the fabrication of die-punch set using two different metals; Tool Steel SKD61 and Hardened Steel SKD11. Powder compaction processes are well known in many industries nowadays and this process requires a die-punch set. Thus through this study, the performance comparison between both type of die-punch are also obtained. Hardened Steel SKD11 is commonly used in many industries. Thus, comparison between the two different types of die-punch is done to observe which diepunch has better performance. Fabrication of a die-punch set requires a proper design to be processed first. Once the design selection with a suitable dimension and tolerance are made, then the fabrication process can start. Few machining operations are done to ensure a successful fabrication of the die-punch set. The fittings of each part of the diepunch set are made aligned. Performance testing of the die-punch set is done by producing green compacts through powder compaction method. Before this green compacts are made, the metal powders are prepared and mixed well based on the compositions that needed in this research project. A total of three different metal powder compositions are tested. Once the compaction is done, the green compacts are sintered. Then, the sintered compacts are tested for their hardness. Hardness test is done to show which die-punch set can produce a metal ceramic compact with a better hardness.

ABSTRAK

Kajian ini adalah berkaitan tentang proses pembuatan "die-punch" menggunakan dua jenis besi; 'Tool Steel SKD61 dan "Hardened Steel SKD11". Proses pemampatan serbuk amat terkenal dalam kalangan industri pada masa kini dan proses ini memerlukan "diepunch". Oleh itu, melalui kajian ini, prestasi kedua-dua jenis "die" ini akan diuji. "Hardened Tell SKD11 digunakan di kebanyakkan industri. Oleh itu, perbandingan antara kedua jenis "die-punch" ini dapat diperhatikan dan produk mana yang dapat menunjukkan prestasi yang lebih baik dapat dikaji. Pembuatan "die-punch" ini harus dimulakan dengan membuat reka bentuk yang sesuai dahulu. Setelah reka bentuk tersebut selesai, dimensi dan toleransi yang sepatutunya perlu disertakan dan proses prmbuatan boleh dimulakan. Beberapa operasi pemesinan akan dibuat terhadap besi yang telah dipilih untuk menjayakan pembuatan "die-punch" tersebut. Pemasangan setiap bahagian harus sentiasa selari. Ujian prestasi ke atas "die-punch" dijalankan dengan membuat beberapa kepingan besi dengan cara pemampatan serbuk. Sebelum kepingan besi tersebut dibuat, serbuk besi dicampur mengikut komposisi yang telah ditetapkan untuk projek ini. Sebanyak tiga jenis komposisi serbuk besi telah disediakan untuk diuji. Setelah pemampatan selesai, kepinga besi tersebut akan dipanaskan. Selepas itu, kepingan besi akan di uji untuk ketahanannye. Ujian ketahanan dibuat untuk mengetahui "die-punch" mana yang dapat menghasilkan kepingan besi yang mempunyai ketahanan yang tinggi.

TABLE OF CONTENTS

Page

SUP	PERVISOR'S DECLARATION	iii
STU	JDENT'S DECLARATION	iv
ACI	KNOWLEDGMENT	vi
ABS	STRACT	vii
ABS	STRAK	viii
TAI	BLE OF CONTENTS	ix
LIS	T OF TABLES	xiii
LIS	T OF FIGURES	xiv
CHA	APTER 1 INTRODUCTION	
1.1	Project Background	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Project Scope	4
1.5	Expected Outcome	4

ix

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Tool Steel SKD 61	6
2.3	Hardened Steel SKD 11	8
2.4	Die Punch Set	11
	2.4.1 Compound Die	11
	2.4.2 Combination Die	12
	2.4.3 Progressive Die	12
2.5	Design of Die Punch Set	13
	2.5.1 Die Set Structure	13
	2.5.2 Drawing of Die in 2D	15
	2.5.3 Sample 3D Model	15
2.6	Fabrication of Die Punch Set	17
	2.6.1 Turning Operation	17
	2.6.2 Facing Operation	17
	2.6.3 Drilling Operation	18
2.7	Powder Compaction Process	18
2.8	Sintering of Al and Al ₂ O ₃	19

х

CHAPTER 3 METHODOLOGY

3.1	Introduction	20
3.2	Flow Chart	21
3.3	Objectives, Problem Statement & Project Scope	22
3.4	Literature Review	23
3.5	Design Concept of Die Punch Set	23
3.6	Design Selection of Die Punch Set	29
	3.6.1 Concept Screening	29
	3.6.2 Concept Scoring	30
3.7	Material Selection for Die Punch Set	32
3.8	Fabrication of Raw Material	33
3.9	Powder Compaction and Sintering Process	35
3.10	Hardness Test	37

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	38
4.2	Selected Design of Die-Punch Set	39
4.3	Fabricated Die-Punch Set	43

xi

4.4 Aluminium and Aluminium+ Alumina Compacts	44
4.5 Microstructure of Aluminium+ Alumina Compacts	46
4.6 Hardness Test	50
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1 Introduction	53
5.2 Conclusion	54
5.3 Recommendations	56
REFERENCES	57
APPENDIX A FYP 1 Gantt Chart	59
APPENDIX B FYP 2 Gantt Chart	60
APPENDIX C ROMI CNC Lathe Machine	61
APPENDIX D CNC Milling Machine Makino KE55	62
APPENDIX E Nabertherm Furnace used for Sintering	63
APPENDIX F Metkon Forcipol 2V Grinder and Polisher	64
APPENDIX G Material and apparatus preparation for specimen mounting	65
APPENDIX H TOYO Hydraulic Press	66
APPENDIX I Fabricated Die-punch set and specimens produced using them	67
APPENDIX J Conference Paper	68

xii

LIST OF TABLES

Table 2.1	Chemical composition of JIS SKD61 (mass %)	7
Table 2.2	Thermo-physical characteristics of SKD61 steel	7
Table 2.3	The chemical composition of SKD11 hardened steel	9
Table 2.4	Physical and mechanical properties (25°C)	9
Table 2.5	Thermo-physical characteristics of SKD11 steel	10
Table 3.1	Concept screening table	30
Table 3.2	Concept scoring table	31
Table 3.3	Performance ranking table	32
Table 4.1	Specimen composition and specifications before sintering process.	46
Table 4.2	Specimen composition and specifications after sintering process.	47
Table 4.3	Hardness Test Results	50

LIST OF FIGURES

Figure 2.1	Original microstructure of commercial rolled bar of SKD61 at room temperature	8
Figure 2.2	The metallurgical structure of the original workpiece material (1000X	() 11
Figure 2.3	Plate assembly at (A) top and (B) bottom	14
Figure 2.4	Instrumented closed die	14
Figure 2.5	2D designs of dies and punch	15
Figure 2.6	3D model of (A) lower punch, (B) die body and (C) upper punch	16
Figure 3.1	Methodology Flow Chart	21
Figure 3.2	(A) Top Punch, (B) Bottom Punch, (C) Die body (DESIGN A)	24
Figure 3.3	(A) Top Punch, (B) Bottom Punch, (C) Die body (DESIGN B)	25
Figure 3.4	(A) Top Punch, (B) Bottom Punch, (C) Die body (DESIGN C)	26
Figure 3.5	(A) Top Punch, (B) Bottom Punch, (C) Die body (DESIGN D)	27
Figure 3.6	(A) Top Punch, (B) Bottom Punch, (C) Die body (DESIGN E)	28
Figure 3.7	(A) Tool Steel SKD61 and (B) Hardened Steel SKD11	33
Figure 3.8	(A) Cutting process, (B) Facing and turning process and (C) Drilling process	34
Figure 3.9	(A) Weighing metal powder and (B) Mixing the powder	35
Figure 3.10	Die Placementon Hydraulic Press	36
Figure 3.11	Vickers Micro Hardness Tester	37
Figure 4.1	(A) Top Punch, (B) Bottom Punch, (C) Die Body and (D)Total Assembly	39

Figure 4.2	Drafting of Top Punch	40
Figure 4.3	Drafting of Bottom Punch	41
Figure 4.4	Drafting of Die Body	42
Figure 4.5	Complete SKD61 Die Punch Set	43
Figure 4.6	Complete SKD11 Die Punch Set	43
Figure 4.7	Metal Powders with Three Different Compositions	44
Figure 4.8	Metal Powders Compaction made using SKD61 Die-Punch Set	45
Figure 4.9	Metal Powders Compaction made using SKD11 Die-Punch Set	45
Figure 4.10	Microstructure of Specimens made using SKD61 Die-Punch Set	48
Figure 4.11	Microstructure of Specimens made using SKD11 Die-Punch Set	49
Figure 4.12	Hardness Test Result	51

xv

CHAPTER 1

INTRODUCTION

1.1 PROJECT BACKGROUND

Metal composite compaction or stampings are important structural components of automobiles, computers, refrigerators, type writers, kitchen utensils, electrical, electronics and telecommunication equipment [1]. Metal composite compaction operations are conservative and brisk method for creating complicated, exact, solid and strong metal compactions in large amounts. Utilizations of these operations are expanding step by step because of their high efficiency, ease per part, and change in material quality, and least scrap material and vitality utilization. One of the critical assignments in the generation of metal composite compaction is the plan of press apparatuses and choice of materials for press instrument parts to suit the item highlights. The determination of a legitimate material for press instrument segments has turned out to be one of the imperative perspectives of press instrument outline on the grounds that long device life has ended up a need for accomplishing higher efficiency and decreasing expense of sheet metal parts. Thus, before proceeding in metal composite compactions, a die punch set should be fabricated as the press tool for the metal powder compaction process.

A die punch set consists of three parts; top punching die, bottom die and the die body. The concept designs were made via Catia V5R21 software. Total five concepts were generated based on their geometrical shapes. After that, the best design was chosen by doing the concept selection method. Then, the die punch set is been fabricated as per the design chosen. This die punch set also functions by the same principle, where firstly the metal powder is filled into the cavity of the die body. Before filling the powder, a bottom die is placed where the die body would be fixed on top of it. This is to allow the filled powder to stay in a sealed environment thus it does not exit the cavity during compaction process. After the cavity of die body is filled with metal powder, the compaction process would start where the top die punching part will be used to compact the metal powder in the die body's cavity. Later, the finished specimen is ejected through the die bottom part. Overall, the production of this die punch set is to facilitate powder compaction process which we learnt in powder metallurgy.

Powder metallurgy is the process of fabrication of net shaped objects by the use of compacting force and temperature [2]. Usually only four steps would be involved in the powder metallurgy process. Firstly, powder preparation will be done. Certain percentage of different types of metal powders would be prepared then this metal powders are mixed till homogenous mixing is achieved. The third step is compacting and finally sintering is done to improve the mechanical property of the produced specimen. Applications of powder metallurgy was found in the aerospace, self-lubricated bearings, porous components, gears, implants, actuators, electronic and automotive industries [2]. At times metal specimens which processed by powder compaction will tend to crack. In certain cases, these cracks may not be visible till sintering is done. This is the reason where the fabricated die punch set plays an important role in powder compaction process. The inner wall of the cavity can cause friction between particles which can end up causing micro crack in the green compact.

As to this, this project is done to produce a die punch set to fabricate a green compact which can have better mechanical properties. The die punch would be tested to produce few green compacts and observed on its visible deformation.

1.2 PROBLEM STATEMENT

Industries nowadays choose to use the compacting process to fabricate any type of metal ceramic composite specimens. Even in forming a reinforced metal sheet, compaction process is most favorable. Thus, many sort of die punch had been produced to facilitate this compaction process. As we know compaction process involves a large amount of pressure exerted on the die punch to produce the specimens. Selecting a proper material that can be used as the die punch is very essential so that there would not be any mechanical failure on the die punch during compaction. Besides that, a proper tool should be also considered in machining the die punch which can reduce in tool wear and improper finishing. Once this is done, the performance test measures how well the die-punch is functioning. This is done by testing the specimens produced using those die-sets for hardness test. Thus, present study would be focusing in the fabrication of a well-functioning die punch set to perform compacting process on metal ceramic composite.

1.3 OBJECTIVE

The objectives of this project are:

- To design and fabrication of Die-Punch.
- To do performance test of the fabricated Die-Punch Set for metal ceramic composite structure.

REFERENCES

This thesis is prepared based on the following references;

- [1] Kumar Shailendra,"An Intelligent System For Selection Of Materials For Press Tool Components" Jers/Vol.Ii/ Issue Ii/April-June, 2011/119-130
- [2] Kamal Kumar Jangra, Tilak Raj, Neeraj Sharma, "Fabrication And Development Of Die For Powder Compaction Press" E-Issn: 2278-1684, P-Issn: 2320-334x. Pp 20-23
- [3] Chiu L.-H., Yang C.-F. & Liu P.-M," Wear Resistance Of Jis Skd61 Tool Steels With Cr Based Coatings", Surface Engineering, 16:3, 257-261, Doi: 10.1179/026708400101517125 (2000)
- [4] Huu-That Nguyen And Quang-Cherng Hsu,"Surface Roughness Analysis In The Hard Milling Of Jis Skd61 Alloy Steel" Department Of Mechanical Engineering, National Kaohsiung University Of Applied Sciences, Received: 17 April 2016; Accepted: 30 May 2016; Published: 8 June 2016
- [5] Sung-Sil Jung, Je-Se Moon, Dae-Yeol Lee, Kuk-Tae Youna, Chun-Dal Parka And Jae-Sun Songa,"Fabrication And Characteristic Evaluation Of Hybrid Carbon Nanotubes Reinforced Skd11 Cold Work Tool Steel", (Received August 20, 2013; Accepted August 26, 2013)
- [6] Ming Chen, Lu-Lu Jing & Xue-Kun Li (2007),"The Surface Integrity In Machining Hardened Steel Skd11 For Die And Mold", Machining Science And Technology, 11:1, 99-116, Doi: 10.1080/10910340601174574
- [7] A.K.Kumaresh, B.Balaji, M. Raj Kumar,"Design And Analysis Of Punching Die", (Volume: 05 Issue: 04 | Apr-2016,)
- [8] C.Parswajinana, B.Vijaya Ramnathb, M.Vetrivelc, A.Riyaz Ahmedd, A.S.A.Syed Mohamed Buharie, C.Muthukumaaranf, I.Anish Hilary,"Design And Fabrication Of Impact Die For Powder Metallurgy", Pmme 2016
- [9] B.Tulasiramarao, Dr.K.Srinivas2, Dr. P Ram Reddy, A.Raveendra, Dr.B.V.R.Ravi Kumar,"Experimental Study On The Effect Of Cutting Parameters On Surface Finish Obtained In Cnc Turning Operation", Vol. 2, Issue 9, September 2013 Copyright To Ijirset Www.Ijirset.Com 4547
- [10] Badru Doja And Dr.D.K.Singh,"Analysis And Effect Of Process Parameters On Surface Roughness And Tool Flank Wear In Facing Operation", Vol. 1 Issue 4, June – 2012

- [11] K. Adarsh Kumar ,Ch.Ratnam, Bsn Murthy, B.Satish Ben, K. Raghu Ram Mohan Reddy,"Optimization Of Surface Roughness In Face Turning Operation In Machining Of En-8", Volume-2, Issue-4, 807 – 812
- [12] Majid Tolouei-Rad, And Ankit Shah,"Development Of A Methodology For Processing Of Drilling Operations", Vol:6, No:12, 2012
- [13] R.Maguteeswaran, M.Dineshkumar, R.Dineshkumar, K.Karthi, R.Sabariselvan,"Fabrication Of Multi Process Machine" Vol.2 Issue.2, February 2014.
- [14] K. Mohammed Jasim Kadhim, Adil A. Alwan, Iman J. Abed,"Simulation Of Cold Die Compaction Alumina Powder" Volume 1, Issue 1, February, 2011, Pages 1-21.

-

[15] Mehdi Rahimiana, Naser Ehsania, Nader Parvinb, Hamid reza Baharvandic," The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy" Journal of Materials Processing Technology 209 (2009) 5387–5393, April 2009.