

SOURCE CODE OPTIMIZER USING LOCAL

OPTIMIZATION APPROACH FOR JAVA BASED

GENERIC CODE CLONE DETECTION

IKHWAN MUHAMMAD BIN HILLMEE

BACHELOR OF COMPUTER SCIENCE

(SOFTWARE ENGINEERING)

WITH HONORS

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis/project* and in my opinion, this

thesis/project* is adequate in terms of scope and quality for the award of the degree of

Bachelor of Computer Science in Software Engineering with Honors.

 (Supervisor’s Signature)

Full Name :

Position :

Date :

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : IKHWAN MUHAMMAD BIN HILLMEE

ID Number : CB15054

Date :

SOURCE CODE OPTIMIZER USING LOCAL OPTIMIZATION APPROACH

FOR JAVA BASED GENERIC CODE CLONE DETECTION

IKHWAN MUHAMMAD BIN HILLMEE

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering) with Honors

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2019

ii

ACKNOWLEDGEMENTS

In the name of Allah SWT, the Most Gracious and Most Merciful

First and foremost, praise be to Allah SWT and Alhamdulillah for He has provide me

with perseverance, sufficient knowledge, and good health conditions in completing this

research.

I would like to say a million thanks to both of my parents; Hillmee Lockman and Elainee

Hassan for having the patience, giving endless motivation and resources as well as many

other things in the process of completing my bachelor degree in Universiti Malaysia

Pahang. Not to forget my siblings; Nimi Hillmee, Diyana Hillmee, and Nadiah Hillmee

for helping me in giving thoughtful advices along the way.

To my supervisor; Dr. Al-Fahim Mubarak Ali, I would also like to say a million thanks

for all the guidance, advices, ideas and utmost support in completing my research.

Thank you to all the lecturers from FSKKP and fellow colleagues who have directly and

indirectly involved in the process of completing this research as well. May Allah bless

you of everything good in this world and akhirah.

iii

ABSTRAK

Teknik pengoptimuman kod adalah teknik yang digunakan secara meluas oleh banyak

penyelidik dan pengaturcara untuk menambahbaik sistem perisian. Ia digunakan untuk

penambahbaikan terutamanya dari segi prestasi, pelaksanaan masa, mengoptimumkan

saiz kod dan sebagainya. Terdapat tiga pendekatan yang tersedia untuk pengoptimuman

kod, iaitu pengoptimuman tempatan, pengoptimuman global, dan pengoptimuman

antara Prosedur. Di samping itu, kajian ini bertujuan untuk meningkatkan model

Pengesanan Klon Kod Generik (GCCD). GCCD adalah prototaip model yang

digunakan untuk mengesan klon kod. Sebelum meningkatkan model GCCD dengan

pengoptimuman kod, kajian ini akan mengkaji mengenai pelbagai teknik

pengoptimuman kod, pendekatannya dan juga keseluruhan struktur dan proses model

GCCD untuk menggunakan pengoptimuman kod sebagai sebahagian daripada proses di

dalam model GCCD. Selain itu, kajian ini hanya memberi tumpuan kepada pendekatan

pengoptimalan tempatan. Untuk mendapatkan hasil, dataset dari penanda aras Bellon

untuk Java akan digunakan untuk tujuan penilaian. Terdapat empat (4) langkah dalam

kaedah yang digunakan dalam penyelidikan ini, langkah pertama ialah mengkaji model

GCCD dan fungsinya untuk memahami prosesnya dan bagaimana model berfungsi.

Langkah kedua ialah mengkaji teknik pengoptimuman kod. Langkah ketiga ialah

menerapkan teknik pengoptimuman kod sebagai sebahagian daripada proses dalam

model GCCD. Langkah keempat adalah membandingkan versi prototaip GCCD yang

diperbaharui dengan melaksanakan dengan mengintegrasikan proses pengoptimuman

kod ke dalam model GCCD yang akan membantu alat prototaip itu untuk mengesan

klon kod yang lebih berkualiti. Sebagai kesimpulan, alat prototaip GCCD yang telah

diperbaharui dan dipertingkatkan akan berjalan mengikut fungsi asalnya tanpa perlu

mengubah hasil keluarannya tetapi boleh dilaksanakan dengan prestasi yang lebih baik.

iv

ABSTRACT

Source code optimization techniques is a technique that is widely used by many

researchers and programmers to enhance a software system. It is applied for

enhancements especially in terms of performance, time execution, optimizing size of

code etc. There are three main available approaches for source code optimization, that is

Local Optimization, Global Optimization, and Inter-Procedural Optimization. In

addition, this research aims to improve the Generic Code Clone Detection (GCCD)

model. GCCD tool is a prototype which is used for detecting code clones. Before

enhancing the GCCD model with source code optimization, this research will study about

multiple code optimization techniques, its approaches and also the overall structure and

processes of GCCD model in order to apply code optimization as part of the process in

the GCCD model. Besides that, this research focuses only on the local optimization

approach. To obtain the results, datasets from the Bellon’s benchmark for Java will be

used for evaluation purposes. There are four (4) steps in the method used in this research,

first step is to review the GCCD model and its functions in order to understand its

processes and how the model works. Second step is to review code optimization

techniques. Third step is to apply code optimization technique as part of the process in

GCCD model. The fourth step is to compare the enhanced and original version of the

GCCD prototype tool as an evaluation. As a result of this research, an enhanced version

of the GCCD prototype is created by implementing and integrating code optimization

processes into the GCCD model which will aid the prototype tool to detect better quality

code clones. As a conclusion, the improved and enhanced GCCD prototype tool will run

in accordance with its original functions without having to change its expected output but

can be executed with a better performance.

v

TABLE OF CONTENT

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Research Objective 3

1.4 Research Scope 3

1.5 Thesis Organization 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Source Code Optimization 5

2.2.1 Advantages of Source Code Optimization 6

2.2.2 Disadvantages of Source Code Optimization 7

2.3 Source Code Optimization Techniques 8

2.3.1 Local Optimization 8

2.3.2 Global Optimization 9

2.3.3 Inter-Procedural Optimization 9

vi

2.3.4 Summary of Classical Code Optimization Techniques 10

2.4 Source Code Optimization Process 12

2.5 Comparison on the Approaches of Code Optimization Techniques 14

2.6 What is Code Clone? 15

2.6.1 Code Clone Models 17

2.6.1.1 Generic Code Clone Detection Model 17

2.7 Summary 18

CHAPTER 3 METHODOLOGY 19

3.1 Introduction 19

3.2 Operational Framework 19

3.3 Theoretical Framework 21

3.6 Dataset 23

3.7 Hardware Requirement Specification 23

3.8 Software Requirement Specification 24

3.9 Summary 24

CHAPTER 4 IMPLEMENTATION 25

4.1 Introduction 25

4.2 Generic Code Clone Detection (GCCD) 25

4.3 Implementation and Integration 25

4.4 Generic Code Clone Detection Prototype 28

4.5 Comparison Results 30

4.5.1 Comparison Results for Eclipse-ant 31

4.5.2 Comparison Results for J2sdk1.4.0-javax-swing 32

4.5.3 Comparison Results for Eclipse-jdtcore 33

vii

4.5.4 Comparison Results for Netbeans-javadoc 34

4.5.5 Summary of Comparison 35

4.6 Summary 35

CHAPTER 5 EXECUTIVE SUMMARY 36

5.1 Introduction 36

5.2 Objective Revisited 36

5.3 Recommendations for Future Work 37

REFERENCES 38

APPENDIX A FLOW CHART 39

viii

LIST OF TABLES

Table 2.1 Existing Classical Source Code Techniques 10

Table 2.2 Advantage and Disadvantage of Different Approaches 15

Table 3.1 Bellon’s Benchmark Dataset Details 25

Table 4.1 GCCD Prototype Mapping 29

Table 4.2 Comparison results of Bellon’s Benchmark datasets 30

ix

LIST OF FIGURES

Figure 2.1 Code Optimization Process 12

Figure 2.2 Code Clone 16

Figure 2.3 GCCD Model Process 17

Figure 3.1 Operational Framework 19

Figure 3.2 Theoretical Framework 21

Figure 4.1 Source Code Local Optimization Process Flow 26

Figure 4.2 Local Source Code Optimization Codes in Java 28

Figure 4.3 GCCD Prototype Interface 29

Figure 4.4 Comparison Results of Code Clones Detected 30

Figure 4.5 Code clone detection in Eclipse-ant using GCCD prototype and

enhanced GCCD prototype 31

Figure 4.6 Code clone detection in J2sdk1.4.0-javax-swing using GCCD

prototype and enhanced GCCD prototype 32

Figure 4.7 Code clone detection in Eclipse-jdtcore using GCCD prototype and

enhanced GCCD prototype 33

Figure 4.8 Code clone detection in Netbeans-javadoc using GCCD prototype

and enhanced GCCD prototype 34

x

LIST OF ABBREVIATIONS

GCCD

UVE-1

Generic Code Clone Detection

Unused Variable Elimination-1

UVE-2 Unused Variable Elimination-2

UVE-3 Unused Variable Elimination-3

UVE-4 Unused Variable Elimination-4

UVE-5 Unused Variable Elimination-5

UVE-6 Unused Variable Elimination-6

UVE-7 Unused Variable Elimination-7

UVE-8 Unused Variable Elimination-8

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

In software development, it is normally introduced with two related but distinct notion;

which is the functional and non-functional requirements. Functional requirement is

defined as function of a system or component, which mainly may involve inputs,

calculations, processing, and outputs. Non-functional requirement refers as to how it acts

as a supporting role to the delivery of functional requirements, for example, robustness,

efficiency, performance and optimization status of a software.

Source code optimization can be categorized under non-functional requirements. The

main purpose and goal of code optimization is to utilize source codes by making some

changes in the code for a better software quality and efficiency. Code length reduction

and the removal of repeatable and unnecessary lines of code are one of the few

approaches to source code optimization (Goss, 2013). After a program has been

optimized, it will become smaller in size, uses less and minimal resources and has better

execution for all input and output operations (Goss, 2013).

 Optimization techniques can be categorized into two levels; high level and low level

optimization techniques or process. High level optimization is performed in order to

optimize the design structure as its goal. This process is usually performed by

professional programmers who are able to handle changes in classes, methods, functions,

loops in source code and etc (Goss, 2013). Actions such as source code which have been

compiled into the machine code by the presence of a tool compiler is called low level

optimization (Goss, 2013).

There are numerous existing code optimization techniques which are readily available to

be applied for any un-optimized software that needs attention. Constant folding, Constant

2

propagation, Useless Expression Elimination, Dead Code Elimination are existing

optimization techniques which have been used by researchers and programmers to name

a few. Each and every technique have different functions and produces different results.

Therefore, it is crucial to know what suitable technique to apply to an un-optimized

software.

1.2 Problem Statement

Code optimization is a technicality which have always been left out by developers during

a software development. Some or few developers tend to use and reuse lengthy and

repeatable codes without thinking the possible problematic outcome which will affect the

behaviour, quality and efficiency of a software. There are also possibilities where

programmers are not capable of writing high quality codes which will result in low

quality, performance and bad software executions. Truly understanding a software design

structure and writing up the right source codes is key in achieving an optimized and well

running software.

For the purpose of this research, code optimization techniques will be applied as part of

the the generic code clone detection model. The generic code clone detection model was

developed in 2015 (Al-Fahim, 2015). It was specifically developed to detect code clones

in java programming language only. The main and primary goal of code optimization is

to improve the performance and efficiency of a software as well as maximizing the

optimum size of code needed. Hence, the generic code clone detection model will be

tested and compared if codes which have been applied with code optimization will bring

any difference as to the original version.

3

1.3 Research Objective

The purpose of this research is to apply and to prove the workability of source code

optimization on the generic code clone detection model. Below are the sub-objectives

that must be achieved in order for this research to produce satisfactory results:

i. To study the abilities and effects of source code optimization on

developed softwares.

ii. To develop Java source code optimizer for GCCD model.

iii. To evaluate the prototype of enhanced Generic Code Clone Detection

Model (GCCD).

1.4 Research Scope

In accordance with the research, the scope is as follows:

i. Focuses on Java based programming language.

ii. Focuses on understanding the structure and processes of generic code

clone detection prototype.

iii. Focuses on local optimization approach for GCCD Model.

1.5 Thesis Organization

This thesis consists of five (5) chapters. Chapter 1 covers the introduction of Source Code

Optimizer Using Local Optimization Approach for Java Based Generic Code Clone

Detection. This chapter mainly explains about the background of study for this research,

problem statement, objective and scope of research as well as thesis organization.

38

REFERENCES

Al-Fahim. (2015). Generic Code Clone Detection Model for Java Applications,

16(December).

Goss, C. F. (2013). Machine Code Optimization-Improving Executable Object Code.

ArXiv Preprint ArXiv:1308.4815, 8(June 1986), 2015–2017.

Gotarane, P., & Pundkar, S. (2015). Smart Coding using New Code Optimization

Techniques in Java to Reduce Runtime Overhead of Java Compiler, 125(15), 11–

16.

Sarma, A. K. (2015). New trends and Challenges in Source Code Optimization.

International Journal of Computer Applications, 131(16), 27–32. Retrieved from

http://www.ijcaonline.org/archives/volume131/number16/23535-2015907609

 Cordy, J. R., & Roy, C. K. (2011). The NiCad clone detector. In IEEE International

Conference on Program Comprehension (pp. 219–220).

https://doi.org/10.1109/ICPC.2011.26

Bilhaqi, A. Z. (2018). Enhancing Generic Code Clone Detection Model for C#.NET

Platform Applications.

Enyindah, P., Uko, O. E., Harcourt, P., & Harcourt, P. (2017). The New Trends in

Compiler Analysis and Optimizations, (May).

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo, E. (2007). Comparison and

Evaluation of Clone Detection Tools, 33(9), 577–591.

https://doi.org/10.1109/ICPC.2011.26

