FORECASTING THE STREAMFLOW CHANGES TREND BY SDSM-IHACRES MODEL AT SG JERAM, PAHANG

MUHAMAD SYARIFUDDIN BIN YEM

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering

(Supervisor’s Signature)

Full Name : DR. NURUL NADRAH AQILAH BINTI TUKIMAT
Position : SENIOR LECTURER
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : MUHAMAD SYARIFUDDIN BIN YEM
ID Number : AA14044
Date :
To my beloved parents and family for moral and physical support:

Yem Bin Ibrahim
Zamri Bin Yem
Wahid Bin Yem
Mariati Binti Yem
Siti Ruzana Binti Yem
Siti Hasmah Binti Yem
Siti Aidah Binti Yem
Siti Maszirah Binti Yem
Muhammad Najib Bin Yem

And the late my mother:

Dawamah Binti Tambrain
FORECASTING THE STREAMFLOW
CHANGES TREND BY SDSM-IHACRES
MODEL AT SG JERAM, PAHANG

MUHAMAD SYARIFUDDIN BIN YEM

Thesis submitted in fulfillment of the requirements
for the award of the
Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2018
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim…

Alhamdulillah YA ALLAH,

Thanks to Allah SWT, the most gracious and most merciful, whom with Him willing giving me strength to complete this Final Year Project.

Special thanks to my beloved family because of their courage and support during the period of completing the thesis. Their support and motivation keep me active and alive to complete and produce a high quality of thesis.

To my supervisor, Dr. Nurul Nadrah Binti Tukimat, special thanks for all the guidance, motivation and supports, thanks for the time spend with me, idea and courage. The supervision and support that she gave truly help the progression and smoothness of the project. With his presents and guidance, my final year project gone recognized by the university.

In addition, I would like to thank all the lecturers whom have taught me in every semester. They have indeed helped me to reinforce my basic knowledge and theories in civil engineering. Here, I also would like to thank my co-work partners which are Aminur Rasyid in Othman and Misriyah Binti Helman for huge knowledge sharing and technical guidance in completing this thesis successfully.

Thanks for the all supports, courage and assistance to me on writing and so on. Once again, thanks to all of you.
ABSTRACT

Greenhouse gases (GHGs) is a natural phenomenon to keep the Earth warm. Greenhouse effect plays their role when GHGs absorb heat from the ground. Nowadays, less heat escapes from the space and more re-emitted heat trapped by GHGs which rapid increasing the global temperature. Carbon dioxide (CO2) is the major contributor of abnormally greenhouse GHGs (Sumner, 2015). The higher the amount of those gases in the atmosphere, the higher the local temperature of specific location. The local temperature is directly related with rainfall-runoff relationship. In general, the water runoff increases when the amount of precipitation increases. On the other hand, the water runoff decreases when the air temperature increases. Nowadays, the fluctuation of rainfall, temperature and streamflow becomes unexpected compared to historical recorded data. Some places on Earth receive too much water and some receive very little amount of water to sustain the economy and the people’s living. So, it is vital to assist water reservoir management by evaluating future streamflow pattern especially in Malaysia where the natural disasters such as droughts and flood cannot be expected. In this study, historical rainfall and temperature data at Sg. Jeram Bungor, Pahang were analysed in Statistical Downscaling (SDSM) model to generate future rainfall and temperature trend. Then, the results from the SDSM model were analysed in Identification of unit Hydrographs And Component flows from Rainfall, Evapotranspiration and Streamflow (IHACRES) to generate future streamflow pattern at Jeram Bungor.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 RESEARCH BACKGROUND 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objective of the Study 4

1.4 Scope of the Study 4

1.5 Significant of Study 4

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Hydrological Processes 8

2.2.1 Water Cycle 8

2.2.2 Precipitation 11
3.3.2 Calibration and Validation 51
3.3.3 Simulation 52

3.4 Study Area 53
 3.4.1 Location of Site 53
 3.4.2 Rainfall Characteristics at Sg. Pahang 54
 3.4.3 The Streamflow Trend at Sg. Pahang 55

CHAPTER 4 RESULTS AND DISCUSSION 56

4.1 Introduction 56
4.2 Temperature Simulation 57
 4.2.1 The Best Predictors Group for Local Temperature 57
 4.2.2 Calibrated and Validated Results for the Temperature Simulation 58
 4.2.3 The Long Term of Temperature Pattern in year 2020-2099 60
4.3 Rainfall Simulation 63
 4.3.1 Selected Predictor for the Local Rainfall Simulation 64
 4.3.2 Calibrated and Validated Results for Rainfall Simulation 65
 4.3.3 The Long-Term Rainfall Projected Result for year 2020-2099 67
4.4 Inflow Prediction 70
 4.4.1 Selected Parameters for the Streamflow Simulation 70
 4.4.2 Inflow Simulation using IHACRES Rainfall-Runoff Model 71
 4.4.3 Future Inflow Pattern 73

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 76

5.1 Introduction 76
5.2 Recommendations 78

REFERENCES 79
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Chart types available when displaying simulation data</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The selected predictors for temperature projection and its correlation values</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The performance of calibration and validation of rainfall at Jeram Bungor</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>The selected predictors for rainfall projection and its correlation values</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Result of the performance of calibration and validation of rainfall using SDSM model at Jeram Bungor</td>
<td>67</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Model parameters of calibration and validation of streamflow using IHACRES model at Jeram Bungor</td>
<td>71</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The Process of Transpiration</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The Water Cycle</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Water table beneath the Earth’s surface</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Formation of wind as a result of localised temperature differences</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Warm and moist air cools when it rises over the mountain range and loses its humidity after the water vapor in the moist air condenses</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Malaysia Rainfall Map for August 2017</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Monthly Temperature for August 2017</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>River Cross Profile</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>The Formation of Global Warming</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Global And Continental Temperature Change</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Representation of a One-Dimensional EBMs Model</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>The Grid Resolution of A GCMs Model</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Conceptual Representation of Downscaling Method</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The schematic diagram of methodology of the study</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>SDSM Model Climate Scenario Generation Methodology</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Pahang River Map</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Temperature calibrated result (1984-1998) at Kuantan station</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Temperature validated result (1999-2013) at Kuantan station</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Results of annual temperature projection at Kuantan station for RCP26, RCP45 and RCP 85 for year 2020-2099</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Results at Kuantan station for RCP26, RCP45 and RCP 85 for year 2020-2099</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Results of calibration (1983-1997) of historical rainfall at Jeram Bungor station using SDSM model</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Results of validation (1998-2012) of historical rainfall at Jeram Bungor station using SDSM model</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Results of annual rainfall projection at Jeram Bungor station for RCP26, RCP45 and RCP 85 for year 2020-2099</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Results of monthly rainfall projection at Jeram Bungor station for RCP26, RCP45 and RCP 85 for year 2020-2099</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Result of calibration (Jan-July 2005) and validation (Aug-Dec 2005) for streamflow simulation using IHACRES model</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Comparison of monthly mean observed and modelled result for January 2005 to December 2005</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>The comparison between monthly generated inflow with the historical inflow at Jeram Bungor station</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>Parts per million. The symbol of “ppm” is a unit to measure the ratio of the number of greenhouse gas molecules to the total number of molecules of dry air. As an example, 245 ppm of carbon dioxide means 245 molecules of carbon dioxide molecules in 1 million molecules of dry air.</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion. 1 billion equals to 1000 millions</td>
</tr>
<tr>
<td>W/m²</td>
<td>Watts per meter square</td>
</tr>
<tr>
<td>kcal</td>
<td>Kilo calories. 1Kcal equals to 1000 calories</td>
</tr>
<tr>
<td>m³/s</td>
<td>Metre cube per second</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SDSM</td>
<td>Statistical Downscaling Model</td>
</tr>
<tr>
<td>DID</td>
<td>Department of Irrigation and Drainage of Malaysia (JPS)</td>
</tr>
<tr>
<td>MET</td>
<td>Malaysian Meteorological Department</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>LARS-WG</td>
<td>Long Ashton Research Station Weather</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>MMD</td>
<td>Malaysian Meteorological Department</td>
</tr>
<tr>
<td>HBV</td>
<td>Hydrologiska Byrans Vattenavdelning</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>CFCs</td>
<td>Chlorofluorocarbons</td>
</tr>
<tr>
<td>FLEGT</td>
<td>Forest Law Enforcement, Governance And Trade</td>
</tr>
<tr>
<td>HOV</td>
<td>High Occupancy Vehicle</td>
</tr>
<tr>
<td>CanRCM4</td>
<td>Canadian Center for Climate Modelling and Analysis Regional Climate Model</td>
</tr>
<tr>
<td>SWAT</td>
<td>Soil and Water Assessment Tool</td>
</tr>
</tbody>
</table>
CHAPTER 1

RESEARCH BACKGROUND

1.1 Introduction

The streamflow fluctuation in the future year might give large impact to the consumers, global economy and environment. Thus, streamflow study nowadays becomes significant in monitoring and managing the efficiency of water resources in the long term. The nature of streamflow changes will depend on the magnitude and direction of the climate change. Rainfall and temperature are the importance parameters in managing the streamflow changes. Monthly temperature and rainfall data were taken to predict streamflow changes in Little Blue River basin located at the south-central of Nebraska (Rowe et al., 1994). The study was to predict the streamflow in the south-central of Nebraska using the climatic parameter to prove the relationship between climates and streamflow. The research proved that the climate change fluctuates the streamflow pattern. For every increment of 20% of precipitation will contribute twice times to the streamflow volume. Meanwhile, 20% of decrement of precipitation will reduce half of annual streamflow volume. Due to the temperature, the increases of 3 °C yields 60% decline of streamflow volume meanwhile the decrement of 3 °C will increase more than 80% of streamflow volume. It as proved that climate change gives huge impact to the water streamflow based on the investigation. Water streamflow trend determines the amount water resources accessible for agriculture activities, drinking, house usage, industrial and energy generation. Assessment of climate change must be conducted for areas that show high possibility of droughts such as Tseng-Wen catchment in Southern Taiwan to provide sufficient water supply (Yu et al., 2014).

Regional resolution is popular among hydrologists to run climate change assessment to investigate climate change impact. The Global Climate Models (GCMs) leading method to predict the global climate changes in the coarser spatial resolution
Hassan & Harun, 2012). However, the GCMs characteristic covers huge spatial resolution where not focused on the local area. To overcome this issue, the Statistical Downscaling Model (SDSM) is adopted to downscale rainfall from the GCMs output. This statistical method is applying Regression Models to carry out this study. These models involved in forming nonlinear and linear relationships between finer resolution and coarser resolution predictor variables. This type relationship is called as transfer function (Wilby & Wigley, 2007). Rainfall data from a hydrological station belonged to Department of Irrigation and Drainage (DID) at Sg. Jeram Bungor (Station ID no: 4121413) and temperature data from Malaysian Meteorological Department (MMD) are used as input in the SDSM model. The results from the SDSM model will be used as inputs to predict water streamflow of Pahang River basin. These results are used in IHACRES model which is one of hybrid model used nowadays to predict future streamflow pattern at a regional site.

1.2 Problem Statement

Greenhouse gases (GHGs) is a natural phenomenon to keep the Earth warm. Greenhouse effect plays their role when GHGs absorb heat from the ground. Nowadays, less heat escapes from the space and more re-emitted heat trapped by GHGs which rapid increasing the global temperature. Carbon dioxide (CO₂) is the major contributor of abnormally greenhouse GHGs (Sumner, 2015). Other than CO₂, Methane (CH₄), Nitrous oxide (N₂O), Chlorofluorocarbons (CFCs) and Hydrofluorocarbons (HCFCs) are the various GHGs which makes global warming a serious matter to the environment and its residents.

Shaftel (2017) stated that the carbon dioxide level increased to 400 ppm since 1950s. About 95% of the carbon dioxide content in the atmosphere induced by human activities such as logging, open burning, gas emission from moving vehicles and industrial residue. Urbanisation and development of rural areas are the major causes of global climatic changes which completely water streamflow in regional areas (DeWalle et al., 1998). The rapid urbanization also contributes to the increment of streamflow due to runoff comes from larger impermeable man-made structures and reduces the infiltration rate. The evapotranspiration rate also reduces due to the less vegetation space.
In general, the water runoff increases when the amount of precipitation increases. On the other hand, the water runoff decreases when the air temperature increases. Surprisingly, the resultant combination of temperature and precipitation showed upward trend of streamflow (DeWalle et al., 1998). Precipitation change has dominated streamflow pattern for Northeast, North-Central, Western, and Southern regions in the United States rather than temperature in the study areas. The report proved that 20% increase in precipitation and 4 °C increase in temperature for 21 rural basins resulted in 15% increases of mean annual flow. Moreover, the increase of 4 °C of temperature and 20% decrease of precipitation resulted a decrease of 45% of mean annual flow. These statistics were very critical for extreme climate change impact for streamflow assessment.

In the Pahang state, the forest area becomes less year by year due to urbanisation. Illegal logging activities at the upstream of Pahang River especially in Kuala Tahan is also contributed to rapid increment of runoff (Gasim et al., 2011). Silva (2017) found that these activities took place at the catchment areas which cause the imbalance of water cycle components. This causes abnormally runoff occurrence and streamflow in the river.

The fluctuation of the river flow in Malaysia is also one of the consequences from climate change. At the end of December 2014, a massive flood gave huge impacts to the environment and society in the Pahang River basin. There were 35,560 of evacuees transferred to various evacuation centres in 9 districts of Pahang. Moreover, there were 10 deaths due to this major flood (Chi, 2014). This is the worst flood were recorded in the history of Pahang River since 1999. Crops losses, public facilities damages and diseases were the extreme results of this disaster. The occurrence of this major flood was triggered by the non-stop of rainfall in Pahang River basin and overflow of water from the river. The flood occurrence at East Coast of Peninsular Malaysia is an annual natural disaster especially in the state of Terengganu, Kelantan and Pahang (Alias, 2015). Therefore, it is very important to study the streamflow of Pahang River for the long-term planning in effort to reduce life loss, property damages and environmental effects of streamflow sensitivity of climate change. It is impossible to avoid a natural disaster but precautions must be taken especially when the stream level is over the danger level.
REFERENCES

Grant, K. (28 December, 2015). 10 measures that must be taken to prevent more flooding in the future prevent more flooding in the future. United Kingdom.

doAsUserId=LKnQ9mVxawU%3D%2Fms

