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A B S T R A C T

The parallel evolutional relationship between microstructural properties and magnetic and electrical properties
was elucidated through this study. A Co0.5Ni0.5Fe2O4 rod sample was prepared via high energy ball milling and
subsequent moulding into a nano-sized compacted powder. This single sample was sintered through 10 cycles at
different sintering temperatures in the range of 500 °C–1400 °C. After each sintering, the sample was char-
acterized for its phase, microstructural, density, magnetic and electrical properties using XRD, SEM, B-H tracer,
Curie temperature measurement and two probes method. An integrated study of microstructural properties with
elevating sintering temperature would point to the existence of three stages of sintering, which involved atomic,
interfaces (lattice and boundaries), and volume diffusions respectively. Three distinct shape-differentiated
groups of B–H hysteresis loops were observed. The existence of these groups was associated with microstructural
properties such as phase purity, volume fraction of disordered phase or grain boundaries, and grain size. In terms
of average grain size, from 48.25 nm to 71.93 nm, a weak paramagnetic behaviour was observed; while from
83.65 nm to 374.79 nm, a relatively square-shaped hysteresis loops with moderate ferromagnetic behaviours
were observed. The occurrences of erect and well-defined sigmoid-shape were observable when there were
sufficiently high single-phase purity and crystallinity, where the average grain size was in the range of
964.73 nm–11215.91 nm. The critical grain size of 186.75 nm was found by plotting average grain size against
coercivity, suggesting the number of single-domain particles was reduced, and the number of multi-domain
particles was increased by increasing sintering temperature. The electrical resistivity variations were strongly
related to the microstructural properties.

Introduction

Ferrites are among the most widely used groups of magnetic cera-
mics in engineering products. The behaviours of polycrystalline ferrites
are strongly related to chemical compositions, microstructure, and
crystal structure. The remarkable magnetic properties of spinel ferrites
originate from the interactions between cations with resultant magnetic
moments that are situated in the tetrahedral and octahedral sites [1].
Nickel ferrite and cobalt ferrite both possess an inverse spinel structure,
where iron cations are distributed equally in tetrahedral and octahedral
sites, while the other constituent cations (nickel, cobalt) are mainly in

octahedral sites [2,3]. Nickel and cobalt ferrites have attracted in-
creasing attention and have been considered for applications such as
magnetic sensors, wave absorbers, telecommunications, and magnetic
composites. Nickel ferrite is a soft ferrite with high magnetocrystalline
isotropy while maintaining high resistivity. On the other hand, cobalt
ferrite is a hard ferrite with high magneto-crystalline anisotropy, high
coercivity, and moderate saturation magnetization, while possessing
high chemical and mechanical stability. Therefore, cobalt nickel ferrite,
Co0.5Ni0.5Fe2O4 possesses high electrical resistivity and unique mag-
netic properties suitable for high-frequency electronic applications,
electrodes for supercapacitors, microwave devices, chemical sensors,
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information storage, and electronic chips [4–8].
Studies have shown that heat treatment, such as sintering can be

utilised for controlling the microstructural properties of polycrystalline
ferrites, particularly grain size, porosity, and grain boundaries [9–12].
The objective of this work, with the combination of High Energy Ball
Milling (HEBM), is a systematic study on the correlations between
magnetic and electrical behaviours, with microstructural properties of
Co0.5Zn0.5Fe2O4. Compared to conventional solid-state route, pre-
treated powder with HEBM has an advantage of mechanical activation
of particles; hence, the formation of polycrystalline ferrites can be ob-
tained at a relatively low sintering temperature. Additionally, an ex-
perimental sequence focused on the property-microstructure relation-
ships will be carried out on a single sample throughout a series of
ascending sintering temperature (Single Sample Sintering (SSS) tech-
nique). Therefore, thermal history may come into the picture of sys-
tematically tracking the property-microstructure relationships, pro-
viding a higher consistency and reliability in the fundamental line of
scientific inquiry.

Materials and methods

All raw powders were purchased from Alfa Aesar without any fur-
ther purification. The starting raw powders consisted of Co3O4 (97.7%),
Fe2O3 (99.5%), and NiO (99.0%) with molar mass of 240.8 g/mol,
159.69 g/mol and 74.6928 g/mol respectively. The starting powders
were weighed according to the stoichiometric ratio of Co3O4:NiO:Fe2O3

to be 1:3:6 based on a molar ratio. Then, the powders were milled using
SPEX 8000D, in a hardened steel vial. A ball to powder ratio of 10:1 was
chosen. The high energy ball milling was carried out for 6 h, accom-
panied by ten hardened steel balls, with each ball of 12mm in diameter.
The rotational speed of the vials was fixed at 1450 rpm. The as-milled
powder was blended with 1 to 2 wt% of polyvinyl alcohol to obtain a
granulated powder. A hydraulic pressing machine was used to press at
300MPa to obtain a rod sample. The rod formed with the size of 20mm
in diameter and 10mm in height. Optimisation of the milling process
and making rod sample was already reported elsewhere [13–15]. The
rod sample was then sintered repeatedly for 10 cycles in air at different
sintering temperatures of 500 °C, 600 °C, 700 °C, 800 °C, 900 °C,
1000 °C, 1100 °C, 1200 °C, 1300 °C, and 1400 °C for 10 h. After every
cycle, the sample was examined. Phase evaluation was carried out with
Philips X’PERT diffractometer. The evaluation was accomplished using
filtered Cu Kα radiation (l= 0.1542 nm) obtained in the 2θ range of 20

to 80° using a scan step of (2θ)= 0.033 with 5 s per step as the
counting. The topographical and morphological observations were ob-
tained using a Nova NanoSEM 50 scanning electron microscope. An
intercept method of over 200 grains was used using ImageJ software to
measure the grain size. The Archimedes principle with water as the
fluid medium was used to measure the density of the toroidal bulk
sample. The percentage theoretical density (%Dth) was calculated using
the following formula:

= ×%D (measured density/theoretical density) 100%th (1)

The theoretical density of Ni0.5Co0.5Fe2O4 was calculated by taking
the molecular weight of Ni0.5Co0.5Fe2O4 to be 234.51 g. The weight of 8
molecules in 1 unit cell is (8)×237.73/A, where A is Avogadro’s
number. The volume of a cube of side length a is a3. The unit cell edge
ao (Ǻ) of Ni0.5Co0.5Fe2O4= 8.360Ǻ therefore a3= 584 Ǻ3. As
1Ǻ3= 10-24cm3, theoretical density is mass/volume equal to

⎡⎣ × ⎤⎦ ×
×

−(8) /584 10234.51
6.022 10

24
23 , which is equal to 5.335 g/cm3.

The theoretical density, ρx , was calculated as above. The percentage
of porosity, P, of the sample was calculated using the relation below:

= ⎡
⎣⎢

− ⎤
⎦⎥

×P
ρ
ρ

1 100%
x (2)

where ρ is the measured density of the sample.
The B–H hysteresis loops of the bulk samples were studied, and the

magnetic properties were extracted using a MATS-2010SD Static
Hysteresisgraph. The electrical resistivity was measured using two
probes method. Curie temperature was measured using a method in-
volving sample wounded with copper wire, placed in a furnace and
heated up to 300 °C. The inductance values were obtained using an
HP4294A Precision Impedance Analyzer. The Curie Temperature values
were determined by plotting graphs of initial permeability against
temperature.

Results and discussions

Phase and microstructural analysis

The X-ray diffraction patterns of SSS Co0.5Ni0.5Fe2O4 (Simple
Sample Sintering cobalt nickel ferrite) from 500 to 1400 °C are dis-
played in Fig. 1. The Bragg diffraction angles (2θ) of all the peaks were
identified individually according to the reference of ICDD. Samples

Fig. 1. XRD graph of SSS Co0.5Ni0.5Fe2O4 after sintering from 500 °C to 1400 °C. ▲=Fe2O3, ⊕=Co0.5Ni0.5Fe2O4, ■=Co2O4.
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sintered at 500 °C show a trace of α-Fe2O3 (ICCD: 01-079-1741), Co3O4

(ICCD: 01-078-0429 and 01-076-1802) and a small trace of
Ni1.25Fe1.85O4 (ICCD: 01-088-0380). This result shows that partial dif-
fusion had occurred at 500 °C. When sintering temperature was in-
creased from 700 to 1400 °C, CoFe2O4 (ICCD: 00-027-1029) and
NiFe2O4 (ICCD: 00-032-0072) phases diffused, and a Co0.5Ni0.5Fe2O4

phase occurred [16–18]. It is worth mentioning that the SSS method
influences the volume fractions of different phases in the diffraction
patterns. Due to the existence of the thermal history of SSS, the volume
fractions of phases disappear with only the visibility of a single sharp
peak. The Co0.5Ni0.5Fe2O4 phase formed at a relatively lower sintering
temperature (700 °C) compared to the conventional solid-state process
due to the mechanical activation of the constituents with high energy
ball milling before sintering. The mechanical activation allows the
formation of polymorphic iron oxide phases, and diffusion mechanism
can take place at low sintering temperatures. Interestingly, there ex-
istence of peaks at 38° with (2 2 2) peak and at 65° with (0 4 4) peak for
sample sintered at 1000 °C, contributed by intermediate species which
is cobalt (III) oxide. Beside these peaks, there is also another peak
showing an intermediate phase which is nickel iron oxide, existed at 73°
with (3 3 5) peak. These peaks clearly show that there are intermediate
phases of cobalt (III) oxide and nickel iron oxide co-existed together.
Beyond the 70°, there are some relatively low intensity peaks, consist of
(0 2 6), (2 2 6), which is not significant to mention as they are not the
main peaks [19].

The strain (ε) and the average crystallite size (DXRD) were estimated
using the Williamson-Hall method (Eq. (3)).

= +βcosθ λ
D

ε sinθ0.9 4. . (3)

where λ is the wavelength of CuKα radiation (1.5406 Å), β is the
broadening of full width at half the maximum intensity (FWHM), hkl
are the Miller indices, θ is the Bragg angle (o).

The lattice constant, a (Å) was calculated from Bragg's law with
Nelson-Riley correction (Eq. (4)) [20,21].

= + +α λ h k l
sinθ2

2 2 2

(4)

where λ is the wavelength of CuKα radiation (1.5406 Å), hkl are the
Miller indices, θ is the Bragg angle (o).

Table 1 shows the structural and physical properties extracted from
XRD results. There was a drastic decrease in lattice parameter a after
500 °C, which is believed to have resulted from the mechanically in-
duced oxygen vacancies in the structure and disrupted the super-
exchange (A–O–B) bonds [22]. As a result, relatively smaller Ni2+ ions,
with an ionic radius of 0.78 Ǻ, were diffused into the voids at lower
sintering temperatures. HEBM induces three phenomena: (i) The con-
traction of lattice space of ferrite as the milling time increased; (ii) the
crystal lattice grew with a considerable amount of voids; and (iii) the
redistribution of cations from its ordinary tetrahedral and octahedral

sites [23]. The lattice parameter varies with increasing milling time as
the result of an accumulation of lattice strain [24]. The variation of
lattice parameters highlights that there were changes in the ratio of
Fe3+ cations in octahedral and tetrahedral, which is caused by the in-
troduction of Ni2+. The original cation distribution was disrupted by
the Ni2+ cations, as Co2+ ions were forced to the tetrahedral sites due
to the selective transfer of Co2+ because of its larger size (0.745 Å)
compared to Fe3+ ions (0.645 Å); while some Fe3+ ions were forced
into the octahedral sites to release the strain from the introduction of
Ni2+ ions [1].

The lattice strain and crystallite size of SSS Co0.5Ni0.5Fe2O4 were
calculated by Williamson-Hall analysis by assuming the strain is uni-
form in all crystallographic directions [25]. Fig. 2 shows the strain and
crystallite size variations of SSS Co0.5Ni0.5Fe2O4 with sintering tem-
perature from 500 °C to 1400 °C. The lattice strain decreases from 500
to 700 °C and fluctuates within a range between 40 and 1100 micro-
strain from 700 to 1400 °C. This is thought to be due to the thermal
history of a single sample sintering method. One sample was used for
different sintering temperatures; therefore the sensitivity to thermal
treatment decreases after each thermal treatment. The crystallite size
also increases with the increasing of sintering temperatures. This in-
dicates that the increase in crystallization reaction caused the material
to possess a greater degree of magnetocrystalline anisotropy and ex-
change interaction that determine the direction in which magnetization
prefers to be oriented [26].

The as-milled sample has a nanocrystalline structure, and it is
thermodynamically unstable with high spontaneous strain. Sintering at
500, 600, and 700 °C had caused the lattice strain relaxation by re-
moving the oxygen vacancies at grain boundaries as mentioned before.
There was a higher level of lattice strain relaxation and structural phase

Table 1
Lattice parameters, Density, theoretical density, porosity and phases of SSS Co0.5Ni0.5Fe2O4 samples sintered from 500 °C to 1400 °C.

Ts (oC) Lattice Parameter Experimental Density (g/cm3) Theoretical density (%) Porosity (%) Phase

a (Å) VO (Å3)

500 10.36 1114.15 4.721 88 12 Fe2O3, Co3O4, Ni1.25Fe1.85O4

600 8.33 579.37 4.770 89 11 Fe2O3, CoFe2O4, NiFe2O4

700 8.32 577.94 4.799 90 10 Co0.5Ni0.5Fe2O4

800 8.34 580.41 4.818 90 10 Co0.5Ni0.5Fe2O4

900 8.34 580.76 4.847 91 9 Co0.5Ni0.5Fe2O4

1000 8.4 593.03 4.875 91 9 Co0.5Ni0.5Fe2O4

1100 8.35 582.21 4.895 92 8 Co0.5Ni0.5Fe2O4

1200 8.35 583.52 4.931 92 8 Co0.5Ni0.5Fe2O4

1300 8.37 586.96 4.962 93 7 Co0.5Ni0.5Fe2O4

1400 8.35 582.55 4.952 93 7 Co0.5Ni0.5Fe2O4

Fig. 2. Strain and crystallite size variations of SSS Co0.5Ni0.5Fe2O4 with sin-
tering temperature from 500 °C to 1400 °C.
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transition, which reduced the total energy of the system [2]. The trend
of the lattice for the thermal treatments above 700 °C supports the
thermal history argument of the SSS method. After several heat treat-
ments, the sample achieved higher thermal stability. The disordering
effect of HEBM was reduced after SSS indicates that instead of over-
coming the crystal defects, the thermal energy was used entirely for
boundary and volume diffusion. Grain growth and densification were
observed for heat treatments above 700 °C [27]. On the other hand, the
reduction of lattice strain could associate with the increase of crystallite
size with the increase of sintering temperature.

In view of the FESEM micrographs obtained, three stages of sin-
tering are shown in Fig. 3. The average grain size with the respective
sintering temperature is presented in Fig. 4. It can be observed that after
high energy ball milling, the grain size became nano-sized (48.25 nm)
due to ball-to-ball and vial-to-ball collisions. 6 h of milling may produce
enough heat energy for agglomeration. It is apparent that during the

early stage of sintering, there were formations of dumb-bell structure or
necking structures that were formed between grains. These structures
were formed to enable material transport mechanisms. Obviously
during the early stage, viscous flow and material transport from grain
boundary are the mechanisms involved in the reduction of interparticle
distance. The interparticle distance is reduced until the distance is close
enough for the formation of a necking structure. The neck size increased
at this stage is due to material transport from the grain boundary to this
neck structure without changing its interparticle distance [27]. There-
fore, at this stage, grain boundaries are the primary source of material
transport. In the early stage, grain growth is limited. However, a slight
coarsening of the microstructure is expected due to surface diffusion.

It is found that the average grain size (Fig. 4) increases slowly and
almost linearly from the early stage until the intermediate stage of
sintering. However, it increases rapidly at the final stage of sintering
indicating that there is a significance of densification with minimal

(c)

(a) (b)

(d)

(e) (f)

Fig. 3. FeSEM images of a mechanically activated Co0.5Zn0.5Fe2O4 sample sintered at: (a) 500 °C, (b) 600 °C, (c) 700 °C, (d) 800 °C, (e) 900 °C, (f) 1000 °C, (e) 1100 °C,
(f) 1200 °C, (g) 1300 °C, and (i) 1400 °C.
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grain growth stage, followed by another stage of minimal densification
but significant grain growth [28]. From Fig. 3, the micrographs at in-
termediate stages show the coalescence of pores and the increase of
pore size, suggesting that there were migrations of boundaries during
this stage. Afterward, the transition of the continuous pore network to
isolated and closed pores highlights the transition from intermediate to
the final stage of sintering. It is worth mentioning that the transitions
from early, to intermediate, and the final stage of sintering, produce a
more homogenous microstructure. The porosity seems to linearly de-
crease with increasing sintering temperature (Table 1). It is common in
powder processing where the porosity during the sintering decreased by
mass transport through lattice diffusion with grain growth [29].

However in the final stage of sintering at 1400 °C, abnormal grain
growth can be observed because of the porosity network loses stability,
forming closed spherical or ellipsoidal pores, which are located in triple
junctions. At this temperature, microstructure would affect much in
magnetic properties.

The activation energy of grain growth can be calculated using the
Arrhenius equation and Coble’s theory as reported previously in refs.
[10,30,31] using this equation:

= − +( )D Q R T Alog /2.303 1
(5)

where D, Q, R, T, A are the average grain size, activation energy, ideal
gas constant, temperature and a constant, respectively. Fig. 5 shows
that when calculating the activation energy (Q) based on Arrhenius Eq.
(5), three stages of sintering were predominantly observed as predicted.
The activation energies calculated from the Arrhenius equation are

(i)

(h)

(j)

(g)

Fig. 3. (continued)

Fig. 4. Variation of average grain size of a mechanically activated
Co0.5Zn0.5Fe2O4 sample sintered at different sintering temperature ranging from
500 °C to 1400 °C.

Fig. 5. Plots of log D versus the reciprocal of absolute temperature (1/T) for SSS
Co0.5Ni0.5Fe2O4.
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3.63 kJ/mol (Group 1), 46.9 kJ/mol (Group 2) and 232 kJ/mol (Group
3), respectively which represents the increase of activation energy as
the result of a decrease in surface area. This phenomenon is associated
with the Scott equation, where the decrease in surface area of the sin-
tered samples is due to the increase in grain size by sintering [2]. When
the average grain size was relatively small (500 °C to 1400 °C), the
surface area was relatively large. As the results, the lower activation
energy is required for surface and atomic diffusions to pre-dominate the
material transport mechanism. During the intermediate stage, the
coarsening of grains reduced the surface area, resulted in lesser surface
area for the reaction to occur, causing the increase of activation energy.
This is when the lattice and grain boundary diffusion dominated. Fi-
nally, in the final stage, the dominance of volume diffusion can be
explained by the rapid reduction of surface area due to the large
average grain size.

Magnetic properties analysis

Variation of magnetic behaviours of single sample sintering of
Co0.5Ni0.5Fe2O4 with an increase in the sintering temperature was stu-
died with B-H hysteresis tracer. Plotted B-H hysteresis loop curves for
different sintering temperatures ranging from 500 °C to 1400 °C are
shown in Fig. 6. Previous studies showed that grain size plays a crucial
role in determining the hysteresis loop shape [32,33].

According to the shape of hysteresis loops, the magnetic behaviours
of the sintered single sample were divided into three distinctive shapes
(Fig. 6b). The hysteresis loops of sintering temperature 500 °C and
600 °C are categorised as group 1 due to their shapes that are nearly
linear, and the coercivity values (Hc) are almost zero. It reveals the
existence of paramagnetic (amorphous phase) and superparamagnetic
phases (crystalline phase) which could be attributed to the hematite
phase that existed at this stage. Although paramagnetic and super-
paramagnetic phases were co-existed, the low induction magnetization
(Bs) of 2.38 emu/g and 5.31 emu/g for sintering at 500 and 600 °C re-
spectively suggesting that there was only a small amount of crystalline
phase. The atoms in the grain boundary are believed to be randomly
arranged (amorphous phase), of which these are the inactive magnetic
layer, and the atoms within boundary or core atoms are believed to be
orderly arranged (crystalline phase). At 500 °C and 600 °C, the average
grain size of the sample was in the nano-size region. Therefore, the
number of atoms in the boundary will be in the same order as the
number of core atoms [12]. As a result, the volume fraction of the
amorphous phase was comparable with the volume fraction of the
crystalline phase, and it dominated the magnetic behaviour of the
material.

Given the variations of Bs values as a function of sintering tem-
perature, it is noted that sintering of 700, 800, 900, 1000, and 1100 °C
increased the Bs values from 23.98 emu/g to 101.37 emu/g. The trend is
consistent with Fig. 1, where the increase of sintering temperature in-
creases the ferromagnetic crystalline phase in the sample. The second
group is categorised by the square-shaped hysteresis loops. As a result,
the BHmax values of this group are in the same order, as shown in
Table 2 signifies the energy stored in the sample after a cycle of mag-
netization and demagnetization is most significant for this group. The
magnetic behaviours of the sample at sintering temperature of 1200,
1300, and 1400 °C are categorised as Group 3, of which the erect,
narrower, and well-defined sigmoid shapes were observed. Bs values
continued to increase and maxed out at 109.78 emu/g during 1300 °C,
and reduced to 99.07 emu/g at 1400 °C. At this point, the average grain
size of the samples are in the micron region, and the volume fraction of
disorder, amorphous phase in the grain boundaries is not significant.
The repeated high thermal treatments on a single sample however have
introduced intergranular pores at 1400 °C (Fig. 3), and the defects re-
duced the Bs value.

Fig. 7 shows that the Hc values increased with sintering of sample
sintered from 500 to 900 °C, reached a maximum value of 0.55 kOe,

followed by a decrease from 900 to 1400 °C. The turning point is known
as critical size (Dc), where there is a transition from a single domain
region to a multi-domain region which can be explained with extrinsic
related properties like porosity and grain size [12].

The increasing coercivity of a single domain region indicates that
there is a larger magnetic field required to change the direction of the
magnetic moments as the sintering temperature was increased from 500
to 900 °C. As the size is relatively small (<Dc), grain boundaries are
significant in terms of volume fraction; they are blocking the interaction
between particles. Therefore, single domain particles are dominant as
the magnetic moment of all individual particles is randomly oriented.
As the crystallinity increases with increasing sintering temperature, the
spontaneous magnetization of individual particle increases while
maintaining single domain formation. Therefore, coercivity increases
with the average particle size. With further increase of particle size
(>Dc), the influence of amorphous phase diminishes; and the ex-
change interaction between particles is now permitted. This activates
the creation of domain walls. Therefore, the required external field to
change the orientation of moments decreases, and the coercivity de-
creases [34–38].

At lower sintering temperature from 500 to 700 °C, the null value of
Curie temperature was observed and it is in agreement with B-H hys-
teresis results where the paramagnetic phase was dominant at this
stage. After 900 °C, the Curie temperature was observed at a range of
450 to 650 °C. From the previous study [33], the Curie temperature of
cobalt zinc ferrite was observed at approximately 180 °C. In the case of
the single sample sintering method, thermal history could affect com-
positional homogeneity and the possible presence of stable phases. The
thermal equilibrium during the heating and cooling process could affect
the site occupancy of Co, Ni, and Fe among the A and B sites, thereby
affecting the strength of the exchange interactions. On the other hand,
magnetic ion substitution will sustain the superexchange interaction,
which leads to an increase of Curie temperature.

Electrical properties analysis

The variation of room temperature electrical resistivity with in-
creasing sintering temperature is plotted in Fig. 8. It is apparent that
electrical resistivity decreased with increasing sintering temperature
from 500 to 900 °C and can be associated with the small grain size
during this stage. It is known that small grain size possesses a higher
surface area and a more significant number of grain boundaries [39].
The high number of grain boundaries provides a greater number of
energy mismatch between each energy stage of neighboring grains.
These areas act as obstacles for the electron to flow [40]. As the average
grain size increases with increasing sintering temperature, the homo-
geneity increases. Thus, the obstacle for electrons flow diminishes, and
resistivity decreases. The increase of resistivity from 900 to 1400 °C is
attributed to porosity. Pores contribute to charge vacancies, and they
act as scattering centers for charge carriers. However, from 900 to
1200 °C, there was an increase in resistivity with the smaller order
(108). From 1200 to 1400 °C, the increase of resistance was in 1010

order suggesting that when sintering temperature was increased from
900 to 1200 °C, the number of micropores such as isolated and closed
pores within grains dominated [28]. After 1200 °C, the number of
macropores such as intragranular pores increased and causing a rise in
resistivity [10].

Conclusion

Polycrystalline, single-phase cobalt nickel ferrite (Co0.5Ni0.5Fe2O4)
was successfully produced through high energy ball milling followed by
a sintering process. Single-sample sintering of Co0.5Ni0.5Fe2O4 shows
the thermal history and its effect can be observed in the fluctuation of
lattice strain and crystallite size. The microstructural evolution showed
three stages of grain growth which are initial, intermediate and final

Z.H. Low, et al. Results in Physics 15 (2019) 102683

6



stage. Higher sintering temperature at 1400 °C has caused an abnormal
grain growth which greatly affects the magnetic and resistivity prop-
erties. The activation energies of each grain growth were also

Fig. 6. B-H hysteresis graph of SSS Co0.5Zn0.5Fe2O4 for (a) combined graph for different sintering temperatures; (b) three different shape groups.

Table 2
B-H properties analysis of SSS CoNi samples sintered from 500 °C until 1400 °C.

Sintering
temperature
(oC)

Average
grain size
(nm)

Hc (KOe) Bs (emu/g) BHmax Curie
temperature
(oC)

500 48.25 0.064 2.38 0.00 0
600 71.93 0.005 5.31 0.00 0
700 83.65 0.313 23.98 0.04 0
800 104.86 0.515 39.46 0.14 430
900 186.75 0.55 44.77 0.19 650
1000 297.85 0.461 64.05 0.3 540
1100 374.79 0.295 91.09 0.28 570
1200 964.73 0.08 101.37 0.06 580
1300 6762.66 0.042 109.78 0.03 590
1400 11215.91 0.026 99.07 0.00 480

Fig. 7. Coercivity versus logarithm average grain size of SSS Co0.5Ni0.5Fe2O4.
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increasing with the microstructural changes. The magnetic properties
were divided into three groups based on the distinctive shapes of the
hysteresis loops. These magnetic groups are correlated to the magnetic
phase which are paramagnetic, superparamagnetic and ferromagnetic
behavior of Co0.5Ni0.5Fe2O4. A transition of single domain to a multi-
domain region was found with sintering at 900 °C with grain size of
186 nm. The resistivity property was greatly influence by the micro-
structural changes.
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