VOICE TO TEXT SYSTEM FOR DISABLED (V2TS)

SIVATHIBAN A/L KRISHNAMURTTHU

A thesis submitted in fulfillment of the requirement for the award of the degree of Bachelor of Computer Science

Faculty of Computer Systems & Software Engineering Universiti Malaysia Pahang

MAY 2010

ABSTRACT

Voice To Text System for Disabled (V2TS) is a speech recognition system that is aimed for Disabled people that can't type but have the speaking ability. V2TS deals with a number of useful functions where the disabled user can give command to the application for general operations such as reading text and closing the application itself. It has the Text To Speech (TTS) functionality where the text that has been input in the text area will be synthesized and read out by the computer. This report will discuss on the preparation, analysis, development and result that have been collected throughout the development cycle of this system. A complete reference and research details have been inserted in this document. This document will be a quick reference to refer on the specification and requirements of the system.

ABSTRAK

Sistem Suara ke Teks untuk Orang Kurang Upaya (V2TS) merupakan sebuah sistem yang disertakan dengan teknologi pengesanan pertuturan. Sistem ini adalah khas untuk Orang Kurang Upaya (OKU) yang tidak berkebolehan untuk menaip tetapi boleh bertutur. V2TS menyediakan pelbagai kemudahan dimana OKU boleh memberi arahan bersuara kepada aplikasi untuk operasi umum seperti membaca teks dan menutup aplikasi. Sistem ini juga mempunyai kebolehan untuk sintesis teks yang dimasukkan oleh pengguna dan membacanya. Laporan ini akan membincangkan perseediaan, analisis, pembangunan, dan juga keputusan yang telah dikumpul selama proses pembangunan system ini. Kesemua rujukan dan butiran mengenai sumber telah disertakan di dalam dokumen ini. Dokumen ini boleh digunakan sebagai rujukan untuk spesifikasi dan keperluan system.

TABLE OF CONTENTS

CHAPTER	TITLE		
	SUPERVISOR'S DECLARATION	ii	
	TITLE PAGE	iii	
	DECLARATION	iv	
	DEDICATION	v	
	ACKNOWLEDGEMENT	vi	
	ABSTRACT	vii	
	ABSTRAK	viii	
	TABLE OF CONTENT	ix	
	LIST OF TABLES	xiii	
	LIST OF FIGURES	xiv	
	LIST OF APPENDICES	xvi	
1	INTRODUCTION	1	
	1.1 Introduction	2	
	1.1.1 Research on Speech	3	
	1.1.1.1 Speech research in Microsoft	3	
	Corporation		
	1.1.1.2 Speech research in Carnegie Mellon	3	
	University		
	1.2 Problem Statement	4	
	1.3 Objective	5	
	1.4 Scope	5	
	1.5 Thesis Organization	6	
2	LITERATURE REVIEW	8	

	2.1 Introduction to Speech Recognition	9
	2.2 Existing System	11
	2.2.1 Thai Automatic Speech Recognition	11
	2.2.2 HMM-Based Speech Synthesis Applied to	12
	English	14
	2.2.3 E-speaking	15
	2.2.4 Alphabet Generator for Kids Using Speech	
	Recognition	
	2.3 Techniques	18
	2.3.1 Hidden Markov Model	18
	2.3.2 Neural Network	19
	2.3.3 Dynamic Time Warping	21
	2.3.4 Linear Predictive Coding	22
	2.4 Speech API	24
	2.4.1 Microsoft Speech API	25
	2.4.2 Java Speech API	25
	2.5 Comparison of reviewed System	27
	2.6 Recognizer	28
	2.7 Conclusion	29
3	METHODOLOGY	30
	3.1 Introduction	31
	3.2 Analysis	32
	3.2.1 User Requirement	33
	3.2.2 System Requirement	34
	3.2.2.1 Hardware Requirement (Device)	34
	3.2.2.2 Software Requirement	36
	3.3 Design	37
	3.3.1 System Flow	38
	3.3.2 Data Library (Speech Engine)	40

	3.3.2.1 Data Library Process	40
	3.3.3 Prototype Graphical User Interface	41
	3.4 Construction	42
	3.5 Testing	43
	3.5.1 Black Box Testing	43
	3.6 Deployment	44
	3.7 General Requirement	44
	3.7.1 Hardware Requirement	44
	3.7.2 Software Requirement	45
4	IMPLEMENTATION	47
	4.1 Introduction	48
	4.2 V2TS Architecture	48
	4.3 V2TS Interface Sketch (Adobe Photoshop)	49
	4.3.1 Document Library of Sketch	50
	4.3.2 V2TS Interface Design (Microsoft Expression	51
	Blend 3)	
	4.4 V2TS Development Environment	60
	4.4.1 Initialization of Development	60
	4.4.2 GUI Components	63
	4.4.3 Speech Commands	64
	4.5 References used in Development	65
	4.6 Import Statements	66
	4.6.1 Speech Library	66
	4.6.2 Multipoint® Library	70
	4.7 Source Codes for Controls	72
	4.8 Source codes for functions and operations	77
5	RESULTS AND DISCUSSION	84
	5.1 Introduction	85

xi

•

		ø
	5.2 Result Analysis	85
	5.2.1 Develop a prototype of Speech Recognition	85
	application that reacts to speech command and	
	output words.	
	5.2.1 Design a simple and easy Speech Recognition	86
	application to enable Disabled people to get	
	accessed to computer.	
	5.3 Output and Result	87
	5.4 System Constraints	88
	5.5 Suggestion	89
	5.6 Future System	90
6	CONCLUSION	91
	6.1 Conclusion	92
REFERENCES		94
APPENDICES		97
	Appendix A (Gantt Chart)	98
	Appendix B (User Manual)	100
	Appendix C (Software Test Report Document)	106

xii

LIST OF TABLES

.

TABLE NO.	TITLE	PAGE
2.1	Parameters of speech recognition systems	10
2.2	Comparison of reviewed system	27
2.3	6 common steps in recognizers	28
3.1	Hardware Requirements	45
3.2	Software Requirements	46
4.1	GUI Components	63
4.2	List of Speech Commands and functions	64
5.1	Output and Result	87

۲

LIST OF FIGURES

.

FIGURE NO.	TITLE	PAGE
2.1	Block Diagram of Speech Recognition	10
2.2	HMM-Based Speech Synthesis System	13
2.3	Main Menu Interface of E-speaking system	14
2.4	Main Interface of Alphabet Generator for Kids Using	16
	Speech Recognition system	
2.5	Result generated for 'A' utterance	16
2.6	Result generated for 'B' utterance	17
2.7	Three state Markov model with transition probabilities	19
2.8	Neural Networks Model	20
2.9	Example of DTW implementation	22
2.10	Depiction of how LPC functions	23
2.11	Simplified model of speech production	.24
3.1	Rapid Application Development	32
3.2	Flow Chart of the system	38
3.3	Flow of Data Library	40
3.4	Prototype Graphical User Interface (Suggestion only)	41
4.1	Sketching Graphical User Interface in Adobe Photoshop	49
	CS3	
4.2	Document Library of files used in GUI Sketch	50
4.3	Designing Interface in Microsoft Expression Blend 3	51
4.4	Solution Explorer of V2TS in Visual Studio 2008	60
4.5	MainWindow.xaml	61
4.6	About.xaml	62
4.7	Help.xaml	62
4.8	References that were used in V2TS development	65
4.9	Imported Libraries	66
4.10	System.Speech Library	66

	4.11	Classes in System.Speech.AudioFormat	67
	4.12	Classes in System.Speech.Recognition	67
	4.13	Classes in System.Speech.Recognition.SrgsGrammer	68
	4.14	Classes in System.Speech.Synthesis	68
	4.15	Classes in System.Speech.Synthesis.TtsEngine	69
	4.16	Microsoft.Multipoint.SDK Library	70
	4.17	Classes in Microsoft.Multipoint.SDK	70
	4.18	Classes in Microsoft.Multipoint.SDK.Interop	71
	4.19	Classes in Microsoft.Multipoint.SDK.Controls	71
	4.20	Source code of btnHome	72
	4.21	Source code of btnHelp	72
	4.22	Source code of btnAbout	73
	4.23	Source code of btnExit2	73
	4.24	Source code of btnOpen	73
	4.25	Source code of btnSave	74
	4.26	Source code of btn WriteStart	74
	4.27	Source code of btnExit	75
	4.28	Source code of btn Write	75
	4.29	Source code of btnRead	75
	4.30	Source code of btnProcess	76
	4.31	Source code of btnStop	76
	4.32	Source code of btnClear	76
	4.33	Source code of MainWindow	77
	4.34	Source code of MouseConnected event	78
	4.35	Source code of SpeechDetected event	78
	4.36	Source code of CreateBitmapImage function	78
	4.37	Source code of SpeechRejected event	79
	4.38	Source code of Speech Recognition Initialization	79
	4.39	Source code of MainWindow_Keydown event	79
ţ.,			

e

LIST OF APPENDICES

•

APPENDIX	TITLE	PAGE
Α	Gantt Chart	98
В	User Manual	100
С	Software Test Report Document (STR)	106

XVİ

CHAPTER 1

INTRODUCTION

This chapter presents an outline of the entire project and the introduction into problem statements, objectives, scopes and thesis organization.

.

1.1 Introduction

Voice to Text System for disabled (V2TS) is a speech recognition embedded system. Speech recognition converts spoken words to machine-readable input. It simply means that this program enables the computer to generate correct output through our voice by utilizing some related algorithm. Speech recognition can be used for isolated words or continuous speech. Isolated word means that the system will only take one word at a time while continuous speech has continuous speech characteristic and the system need to recognize and convert the utterance at once. Speech Application Programming Interface (SAPI) will be a very important part of this system because it needs to recognize wide range of voice and tones. The output for any voice input depends on the matching between available Grammar and the utterance speed.

The term "voice recognition" is sometimes used to refer to speech recognition where the recognition system is trained to a particular speaker as is the case for most desktop recognition software, hence there is an aspect of speaker recognition, which attempts to identify the person speaking, to better recognize what is being said. Speech recognition is a broad term which means it can recognize almost anybody's speech. V2TS deals with a number of useful functions where the disabled user can give command to the application for general operations such as reading text and closing the application itself. It has the Text To Speech (TTS) functionality where the text that has been input in the text area will be synthesized and read out by the computer. Furthermore to facilitate multiuser as the Disabled might need help from secondary user, the Multipoint® Technology have been implemented where more than one mouse can be utilized in the system. For processing purpose, the text can be saved as text file or send to word processor for editing and other related works.

If a user has lost the use of his hands, or for visually impaired users when it is not possible or convenient to use a Braille keyboard, the systems allow personal expression through dictation as well as control of many computer tasks. Some programs save users' speech data after every session, allowing people with progressive speech deterioration to continue to dictate to their computers. ^[1]

1.1.1 Research on Speech

1.1.1.1 Speech research in Microsoft Corporation

Microsoft Research has a group in Redmond and another in Beijing working together to improve spoken language technologies. Their main goal is to build applications that make computers available everywhere, and work with its Speech Products Group to make this vision a reality. The research are interested not only in creating state-of-the-art spoken language components, but also in how these disparate components can come together with other modes of human-computer interaction to form a unified, consistent computing environment. Microsoft is pursuing several projects to help reach its vision of a fully speech-enabled computer ^[2]

1.1.1.2 Speech research in Carnegie Mellon University (CMU)

The Sphinx Group at Carnegie Mellon University is committed to releasing the long-time, DARPA-funded Sphinx projects widely, in order to stimulate the creation of speech-using tools and applications, and to advance the state of the art both directly in speech recognition, as well as in related areas including dialog systems and speech synthesis.

The Sphinx Group has been supported for many years by funding from the Defense Advanced Research Projects Agency, and the recognition engines to be released are those that the group used for the various DARPA projects and their respective evaluations.

The packages that the CMU Sphinx Group is releasing are a set of reasonably mature, world-class speech components that provide a basic level of technology to anyone interested in creating speech-using applications without the once-prohibitive initial investment cost in research and development; the same components are open to peer review by all researchers in the field, and are used for linguistic research as well. ^[3]

1.2 Problem Statement

This system is aimed at Disabled people therefore the problems are Disabled people that can't write or type encounters difficulties in expressing their spoken words in text or documents form. Disabled people have difficulties to communicate well in this fast paced community where they are left behind in Information Technology. Most of them are not computer literate therefore they need an application that simplifies their task by just using speech command.

1.3 Objective

- i. Develop a prototype of Speech Recognition application that reacts to speech command and output words.
- ii. Design a simple and easy Speech Recognition application to enable Disabled people to get accessed to computer.

1.4 Scope

The scopes of the project are:

Project:

i. Recognize spoken words in English either command or grammar.

User:

i. Disabled people

.

ii. Normal user (Tutor/Assistant)

1.5 Thesis Organization

Chapter 1: Introduction

The purpose of this chapter is to introduce to the readers about the project that will be developed later. This chapter contains introduction, problem statement, objective, and scope and thesis organization.

Chapter 2: Literature review

This chapter explains about the reviews for the chosen project. This chapter is divided into two sub reviews that require students to study to get complete information about the project.

Chapter 3: Methodology

This chapter discusses the approach and framework for the project. Method, technique or approach that will be and will be used while designing and implementing the project will be included in the content. Justification and of method on approach used and hardware and software necessary is stated here.

Chapter 4: Implementation

This chapter acts to document all processes that involve in the development of the project. Designed project development is explained here. The content of this project depends on the system. It contains information of database and tools used. Data in database is shown in this chapter.

Chapter 5: Results and Discussion

The purpose of this system is to explain about the results and data analysis that had been acquired. Result analysis, project limitation and suggestion and project enhancement are contents for the chapter.

Chapter 6: Conclusion

This chapter explains briefly and summarizes the developed project.

CHAPTER 2

LITERATURE REVIEW

Ŷ

This chapter explains about the reviews for the chosen project. This chapter is divided into two sub reviews that require students to study to get complete information about the project.

2.1 Introduction to Speech Recognition

Speech recognition is the process of converting an acoustic signal, captured by a microphone or a telephone, to a set of words. The recognized words can be the final results, as for applications such as commands & control, data entry, and document preparation. They can also serve as the input to further linguistic processing in order to achieve speech understanding. Speech recognition systems can be characterized by many parameters. An isolated-word speech recognition system requires that the speaker pause briefly between words, whereas a continuous speech recognition system does not. Spontaneous, or extemporaneously generated, speech contains disfluencies, and is much more difficult to recognize than speech read from script. Some systems require speaker enrollment where a user must provide samples of his or her speech before using them, whereas other systems are said to be speaker-independent, in that no enrollment is necessary. Some of the other parameters depend on the specific task. Recognition is generally more difficult when vocabularies are large or have many similar-sounding words. When speech is produced in a sequence of words, language models or artificial grammars are used to restrict the combination of words. The simplest language model can be specified as a finite-state network, where the permissible words following each word are given explicitly. One popular measure of the difficulty of the task, combining the vocabulary size and the language model, is perplexity, loosely defined as the geometric mean of the number of words that can follow a word after the language model has been applied. Finally, there are some external parameters that can affect speech recognition system performance, including the characteristics of the environmental noise and the type and the placement of the microphone.^[4]

Figure 2.1: Block Diagram of Speech Recognition

T	able	2.1:	Parameters	of	speech	recognition	systems
---	------	------	------------	----	--------	-------------	---------

Parameters	Range
Speaking Mode	Isolated words to continuous speech
Speaking Style	Read speech to spontaneous speech
Enrollment	Speaker dependent to Speaker independent
Vocabulary	Small (less than 20 words) to large (more than 20,000 words)
Language Model	Finite state to context sensitive
Perplexity	Small (<10) to large (>100)
SNR	High (>30dB) to low (<10dB)

2.2 Existing system

2.2.1 Thai Automatic Speech recognition

2.2.1.1 Introduction

This research was performed as part of the DARPA-Babylon program aimed at rapidly developing multilingual speech-to-speech translation capability in several languages. It is built on extensive background in ASR, language portability, and speech translation, the group has built Arabic-English and Thai-English Speech-to-Speech translation systems in less than 9 months per language. This system has been used in an external DARPA evaluation involving medical scenarios between an American Doctor and a naive monolingual Thai patient. ^[5]

2.2.1.2 Technique

Hidden Markov Model has been used in this system.

2.2.1.3 Objective

To develop a robust and flexible Thai Speech Recognizer that can be integrated to Thai-English speech translation.

2.2.1.4 Feature

- I. Automatic pronunciation generation.
- II. Rapid bootstrapping.
- III. Phone set and pronunciation variation.
- IV. Real Time recognizer for medical dialogs

2.2.2 HMM-Based Speech Synthesis System Applied to English

2.2.1.2 Introduction

Although many speech synthesis systems can synthesize high quality speech, they still cannot synthesize speech with various voice characteristics such as speaker individualities, speaking styles, emotions, etc. To obtain various voice characteristics in speech synthesis systems based on the selection and concatenation of acoustical units, a large amount of speech data is necessary. However, it is difficult to collect store such speech data. In order to construct speech synthesis systems which can generate various voice characteristics, the HMM-based speech synthesis system (HTS) was proposed. In the training part, spectrum and excitation parameters are extracted from speech database and modeled by context dependent HMMs. In the synthesis part, context dependent HMMs are concatenated according to the text to be synthesized. Then spectrum and excitation parameters are generated from the HMM by using a speech parameter generation algorithm. Finally, the excitation generation module and synthesis filter module synthesize speech waveform using the generated excitation and spectrum parameters. The attraction of this approach is in that voice characteristics of synthesized speech can easily be changed by transforming HMM parameters. In fact, it is shown that we can change voice characteristics of synthesized speech by applying a speaker adaptation technique, a speaker interpolation technique, or an Eigen voice technique.^[6]

Figure 2.2: HMM-Based Speech Synthesis System

2.2.2.2 Technique

Hidden Markov Model has been used in this system.

2.2.2.3 Objective

To utilize HMM-based speech synthesis system (HTS) to English speech synthesis.

2.2.2.4 Feature

I. Spectrum Modeling.