

ENHANCING GENERIC CODE CLONE

DETECTION MODEL FOR C BASED

APPLICATION

AINUN SYAHIRAH BINTI ADNAN

Bachelor of Computer Science (Software

Engineering)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : ___

Date of Birth : ___

Title : ___

Academic Session : ___

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date:

 (Supervisor’s Signature)

Name of Supervisor

Date:

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for award of degree of Bachelor of Computer

Science (Software Engineering).

 (Supervisor’s Signature)

Full Name : DR. AL- FAHIM BIN MUBARAK ALI

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : AINUN SYAHIRAH BINTI ADNAN

ID Number : CB16011

Date :

ENHANCING GENERIC CODE CLONE DETECTION MODEL FOR C BASED

APPLICATION

AINUN SYAHIRAH BINTI ADNAN

Thesis submitted in fulfilment of the requirements for the award of the degree of

Bachelor of Computer Science (Software Engineering)

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

MAY 2019

ii

ACKNOWLEDGEMENTS

First of all, I want to thank God for the thanksgiving for giving me the health of

my body as long as I prepare this thesis. I also would like to thank all those who helped

and support in making this thesis especially for my parents, family, supervisor, lectures

and friends.

Therefore, I sincerely want to thank my supervisor, Dr. Al- Fahim Bin Mubarak

Ali for giving me a lot of knowledge and guidance throughout I prepare this thesis.

Without his helps I am sure that I cannot succeed to complete this thesis. Besides, I would

like to thank to my course mates and my roommates that share with their knowledge and

perception.

Lastly, I want to give my appreciation to my family because the warm

encouragement that has been given to me. I also want to say thank you for those were

involved directly or indirectly in this project.

iii

ABSTRAK

Klon kod adalah istilah yang digunakan untuk menggambarkan kod yang

digunakan dalam sistem berulang kali. Pada masa ini terdapat empat jenis klon kod, iaitu

jenis-1, jenis-2, jenis-3 dan jenis-4, yang dapat dikesan oleh beberapa alat pengesan klon

kod. Setakat kualiti sistem berkenaan, klon kod boleh menyebabkan sistem memakan

lebih banyak memori untuk menjalankan fungsi, kerana banyak kod yang digunakan

berulang kali. Klon kod juga mempengaruhi proses penyelenggaraan sistem. Sekiranya

fragmen kod yang disalin mengandungi pepijat, semua kod dengan persamaan dengan

fragmen kod yang disalin mestilah diperbaiki satu persatu. Ia mengambil masa yang lama

untuk mengekalkan sistem. Aplikasi yang dibangunkan di Java dan C biasanya

mempunyai kemungkinan besar klon kod disebabkan penggunaan bahasa-bahasa ini

yang melampau dalam pembangunan aplikasi. Oleh itu, objektif utama penyelidikan ini

adalah untuk memperbaiki model pengesanan klon kod untuk mengesan klon kod dalam

bahasa pengaturcaraan C. Pelbagai model boleh didapati untuk mengesan kod klon yang

merupakan model klon generik, model saluran paip generik, model klon bersatu dan

model pengesanan klon kod generik. Pengesanan Klon Generik Kod (GCCD) adalah

keadaan model seni yang mengesan klon kod sehingga menaip 4 dalam program Java.

Proses model ini adalah pra-pemprosesan, pemprosesan, parameterisasi, pengkategorian

dan pengesanan padanan. Tujuan penyelidikan ini adalah untuk meningkatkan prototaip

untuk mengesan klon kod dalam bahasa pengaturcaraan C. Oleh itu, objektif utama

penyelidikan ini adalah untuk meningkatkan prototaip model pengesanan klon generik

kod untuk mengesan klon kod dalam bahasa pengaturcaraan C. Kajian ini memberi

tumpuan kepada meningkatkan dua proses, iaitu pra-pemprosesan dan transformasi.

Untuk menilai penambahbaikan yang dibuat dalam kajian ini, prototaip GCCD

dipertingkatkan dan diuji dengan menggunakan set data penanda aras yang dipanggil

dataset penanda aras Bellon. Hasil yang diharapkan dari kajian ini ialah prototaip GCCD

dapat mengesan kloning bahasa pemrograman C.

iv

ABSTRACT

Code clone is a term used to describe a code used in a system repeatedly. There

are currently four types of code clones, namely type-1, type-2, type-3 and type-4, which

can be detected by some code clone detection tools. As far as the quality of a system is

concerned, the code clone can cause a system to consume more memory to perform a

function, due to the many codes that are repeatedly used. The code clone also affects the

system maintenance process. If the copied code fragment contains a bug, all code with

similarities to the copied code fragment must be fixed one by one. It takes longer to

maintain the system. Applications developed in Java and C usually has the largest

occurrence of code clone due to the extreme usage of these languages in application

development. Therefore, the main objective of this research is to improve the code clone

detection model to detect the code clone in the language of C programming. Various

models are available to detect a clone code which is a generic clone model, generic

pipeline model, unified clone model and a generic code clone detection model. Generic

Code Clone Detection (GCCD) is the state of the art model that detects code clone up to

type 4 in Java programs. This model's process is pre-processing, processing,

parameterization, categorization and match detection. The aim of this research is to

improve the prototype for the detection of code clones in the C programming language.

Therefore, the main objective of this research is to improve the prototype of the generic

code clone detection model to detect the code clone in the language of C programming.

This research focuses on improving two processes, namely pre-processing and

transformation. In order to evaluate the improvements made in this research, the GCCD

prototype is enhanced and tested using a benchmark data set called Bellon’s benchmark

dataset. The expected result of this research is that the GCCD prototype can detect the C

programming language code clone.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 6

1.3 Objectives 7

1.4 Scopes 7

1.5 Thesis Organization 8

CHAPTER 2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Code Clone 9

2.2.1 Advantage of Code Clone 11

2.2.2 Disadvantages of Code Clone 12

2.2.3 Reasons of Code Clone 13

vi

2.3 Process of Code Clone Detection 15

2.3.1 Pre-processing 17

2.3.2 Transformation 18

2.3.3 Match Detection 19

2.3.4 Formatting 19

2.3.5 Post Processing and Aggregation 20

2.4 Code Clone Detection Approaches 20

2.5 Clone Metrics 25

2.6 Related Work 26

2.6.1 Generic Clone Model 26

2.6.2 Generic Pipeline Model 28

2.6.3 Unified Clone Model 30

2.6.4 Strength and Weakness of Model 31

2.7 Discussion 33

2.8 Summary 34

CHAPTER 3 METHODOLOGY 35

3.1 Overview 35

3.2 Operational Framework 35

3.2.1 Review the Current Function and Rules of the Prototype 36

3.2.2 Design the Propose Enhancement 36

3.2.3 Evaluation 37

3.3 Research Design 37

3.4 Dataset 40

3.5 Design the Propose Enhancement 40

3.5.1 Learn the Process of GCCD 41

vii

3.5.2 Improvement on Functionality and Rules for C Programming

Language 41

3.5.3 Testing the Functionality of the Prototype Improved 41

3.6 Limitation and Assumption 42

3.6.1 Detecting all code clone type 42

3.6.2 Tools easy to use and easy to understand by the user 42

3.6.3 Improvement of various aspects 43

3.7 Software Specification 43

3.8 Hardware Specification 43

3.9 Summary 44

CHAPTER 4 45

IMPROVEMENT, IMPLEMENTATION, AND EVALUATION OF GCCD 45

4.1 Overview 45

4.2 Generic Code Clone Detection Model Improvement 45

4.2.1 Pre- processing Process 47

4.2.2 Transformation 53

4.3 The Generic Code Clone Detection Prototype 57

4.4 Comparison Result 60

4.4.1 Comparison Code Clone Detection tools for Cook application 60

4.4.2 Comparison Code Clone tools for Postgresql application 61

4.4.3 Comparison Code Clone tools for SNNS application 62

4.4.4 Comparison Code Clone tools for Wetlab application 63

4.5 Summary 64

CHAPTER 5 65

viii

5.1 Overview 65

5.2 Objective Revisited 65

5.3 Recommendation for Future Work 67

REFERENCES 68

APPENDIX A 71

ix

LIST OF TABLES

Table 2.1 Transformation Approaches 18

Table 2.2 Approaches with Adopted Technique 23

Table 2.3 SWOT analysis on models 31

Table 4.1 Rules added for pre- processing process 52

Table 4.2 Letter to numerical substitution concept value 56

Table 4.3 Mapping of Generic Code Clone Detection to prototype 59

x

LIST OF FIGURES

Figure 2.1 Code Clone 10

Figure 2.2 Clone Detection Process 16

Figure 2.3 Overview of Generic Model Clone (Giesecke, 2007) 27

Figure 2.4 Generic Pipeline Model (Biegel & Diehl, 2010) 28

Figure 2.5 Unified Clone Model (Kasper et al., 2012) 30

Figure 3.1 Operational Framework 36

Figure 3.2 Step of Research Design 38

Figure 3.3 Propose Enhancements 41

Figure 4.1 Process of Generic Code Clone Detection Model 46

Figure 4.2 Pre- processing process flow 48

Figure 4.3 Pseudocode of Pre- processing process 51

Figure 4.4 Transformation process flow 54

Figure 4.5 Transformation process pseudocode 57

Figure 4.6 Generic Code Clone Detection prototype interface 58

Figure 4.7 Total number of Clone Pair for Cook Application 60

Figure 4.8 Total number of Clone Pair for Postsgresql Application 61

Figure 4.9 Total number of Clone Pair for SNNS Application 62

Figure 4.10 Total number of Clone Pair for Wetlab Application 63

xi

LIST OF ABBREVIATIONS

GCCD Generic Code Clone Detection

VB Visual Basic

PDG Program Dependence Graph

CP Clone Pair

CC Clone Class

AST Abstract Syntax Tree

SWOT Strength Weakness Opportunity Threat

LOC Line Of Code

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the process of developing a system, developers typically reuse the code they

make into another line of code or other modules in the same system. This practice or

behaviour makes it easier for them to speed development process. This method can

be called code clone or duplicate code. Code clone is a process of reusing a code

repeatedly. Discussion related to code clone has been done by several researcher,

most of the current systems, the results showed a fraction that between 20% to 30%

of module in system may be cloned (Baker, 1995).

There are 4 types which are Type-1, code portion or fragments are identical,

except for spacing, layout and comment variations. In clone type 1 also known as

exact clone. This is because the different fragments are exact copies of each other.

Type-2, code portion or fragment are syntactically identical, except for literals,

identifiers, types, comments, and layout and whitespace variations. This type is like

Type-1 which is have similarity of code portion or fragment to each other, but have

more addition for identifiers declared (constants, class, methods, name of variables

and so on). Type-3, this type is some evolution of type-2, the different of this type

is the fragment that are copied from another source code have some added

statements, with removal of some statements or some modified statement. Type-4,

two or more code fragment or portion that have similarity with each other and

perform the same computation, but different syntactic variants, called by type-4.

2

This type is not mandatory that code fragment should be copied from somewhere or

different programmer but have same functionality. Otherwise, the category of two

code fragment or portion is under Type-4. Most of the current code clone detection

tools only detect until Type-3. Meanwhile, the purpose of this study, which is the

addition of a function for the prototype of GCCD is to detect the code clone for a C

programming language that supports to detect the code clone up to Type-4.

 Although removing a code clone has the risk of changing the software structure

or framework, however, to find out a code clone in a software, it is an advantage to

consider whether it is necessary to make a changes for the code clone. In visual

basic, there already have their code clone detection, but the code clone detection

tool on this application only detect until Type-3.

Generic code clone detection model (GCCD) is a model used to detect code

clone in a system. There are some research that explains the code clone model, the

generic code clone model is one of the last models developed by pre-existing

research. Previously, a prototype has been developed using this model, GCCD

model can detect code clone up to Type-4 compared to other models but it can only

detect code clone in Java programming language.

Also, there are several types of models and approaches for detecting code clone.

This approach is widely used by other researches in establishing or improving

existing code clone detection methods. Below are five (5) approaches of detecting

code clone (Al-Fahim, 2015):

i) String based comparison

This approach will detect code clone by comparing source code by text / string

that in the line of code in the same fragment.

3

ii) Metric based comparison

This Approach works by comparing different metrics and gathering into one,

and on the basis of similar value, the similarity will detected.

iii) Tree based comparison

In this approach, abstract syntax tree of a system is produced. Then, tree

matching technique is applied to detect similar sub trees. When the result come out

between two sub trees, the source code of similar sub trees is returned as clone-pair.

iv) Token based comparison

This approach are detecting the code that have token sequence obtained from

division the line of source code. The unique of this approach is the characteristic is

using hash function.

v) Graph based comparison

The graph based comparison are the approach that detecting code clone by

converting the code into the graph version. After several of graph that already detect

the similarity, the function of this approach will continue with a clone-pair.

In addition to the approach, the model for code clone detection has a role to

unify the tools and also the approaches that will be describe at above. An approach

is a way of detecting a code clone by comparing of something. The model is a more

complex way of detecting code clone on the system.

There are several model that can be used for code clone detection. The three

model that always use for code clone detection, it is generic clone model, generic

pipeline clone model, unified clone model, and generic code clone detection model .

This research will focusing on enhancing the generic code clone detection model.

4

Each model have their own unique function. The description for each model will be

explain at below:

Generic Clone Model (Giesecke, 2007)

This model focuses more on the detection and deletion of code clone. This

model separates between cloning detection, management and description with layers.

The separation in this model is very clear between the processes of clone detection

using code layer.

Generic Pipeline Model (Biegel & Diehl, 2010)

This model has five (5) process to detect the code clone. First process is parsing,

this process transform the source code into source unit. Second step of process is pre-

processing, it is use for normalize the source units that have been transform at the first

process. Continue with third step of process that is pooling, this process is to group the

pre-processed source units into group based on user define criteria. After finish the third

step, the process entering the fourth step of process that are comparing process, this

process recursively compares source unit in all pools using a divide and conquer

strategy. And the last step of the process is filtering, this process is to remove irrelevant

and non-relevant candidate sets. For irrelevant, the sets are from the result set and for

non-relevant, the set are out of the result set.

5

Unified Clone Model (Kapser, Harder, & Baxter, 2012)

This model is a model that has a generic model that can detect all types of code

clone detection tool. Different clone representation of existing tools is the purpose of

this model is designed. There are four groups of analysis results in this model, detection

for cloning trials and management, integration of additional data from other sources,

replication of scientific studies and benchmarking of cloning detection techniques.

Generic Code Clone Detection Model (Al-Fahim, 2015)

Generic code clone detection model code is a prototype of a model that is still in

development stage. The model consists of a combination of processes that perform pre-

processing, transformation, parameterization, categorization, and match detection

process. Each process in this model is more complex than the previous models. The

models apply the existing code clone detection approaches as part of its process.

In this research, generic code clone detection is the main model that will be used

for development in the detection of code clone. Although this model is new and less of

research that does development for this model, this model is able to detect various code

clones that exist in a system.

6

1.2 Problem Statement

In the field of programming, C language very close among programmer.

It is very basic language that compulsory and need to know before we learn other

language. Other than that, this language also easy to learn when someone have

basic knowledge in programming. Dennis Ritchie was developed originally C

between 1969 and 1973 at Bell Labs (Dennis Ritchie, 2018). C is a basic

procedural dialect. It was intended to be assembled utilizing a moderately direct

compiler, to give low-level access to memory, to give dialect develops that guide

productively to machine guidelines, and to require insignificant run-time bolster.

Notwithstanding its low-level capacities, the dialect was intended to support

cross-stage programming. A gauges agreeable C program that is composed in

light of compactness can be arranged for a wide assortment of PC stages and

working frameworks with few changes to its source code. The dialect has turned

out to be accessible on an extensive variety of stages, from installed smaller scale

controllers to supercomputers.

There are interesting and coherent projects accessible on Basic Input

Output, If else, Conditional Statement (Ternary Operator) based projects. These

projects are beginning from exceptionally fundamental level to abnormal state.

Each program contains source codes, yield and clarification of the rationale. A

significant number of the software engineer do the duplicate on their code lines

and create code clone rehearses on the framework they create. Be that as it may,

duplicate as a programming practice has an awful implication since it will make

the code clone or copy code that will influence the support stage (Miryung Kim

et al., 2004). Therefore, the existing prototype of generic code clone detection

model will try to overcome the problem. It aims to maximize maintenance on the

codes by detect the code clone that exist in a source code. The current prototype,

only able to detect the code clone for using Visual Basic .net platform application

and Java.

7

1.3 Objectives

The purpose of this research is to make the improvement for the prototype

of generic model of code clone in C language. Below are some of the objectives

for this research to produce satisfactory results:

i) To enhance the rules in the pre-processing and transformation

process in generic code clone detection model for C language clone detection.

ii) To develop the improvement by modifying the existing prototype

using Microsoft Visual Basic application recommended by developer of GCCD.

iii) To evaluate the enhanced prototype of the generic code clone

detection tool using the dataset that contain the C language source code.

1.4 Scopes

In order to accordance with the title of this research which is “A code

clone detection model for C platform application”, this research has some scopes

as a follows:

i) Focuses on code clone detection for C language application

platform.

ii) Focuses on clone pair.

8

1.5 Thesis Organization

The first chapter of this thesis is introduction. In this chapter explained

about this research, code clone definition, problem background of research, the

current solution and the purpose solution for this problem, problem statements,

and objective of this research that should be achieve at the end of this chapter.

In chapter two, describe about literature reviews that related work of this

research and the concept. The explanation of a code clone with different

terminologies will be discuss in this chapter. Then, the code clone detection

process, approaches with tools and evaluation metric is elaborated. Structure of C

language will be explain at the last of this chapter.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the definition of code clone will be explained in closer

detail with the detection and approximation process. Some of the main topics for

code clone approach and code clone detection models were explained in the

previous chapter. Conclusions will be found in the last part of this chapter.

2.2 Code Clone

Software engineers often use a code fragment in the software development

process by copying and pasting from another project that is successfully running

into the project. Such reused code fragments make any changes to the new code

location. These same or similar reused fragments of code called code clone. (Dang

et al., 2017).

Code clone is the usual research terminology. A number of different

terminologies used to describe the clone code. The variation in the terminology

occurs due to the varied similarity and tolerance level allowed for the code clone.

(Bellon, Koschke, Antoniol, Krinke, & Merlo, 2007).

Another understanding in another word about code clone is plagiarism. It

makes the maintenance phase harder and takes a long time. A code clone is a code

in another source file location similar to the code used by the programmer. Copy

and paste code reuse makes it more difficult to modify consistently. To modify

10

the code clone, the entire code block must be changed if there is a problem. The

task of maintaining the system is also becoming big. (Morshed, Rahman, &

Ahmed, 2012). An example of code clone is shown at figure 2.1.

Figure 2.1 Code Clone

As illustrate in figure 2.1, code clone means the same code that is reused

in another source in the same project, which will make the code read by the system

longer. At the top of the figure the variable is x and y are used in another source

and has the same variable. This usually happens in the program to avoid changing

the new structure of the software development process. But it will make the

system read more code line and take longer. This code clone copies without

changes, which means that the variable and value are the same. And, copying the

variable with minor changes also changes the value, but the head and body of the

code is the same.

11

2.2.1 Advantage of Code Clone

The code clone has several advantages to detect clone code, some

application needed to find a problem or bug. Otherwise the variety to find the

code clone must be improved to use the application. Some of suggestion from

developers to improve the application for code clone detection.

i. Find candidate of library

The usability of code fragment has been demonstrated by copying and

reusing the code several times. This can be incorporated into the library and it can

be officially reused.

ii. Getting new idea for system.

The possibility to obtain general ideas from other files containing

dependencies of another functionality of the code itself. For example, the

programmer has a memory management code line, the files contain a copy and

data structure must be implemented with dynamic assigned space.

iii. Helps mining research aspects

It is also necessary to detect crosscutting concerns in the mining aspect.

The cross- cutting code is typically duplicated across the entire application that

could be identified with clone detection instruments.

iv. Finds same patterns

The same functional pattern of the cloned fragment can be found if all the

cloned fragments of the same source are detected.

12

v. Detects bugs software

Some bug detect clone detection techniques in a vital role. The evidence

can be found by comparing a bug with another software when one software

system matches another.

vi. Detect copyright and plagiarism

Similar code with the same function is detected without any changes

called plagiarism, for the use of code clone detection, plagiarism and copyright

are useful.

vii. Contribute software evolution research

The dynamic nature of different clones in different versions of the system

using clone detection techniques used in software development research.

viii. Contributes in code compacting

Clone detection technology can be used for compact devices by reducing

source code size.

2.2.2 Disadvantages of Code Clone

In addition to the benefit of code clone, the quality, reusability and

maintenance impacts are severe. The following are the disadvantages of detecting

a programs code clone:

i. Increase possibility of bug propagation

Some bugs can already be copied into another project or code fragments

in some code already copied by the programmer. Reusing the code without any

changes to adapt the code to other code line will affect the original bug in the new

project or code fragments that the programmer is working on. It will significantly

increase the spread of bugs in the system.

13

ii. Bad design

Cloning a code will make the code structure a bad design. Lack of a good

future of heritage or abstraction. The code part for another project becomes

difficult to reuse in the future. Hard to understand the function code. And it will

affect the maintenance phase.

iii. Difficulty for improvement or modification the system

The code clone can cause difficult in improvement or modification the

system because need to take more attention to understand and additional time for

the existing clone implementation.

iv. Increase maintenance cost, work and time

Some case in the maintenance phase have a bug that comes from the code

clone. Many bug cases come from code clone that can cause maintenance to take

more time to ensure that the system works well. There is no guarantee that this

bug was eliminated from other similar parts during reuse or maintenance.

2.2.3 Reasons of Code Clone

The reason for reusing a system code is summarized in three reasons. The

first reason for the use of code clones is development and maintenance. This is

due to the reuse of code in the development of the system, it can also be called

code reusability. For instance, a programmer builds a system that uses existing

code in another system by changing a few functions, it can cause code clone.

14

As mentioned above, the code clone reason can be categorized into two,

which are:

i. Simple reuse through copy and paste

Implementing the same code by copy- pasting used by the developer. This

method is something that always happens in each system development because

the code function can be reused in a new system.

ii. Design and functionality reuse

Some system functions and logic can be reused and repeatedly. This can

happen in some subsystem applications. Linux is an operating system with a high

level of duplication due to the frequent interface raised the same as the previous

interface.

Then, a reason why code clone is used in developing the programmer’s

limitations and shortcomings. A programmer is someone who develops a system

and can also be included in it. I can conclude I two reasons. This is:

i. Difficult to understand of large system

Because of the large system, developers have problems understanding the

system. Developers prefer to use the existing code and copy and paste the code

into the system it created.

ii. Lack of knowledge in development process

Some developers face problems, such as lack of understanding, when

developing a system, to assemble a code to work in accordance with its function.

In this situation, the developer will usually look for a code with the same function

to solve the problem. This can cause the system code clone.

15

In development, a programmer must have a problem in several existing

programming languages. Programming language is important in development and

maintenance and has an important code clone role. Below is the reason for the

programming language code clone.

i. Lack of programming language usage

Some programming languages currently have different mechanisms for

facilitating program development. However, some programming languages do

not have a mechanism source and require the repetition of the programming

language.

ii. Time saving for writing a code

For programmers, writing a new code in a line takes longer. For them,

copy- paste is easier to save time in developing the program than writing long and

complex codes.

2.3 Process of Code Clone Detection

Most of the code clone detection process commonly used by most

researchers as shown at figure 2.2. Besides the process, there are several

approaches to detecting code clone in a software. Detection approaches can be

distinguished based on information that can be obtained from the approach itself

(Roy & Cordy, 2007). This approach is a process that is included in the code clone

detection tool (Bellon et al., 2007). There are several processes that must be done

before and during the detection of code clone. Some researchers have previously

done some research and produced ways and approaches in detecting code clone.

Instead of several combinations of research produced by the researchers, a generic

process was obtained. Most of the code clone detection tools adopt some or all of

16

the processes mentioned in the process of generic code clone detection. Figure

2.2 will be explained about the detailed detection process of generic code cone.

Figure 2.2 Clone Detection Process

17

2.3.1 Pre-processing

This process is the first phase in the code clone detection. In this pre-

processing phase there are three processes and each process have its own goal.

Which is:

i. Delete nonessential parts.

In this phase, all the uninteresting and unimportant parts will be remove

to avoid the as a code clone. E.g. comment, empty line.

ii. Determine source units

After the pre-process, some source code is partitioned into the source unit.

This source unit is not appropriate; therefore, cannot be combined beyond the unit

limit of the source. There are several granularities for the source unit such as

classes, functions, methods, blocks and sequence of source code lines.

iii. Define the comparison unit

The source unit will be partitioned into smaller units to get more details.

It is based on the comparison function of a method. Then, the small unit that has

been partitioned, will be divided into several lines or tokens that are intended for

comparison. The unit order is another important aspect in determining the unit of

comparison.

18

2.3.2 Transformation

This process is the main point to transform the comparison units with previous

one process to another representation or from original code or source code to extract

comparable properties. Table 2.1 show the approaches that might be used for

transformation by (Roy & Cordy, 2007).

Table 2.1 Transformation Approaches

Transformation

Approach

Description

Pretty printing of

source code

Source code is transformed

into normal form.

Removal of comments The comments are removed

from the source code.

Removal of

whitespace

Almost all approach applies

this approach. This approach is

to remove the whitespaces

from source code.

Tokenization Each line of the source is

divided into tokens. These

tokens correspond to a lexical

rule of the involved

programming language. The

token lines are then formed

into token sequences for the

detection purposes.

Parsing The entire source codes of the

software are parsed into

abstract syntax tree. The source

unit and comparison units are

represented in the form of sub

tree of the parse tree.

Generating Program

Dependence Graph

(PDG)

Usually used in semantic based

approaches where source units

or comparison units are in the

form of sub graphs of these

program dependency graph.

Normalizing

identifiers

Usually applied in most of the

approaches where the

identifiers of the source code

19

are replaced by a single token

in such normalizations.

Transformation of

program elements

Apart from normalization of

the identifiers, a few

transformation rules might be

used on the elements of the

source code.

Calculate metrics

values

This usually happens in metric

based approach where several

metric are calculated from raw

or transformed PDG and

abstract syntax tree source

codes to be used in detecting

clone.

2.3.3 Match Detection

This step or process is to find coloration or similarity between

transformation comparisons units using by comparison algorithm to detect the

similarity. Comparison units owned by source units are aggregated to fixed

granular clones. For irregular cloning granularity, aggregation is continued until

the aggregate number is above the limit specified for the number of aggregate

comparison units. This is to ensure that the largest group comparison unit is found.

The production of this process is a matching list associated with the modified code

that contains the candidate clone pair. Each clone usually represents information

like the corresponding debris location in the clone that is changed.

2.3.4 Formatting

This process is to convert or change from the list of clone pairs obtained

in conjunction with the modified source code to the clone list of the original

source code. Usually each clone pair location is converted into a line number in

the original source file. The general form will be group of list or nested tuple. This

something with the comment in the code or inside the semicolon in code. That

nested tuple it will find with the original code or founder commented it.

20

2.3.5 Post Processing and Aggregation

This phase is to find the false positive clone to filtered code out by:

i. Manual Analysis

Take the row data of the code clone and analysed manually to find the

similarity from the original code after extraction. This phase can find or

define the positive false after filtered out.

ii. Visualization

This method uses to visualize the obtained clone pair list. The list it can

traced using this method and can analysis use this visualization tool. This

visualize is used to describe the list of pairs of clones acquired. This list

can be used to illustrate clones. Visualization tools can speed up the

manual analysis process in removing false positives.

Aggregation is the process of reducing the amount of data or performing

certain analyses. These clones are aggregated in clusters, classes, clones,

clones, or clones. Usually this process is ignored in most of the code clone

detection process.

2.4 Code Clone Detection Approaches

This part discuss about the five major approaches used to detect code

clone. The component inside the approaches are string based, metric based, token

based, tree based and graph based comparison approaches.

To guiding the comparison it will detection approach use the string base

and more clear or understand how it work. The string base detection through this

comparison approach is done by comparing source code. They have two part of

source code by string base to compared approach. The source code are compared

each with an "AND" statement for the same text / string. If one or more similar

source code sections are found, the result will return as a cloning pair. This

21

technique can’t detect structural cloning because the detection does not focus on

the program's structural elements. Normally user or programmer use this in code

to use the function of code, they can’t normalization process, it is because the

detection approach usually directly use in program source code to detect code

clone (Roy & Cordy, 2007). However this approach by line to line to filtered,

there are still works by combining with other techniques to detect the code clone.

In this version of the matrix-based comparison approach (Roy & Cordy,

2007) put on a string-based compression throttle. The difference in comparison

of it through two phases between string based comparison and the metrics based

comparison it uses different metres from fragments or parts of the code and

compare them to each other (Roy & Cordy, 2007). The matrix difference matrix

with a string-based comparison ratio that only compares the line to the base line

of the source code. Some work uses distances in metric vectors instead of line

coding to compare meanings (Göde & Koschke, 2009). The use of tree syntactic

and parser trees through a tree based comparative approach. In the programming

language there is represented as a representation when the source code is

transformed into a tree structure (Rattan, Bhatia, & Singh, 2013; Roy & Cordy,

2007). This approach uses a sub-partition of tree abstract syntax program based

on hash function and then compares subtests in partition the same through some

techniques such as tree matching (Jiang, Misherghi, & Su, 2007) or dynamic

programming (Duala-Ekoko & Robillard, 2007, 2008). Most variable names and

literal values of sources are discarded in this approach but there is still a clone

detection technique that can still be used to find the same code (Roy & Cordy,

2007). Normally a metric-based comparison is used to truncate a type 3 code clone

(Rattan et al., 2013) this comparison approach exists.

A token-based comparative approach is done by dividing the line of code

into a sequence of business. In this approach, the whole source code is changed

to a token of the token. This can be done using lexical analysis (Rattan et al.,

2013). The tokens do uniquely characterization using the hash function (Göde &

22

Koschke, 2009). The detection was done to find out duplication at which the

original source code mark was originally represented as a code clone (Roy &

Cordy, 2007). Approach to tree suffix or suffix based on token makes the main

work is on the comparison finder (Kamiya, Kusumoto, & Inoue, 2002b) is an

example of a clone detection tool that uses tokens comparison.

On the other hand, using a graphical-based technique to detect the code

clone is a comparison-based approach. Program dependence graph (PDG) is used

to represent the reliance of source data flow source code(Rattan et al., 2013). The

PDG technique improves the source code representation abstraction compared to

other approaches as it considers semantic information source code (Komondoor

& Horwitz, 2001; Krinke, 2001; Liu, Chen, Han, & Yu, 2006). Usually the PDG

obtained from the software is used with algorithms corresponding to sub-

isomorphic graphs in search of the same subgraphs; it is called a clone (Roy &

Cordy, 2007).

Each approach has its own strengths and weaknesses. The string-based

approach is limited to the exact clone and in certain cases clones are almost right.

Clones precisely refer to clone type 1 and clones almost exactly refer to clone

type-2. The string detection strength lies in the work involved directly in

manipulating source code and string based languages. The matrix-based approach

relies heavily on a set of critical criteria extracted through an enhanced version of

a string-based approach. Advanced transformation methods used in tokens-based

detectors such as ccfinder (Kamiya, Kusumoto, & Inoue, 2002a) or the

engineering techniques may improve the clone detection code but potential

remains unknown. Most of the code clone detectors use a tree-based approach

because the strength of this approach lies in detecting the same clone, the same

clone and the corresponding clone. Specific clones refer to type-1 clones, the same

clone refers to clone type-2 and similar clones referring to type-3 clones.

Scalability is another major advantage of a tree-based approach compared to other

23

approaches. Scalability refers to cod detection in applications and tree-based

approaches can detect code clones in large size applications.

Correction of the approaches that have been made to the clone of the code

clone, a number of clone detection system approaches combined with certain

techniques to improve the results of the code clone detection. There is also a

combinatorial approach extended to be a code clone detection tool. Examples of

techniques combined with main approaches include comparisons of substrings,

scatter plots, point plots, feature vector clustering, the longest one, the longest

substrings and hashing. Table 2.2 shows approaches with accepted techniques.

 Table 2.2 Approaches with Adopted Technique

Approaches Adopted

Techniques

Tools / First

Author

String based

comparison

Substring

Comparison and

Scatter Plot

Duploc (Ducasse et

al., 1999)

Substring

Comparison

Simian (Harris,

2003)

Dot Plot / Scatter

Plot

DuDe (Wettel and

Marinescu, 2005)

Longest Common

Subsequences

Nicad (Cordy &

Roy, 2011)

Metric

based

comparison

Abstract Syntax

Tree and Metrics

CLAN (Mayrand,

Leblanc, & Merlo,

1996)

Abstract Syntax

Tree with Metrics,

Feature Vector

Clustering and

Dynamic

Programming

(Kontogiannis,

Demori, Merlo,

Galler, & Bernstein,

1996)

String with Metrics

and Fingerprinting

(Perumal, Kanmani,

& Kodhai, 2010)

Abstract Syntax

Tree with Metrics

and Dynamic

Programming

(Lavoie, Eilers-

Smith, & Merlo,

2010)

24

Set of matrices with

light weight hybrid

(LWH) approach

CloneManager

(Kodhai &

Kanmani, 2014)

Tree based

comparison

Tree Parse with

Dynamic

Programming and

Longest Common

Substrings

(Yang, 1991)

Abstract Syntax

Tree with Hashing

and Dynamic

Programming

CloneDr (Baxter,

Yahin, Moura,

Sant’Anna, & Bier,

1998)

Parse Tree with

Dynamic

Programming and

Longest Common

Substring

Sim (Gitchell and

Tran, 1999)

Abstract Syntax

Tree with Metrics

and Feature Vector

Clustering

ClemanX (Nguyen,

Nguyen, Pham, Al-

Kofahi, & Nguyen,

2009)

Abstract Syntax

Tree with Metrics

and Levenshtein

Distance

CSeR (Jacob et al.,

2010)

Token based

comparison

Suffix Tree

Dup (Baker, 1995)

CCFinder (Kamiya

et al., 2002a)

D-CCFinder

(Livieri, Higo,

Mazushita, & Inoue,

2007)

iClones (Göde &

Koschke, 2009)

Abstract Syntax

Tree

Java Code Clone

Detector (JCCD)

Suffix Array RTF (Basit,

Rajapakse, &

Jarzabek, 2005)

Hashing

FCFinder (Sasaki,

Yamamoto, Hayase,

& Inoue, 2010)

Graph based

comparison

Program Slicing

Scorpio (Higo &

Ueda, 2007)

25

PDG-DUP

(Komondoor &

Horwitz, 2001)

n-length patch

matching

Duplix (Krinke,

2001)

2.5 Clone Metrics

This part will discuss about the various detection approaches and models

with their corresponding tool, it will provide to search the previous researchers.

The challenging to compare these tools since the application approaches and tool

are more towards picking the right approaches and tool for a particular purpose

on interest. The researchers for the tools evaluation purpose, there are several

common parameters will used.

This method need the higher precision to detect the code clone and

detection tool that should be able to define the lesser false positives. Precision

refers to the accuracy of detected code clones, the ability in detecting code clones

with hidden cloning relationship. They not all the code is clone and visible

textually and some editing activities can disguise the copied fragments with the

original source code, therefore it is important for the code clone detection tool to

detect the hidden code clones. For high action used the tool to detect a code clone

are can find the hidden clone relationships. Adaptability refers to the tool being

independent of programming language. Since there is a lot of programming

languages available in the market, therefore it is important for the code clone

detection tool to be adaptable to different kind of programming languages.

The tool also should be capable of adapting to multiple programming

languages since the programming style involves multiple programming at the

same time. Scalability refers to code clone coverage detected in the system. A

good code clone detection tool it can detect a clone of code from a large system.

26

This tool should also shoed be able to control legacy and intricate systems without

limitations of computer memory.

Performances of runtime to execute code clone detection in a larger

system need to be fast. It also refers to the time taken to execute a process in a

code clone detection tool. The code clone detection should not only detect code

clone with high accuracy detection; but also, must be able to do it at minimal

detection times. For the apart from mentioned metrics, there are two major clone

metrics or granularity level used in reporting clones which are clone pair (CP) and

clone class (CC). In this major clone they have similarity relation that occur

between the code fragments. The similarity relation between cloned fragments, or

also known as equivalence relation, refers two or more code fragments that have

the same sequences; in which the sequences may refer to the source code itself or

the source units.

2.6 Related Work

The code clone detection model has also been proposed to detect the clone

of the code. As mentioned in the previous section, the proposed code clone

detection approach results in different clone tracking code results. Therefore, the

model is proposed to have a unified code clone detection and decision (Harder,

2013). There are three code clone models used in the code clone research domain.

Generic clone model (Giesecke, 2007), generic pipeline models (Biegel & Diehl,

2010) and unified clone model (Kapser et al., 2012).

2.6.1 Generic Clone Model

The generic clone model is a model that illustrates the clone that exists in

a program (Giesecke, 2007). This model contains separation of clone’s detection,

explanation and management using layers. The main use of this model is to

illustrate clones. This reduces efforts in the implementation of tools that support

these activities. Figure 2.3 shows an overview of the generic clone model.

27

Figure 2.3 Overview of Generic Model Clone (Giesecke, 2007)

Based on the system artefact, there are two types of elements associated

with the corresponding model, an artefact representing the piece of cloning data

generated by a cloning detection algorithm based on system artefacts (Giesecke,

2007). The highest level of this model is a sample project. An example is

organized into a selection unit and a comparator unit through the selection and

enumeration functions. Then, this example is known as cloning data. At the top

level, clone data is encapsulated in clone sets containing clone pairs. The cloning

pair is present in two granularities of the selected unit and its reference unit. Then,

clone pairs are grouped into clone sets by presentation function. To reduce

redundancy in cloned sets, the clone set used is from a collection with leading

reference elements.

28

2.6.2 Generic Pipeline Model

The generic pipeline model is a model for detecting code clones; it is a

combination of processes with all the steps required in the code clone detection

process. There are five steps in this generic pipeline mode (Biegel & Diehl, 2010).

In the picture below will show the diagram view of this model.

Figure 2.4 Generic Pipeline Model (Biegel & Diehl, 2010)

In the first process is the process of parsing and change the source code

into source units. In converting the source code to the source unit, this process

will work. The sub tree of abstract syntax tree (AST) is the representation of the

unit to be used. The source unit is an input of this source file as well as the output.

The source unit is then used as input for the second process. The second process

in this model is a pre-process that serves to normalize the source unit and adds

Parcing
Process

Input:
Source File

Output:
Source Unit

Pre-
processing

process

Input:
Source Unit

Output: Pre-
processed
source file

Pooling
Process

Input: Pre-
processed
source file

Output:
Pools

Comparing
Process

Input: Pools
Output:

Similiarity
Groups

Filtering
Process

Input:
Similiarity

Groups

Output:
Filtered

Similiarity
Groups

29

additional annotations to the source unit. Normalization will convert the source

unit into a regular form that will make the different source units, will become

more similar. AST will be used as input and also as output that has been processed

before. Multiple level processors will implement the process. This model will

generate an output which is a previously processed source file. In the third

process, the source file will be processed and inserted into the next stage.

The third process in this model is a unification process that will group the

AST source units that have been processed into groups of groups that match the

characteristics defined by the criteria set by the user of this detector. Pool is the

outcome of this process. Pool obtained from the previous process is the input to

be included in the next process is the comparison process. This process will unify

the results. This is the recursive process of the source unit in which all the pools

use a divide and conquer strategy. The output of this process is the clone equation

group. This group will be used as input for the last process that is the screening

process. This process is the last process in the Generic Pipeline model. The

purpose of this process is to remove a collection of irrelevant cloning candidates

from the result set.

30

2.6.3 Unified Clone Model

A model that seeks to have a generic model that can represent the results

of all cloning tools is the Unified Clone Model (Kapser et al., 2012). Figure 2.5

below will show the steps of unified clone model.

Figure 2.5 Unified Clone Model (Kasper et al., 2012)

This model is resistant design. This model is designed through a different

clone representation of the current tool. As a concept analysis, it will use eleven

applications to be the case that has been used. Then, the results of the analysis

will be divided into four groups that are detection for cloning trials and

management, integration of additional data from other sources, replication of

scientific research and comparison of cloning detection techniques. The weakness

of this model is still in design and does not have the right file format to present

data (Harder, 2013).

31

2.6.4 Strength and Weakness of Model

This model has the advantage and disadvantages for the system. This part

discuses about this situation what it can do and not. Table 2.3 shows the Strength

Weakness Opportunity Threat (SWOT) analysis of the models.

Table 2.3 SWOT analysis on models

Feature Generic

Clone Model

(Giesecke,

2007)

Generic

Pipeline

Model

(Biegel &

Diehl, 2010)

Unified

Clone Model

(Kapser et al.,

2012)

Generic

Code Clone

Detection

Model (Al-

Fahim, 2015)

Strength To make the

description of

the clones is

possible, it

will have to

clear

separation of

clone

detection

process

definition

using layers.

It consists of

step by step

process to

detect clones

in Java

applications.

It allows

customizatio

n for the user

to

manipulate

the model.

The model is

designed

through the

different

clone

representation

s of existing

tools.

This model

able to detect

a code clone

until Type- 4

Weakness It does not

allow

manipulation

on it layers to

extend the

effectiveness

of this model.

The

extension of

this model is

limited due

to the

manipulation

on the pre-

defined sets

and rules in

the model.

It is still in

design phase

and lacks a

proper file

format for

data

representation

It is still in

improving

pre-

processing

and

transformatio

n process.

Opportunit

y

The

description of

the model on

the clones

The clone

type

detection and

the process

The

realization of

the model

using user

Declare the

part of

unnecessary

to be detect as

32

could be

improved.

can be

enhanced to

obtain a

better code

clone

detection

result.

defined

process.

a code clone

and convert

the code into

something

that can be

measure

Threat The

modification

implementatio

n of this model

is impossible

due to its

nature of being

a plugin.

The

application

used for

evaluation

will yield

different

results

compared to

existing

work.

Different tools

might cause

variation to

the end results

Difficult to

implement

plugin due to

accuracy

which is

highly

possible type

of clone and

language.

The researcher analyses the general weakness of the model which is the

extension of the existing model using the SWOT analysis method. After analysis,

the generic clone model does not allow for manipulation of predetermined layers,

in order to extend the effectiveness of the model, while the generic pipeline model

allows only the manipulation in the process that limits the expansion of the model

to improve code clone detection. The realization of this model is a major

weakness in this regard. It is very apparent with the struggles in realizing the

prototype or tool for the unified clone model.

The generic pipeline model is the only code cloned detection model that

detects code clone for Type-1. It consists of five processes used to detect code

clone. Use a tree-based comparison approach that converts the source code to a

source units that is a tree node and then uses a tree comparison to compare tree

nodes. The categorization and filtering process in determining the cloned pool

code and the result is manipulated by the user; therefore it may cause the final

result of a particular clone to be removed due to user preferences. Although a tree-

based comparison approach is well known for achieving good detection results

33

compared to token-based comparison approaches, the application of tree-based

comparison approaches is very expensive in terms of hardware requirements and

time. Therefore, a more robust source unit representation and coding cloning

detection techniques are required with the prototypes required in detecting all

types of code clones.

2.7 Discussion

For detect the code clone, there is five major of approaches, which is string

based comparison approach, metric based comparison approach, token based

comparison approach, tree based comparison approach and graph based

comparison approach. Apart from these approaches, code clone detection models

such as the generic clone model (Giesecke, 2007), the generic pipeline model

(Biegel & Diehl, 2010), generic pipeline model (Kapser et al., 2012), and generic

code clone detection (Al-Fahim, 2015) has been proposed in detecting code clone

through multiple processes.

The contain of code clone detection model it have several process to

determine the line or code clone will be located while the code clone detection

approach is part of the process in the clone detection model of the code used to

detect code clone. The use of a clone tracking approach affects the use of parsing

and pre-processing on the source code in generating source units. An example can

be seen with a Generic Pipeline Model. It uses a tree-based comparative approach;

therefore the parsing process and pre-processing process in the Generic Pipeline

Model meets the source code requirements that will be changed into a tree node.

The process need to consideration for proposing a code detection model

is the model can realization of model and detect code clone by itself. Based on

the generic pipeline model, there are five processes that are used in detecting code

clone. The processes are parsing, pre-processing, pooling, comparing and filtering

process. The parsing and pre-processing is related to source transformation while

34

the latter three processes is related in application of tree based comparison

approach in detecting code clone.

The generic code clone detection has been chosen for the model that will

be improve on this research. This model able to detect a code clone until type-4.

Also, this model is more valuable to be improve than any model. The process that

will be improve on this research is pre-processing and transformation process.

Two of this process is to declaring the part of unnecessary to be detect as a code

clone and convert the code into something that can be measure.

2.8 Summary

To conclude this chapter, the code clone terminology used in the code

clone detection domain already shown in this chapter. Code clone reason benefit

and disadvantage of code clone explained in this chapter. Determined code clone

using detection and code clone detection approaches. The way code clone

detection was discussed using algorithm or method. Five major approaches and

three major code clone detection models exist. For approaches, metric- based

comparison approach, token- based comparison approach, tree- based comparison

approach and graph- based comparison approach. The generic pipeline model, the

generic clone model and the unified clone model are also used for three key code

clone detection models. Key tools related to approaches and models were also

compared and discussed in this chapter. This research method will be shown in

the next chapter.

35

CHAPTER 3

METHODOLOGY

3.1 Overview

This research method will be described in this chapter. In first two sections

the operational and theoretical framework used in this research will explain. The

research design and conclusion of the methodology to be used in this research will

also be explained at the end of this chapter section.

3.2 Operational Framework

This research uses existing models of other researchers. The aim for this

research is to improve the prototype of the generic code clone detection tool for

detecting code clone in java programming has been developed by previous

researchers. Besides that, this research has a scope for improving the prototype

of generic code clone detection only for VB.Net application platform.

Figure 3.1 shows the operational framework diagrammatic view. The

diagrammatic view of the operational framework consists of three phases, the

review of the current function and the prototype rules, the design and evaluation

of the proposal. In designing the proposed improvement, two processes will be

improved, pre- processing and processing. Three applications will also be used as

a dataset for the evaluation phase to be tested by the prototype, so the prototype

can detect the C language code clone.

36

Figure 3.1 Operational Framework

3.2.1 Review the Current Function and Rules of the Prototype

The current function and rules of the prototype are reviewed at the first

phase of the operational framework. The purpose of reviewing the current

approaches is to gather and analyse the related domain information through the

literature. In the process itself, code clone detection, concepts, detection approach

and detection tools were discussed in chapter two.

3.2.2 Design the Propose Enhancement

After reviewing the current model approaches, the next phase is to design

the proposed improvement. This phase aims to design and define GCCD

processes. In this phase, certain requirements analysed in the previous phase will

be used. The flow and definition of each process will then be determined in the

model and the design will finally be obtained at this stage. In the next phase this

design will be used. Details of the code clone detection model are explained and

detailed in chapter 4. For this research, the GCCD will only improve the detection

of the generic clone code. The process takes only two pre- processing and

transformation processes to evaluate the model.

Phase One - Review
The Current

Function and Rules
of The Prototype

Phase Two - Design
The Propose
Enhancement

Phase Three -
Evaluation

37

3.2.3 Evaluation

Following the third evaluation phase. The purpose of this evaluation phase

is to evaluate and analyse the work proposed by evaluating the prototype. The

results of the cloning detection from the prototype will be then be analysed and

the analysis results will be summarized in the next step. The research design is

described and presented in Section 3.3 and the evaluation results are also shown

in chapter 4.

3.3 Research Design

This research aims to detect all clones such as Type-1, Type- 2, Type-3

and Type-4, and the detection category is included in definition of generic code

clone detection as described in chapter two. Case studies are used to identify

prototypes working capabilities. To find out how the prototypes work, one

software practitioner will use researcher to check the performance of generic code

clone detection. The development of prototype tools for generic code clone

detection is therefore very important to validate the proposed work. There are

several steps in the design of this research to validate the approach proposed. The

research design is shown in Figure 3.2.

38

Figure 3.2 Step of Research Design

7. All the case study result is analyze and documented. The
results will be shown in chapter 5.

6. An analysis with existing code clone detection tools.

5. Prepare testing environment for evaluation process.

4. Continue with step 2 and 3 sequentially on the ramining
process.

3. Test the developed process with sample dataset. If the expected
output yielded, continue with the next process.

2. Develop the first process which is pre- processing using
NetBeans application, it used for implementing the propose work.

1. Prepare a C line of code as a sample dataset that will use
throught the development of each process.

39

The first step in this research design is to prepare C source code as a

sample data set that will be used during each process development. The dataset is

downloaded without websites that provide the source code that can be

downloaded free of charge.

The second step is to develop the first process using the NetBeans

application. It is used to implement the proposed work. This step is an important

step in this research. There are many code categories that are not used to code

clone detection processes, such as empty lines, comments and others. The

researcher will improve the current program to detect the code clone in .net

programming languages.

After finishing step two, the researcher will test the developed process /

program with the sample dataset in step three. Continue step four for the next

process if the expected output occurred.

Step five to prepare the testing environment for the evaluation process.

The program is already improved and ready to use to detect the code clone. The

researcher should prepare the hardware and software environment and the data

set to be tested by the generic code clone detection tool.

The six step is the case study. An analysis with existing code clone

detection tools is working well to make the program clear. This assessment

focuses on testing the prototype and comparing it to existing code clone detection

tools.

The final step in this research design, step 7, is to analyse and document

all the results of the case study. The results are presented in Chapter 5.

40

3.4 Dataset

Bellon’s BenchMark datasets should have C source code. It has been

chosen to set the data for this research. This dataset will be used to evaluate the

prototype of the C application platform code clone.

The researcher collects the data set system for evaluating generic code

clone detection from the open source code provided by the website. The collected

dataset is available with the source code itself. The reason why open source code

is used is to obtain available data and save time in determining the data to be used

in this research.

3.5 Design the Propose Enhancement

In the generic increase in the code clone, the researcher will transfer the

prototype from the past one from the detection of the Java code clone to the

detection of the C programming language code clone. Some of the processes

clearly explained in the following steps:

41

Figure 3.3 Propose Enhancements

3.5.1 Learn the Process of GCCD

The first step in the design of a code clone detector is to learn how and

how to calculate or read and also what types of code clones this tool will read.

3.5.2 Improvement on Functionality and Rules for C Programming Language

After studying and understanding how the prototype of the clone detector

tool previously intended for the java application platform, the researcher will add

the functionality and rules of the existing prototype to detect the code clone in the

VB.Net application platform.

3.5.3 Testing the Functionality of the Prototype Improved

The experiment will test the prototype to detect the VB.Net application

platform code clone. If there are errors or problems in the construction of the code

clone detection tool, some improvements will be made until the tool works well

and produces the prototype until the aim of this research has been achieved.

42

3.6 Limitation and Assumption

The existing visual studio detection tools have some limitations in finding

or detecting the type of code clone in programming. Code clone detection only

detected in the visual studio until type 3. Although the purpose of this study can

detect the type-4. Furthermore, the limitation of this research lies in the empirical

assessment of the models.

Some research and also work on code clone detection has been done for a

long time and probably no new things that could be used as research material.

There are always some developments from different sources every year, and the

improvement of this tool is constantly changing (Mubarak- Ali & Sulaiman,

2014). Several approaches and techniques have previously existed, only the

generic pipeline model (Biegel & Diehl, 2010) is accessible and can also be used

as references for building the generic prototype cloning detection tool.

The researcher's expectation and assumption of making generic code

clone detection tools is:

3.6.1 Detecting all code clone type

As for research in the construction of this tool, the focus of this research

is to be able to detect all types of code clones in order to produce tools that work

better to detect code clones.

3.6.2 Tools easy to use and easy to understand by the user

Using this tool, it is expected that ease of use of this tool can be achieved

to achieve satisfactory results and to make a system or program more qualified.

43

3.6.3 Improvement of various aspects

Researchers expect improvements from various aspects during the

development of this prototype. As long as an improvement recommendation can

be understood and expected.

3.7 Software Specification

For this research, some software will be used to improve the generic code

clone detection tool. First, the NetBeans software is used to run and improve the

generic code clone detection tool prototype. This software is used for editing the

source code in java programming language. Visual 2010 basic software to open a

dataset tested by generic code clone detection tools. The data set that will be tested

can certainly be run in the visual base and the process will be recorded for future

use by the researcher to know the performance after the code clone is detected

using the generic code clone detection tool. C also use clone doctor to compare

code clone detection tools. These tools are available for free download from clone

doctor's website. Other comparative tools are code clone analysis. Code clone

analysis already installed in the 2015 visual studio. These tools are provided by

the visual studio to enable their developer to detect their code clone.

3.8 Hardware Specification

To run the prototype smoothly and achieve a good result, a central

processing unit (CPU) is expected to have sufficient specifications for the

processing of various tasks in the running of generic code clone detection tools

(GCCD). This tool will require a lot of memory to use in the process of improving

this tool. Researchers will use a memory size of 4(four) GB as a minimum

requirement and the requirements for writing this thesis have been met. The

current device used by researchers to improve and evaluate the GCCD meets the

requirements. If computer specifications are required, the developer will use a

44

computer lab at the computer systems and Software Engineering College in

Malaysia Pahang (Gambang) University. The faster the process is performed by

the prototype of generic code clone detection instruments (GCCD) in the CPU.

3.9 Summary

A summary of chapter three at the end of this chapter describes the

operational framework to be used as the first sub topic in this study. There are

different process to meet the requirements for the development and use of GCCD.

An explanation of the dataset to be used as an example of this tool’s wok.

Following the design of the proposed improvement in the development or

improvement of prototypes previously existing, the prototype was designed to

detect the code clone in the java programming language, whereas the researcher

developed or improved the programming language in C

The scope and assumptions continue with different descriptions and also

have three points on the assumptions that researchers expect in the development

or enhancement of genetic code clone detection.

For development, sufficient computer specification and software

specification were required to conduct research and improve the prototype

properly and properly. Good detection results can be achieved using qualified

computer specifications.

In the next chapter, the focus will be on discussing Generic Code Clone

Detection in more detail and understanding the function and the result.

45

CHAPTER 4

Improvement, Implementation, and Evaluation of GCCD

4.1 Overview

In this chapter, GCCD (Generic Code Clone Detection) will explain and

illustrate the research work that the researcher is working to improve and

implement. This chapter will explain the details and any implementation or

enhancement of each model process.

4.2 Generic Code Clone Detection Model Improvement

There are 5 processes in generic code clone detection model which are

pre- processing, transformation, parameterization, and match detection. The

objective of this all process is to detect all type of code clone which type- 1, type-

2, type-3 and type-4. Figure 4.1 above show the all process of GCCD.

46

Figure 4.1 Process of Generic Code Clone Detection Model

MATCH DETECTION PROCESS

INPUT: A SET OF POOLS OUTPUT: CODE CLONE
DETECTION RESULT

CATEGORIZATION PROCESS

INPUT:METRICS A SET OF POOLS

PARAMETERIZATION PROCESS

INPUT: TRANSFORMED
SOURCE UNITS

OUTPUT: METRICS

TRANSFORMATION PROCESS

INPUT: SOURCE UNITS OUTPUT: TRANSFORMED
SOURCE UNITS

PRE- PROCESSING PROCESS

INPUT: SOURCE CODE OUTPUT: SOURCE UNITS

47

All the function at Generic Code Clone Detection (GCCD) have been

discussing in Chapter 2. This model almost similar with generic Pipeline Model

that are followed by previous researcher before built this tool for detecting clone

in C language. In this research focusing on improving 2 functions which are pre-

processing and transformation process. The explanation about these two

processes will be explain below.

4.2.1 Pre- processing Process

At the beginning of this process for Generic Code Clone Detection is pre-

processing. The process of it is to produce a normalized source code or source

unit. The aim of normalization is to turns the source code into a regular form and

to makes the different code into similar. The figure 4.2 shows the diagrammatic

of the pre- processing process.

48

Figure 4.2 Pre- processing process flow

INPUT PRE- PROCESSING PROCESS OUTPUT

Read Source Code

Run Through PR- 1

Run Through PR- 2

Run Through PR- 3

Run Through PR- 4

Run Through PR- 5

Source

Code

Source

Unit

TRANSFORMATION PROCESS

PARAMETERIZATION PROCESS

CATEGORIZATION PROCESS

MATCH DETECTION PROCESS

49

The input of this process is source code, it will transform into source code

units after passed a few processes. There are fives rules in the pre- processing

process to achieve the aim. For the first rule is PR- 1: Remove namespace and

using statements. The function for this rule is to remove the namespace from the

source code and using the statements in the source code.

Secondly, PR- 2: Remove comments. In this rule, it will remove all the

comments inside the programming code. In the programming, writing some

comments is to help programmer to read or maintenance the function for each line

of code. Usually developer put a comment between the source codes. Therefore,

this function is to remove the comments that have been written by programmer.

For the third of this process is PR- 3: Remove empty lines. Empty lines is

detected if there in no content inside the line. It occurs because programmer not

cleaning up their code after finish developing and maintaining the code. In this

process, this rule is not importance in detecting the code clone.

Next is PR- 4: Regularize function access keyword to void. In the C

language there are many function accesses such as main, void and int. The

function of this rule is to regularize all the function accesses into a single function

access which is void.

Lastly, for the fifth rule is PR- 5: Regularize source codes to uppercase.

Usually programmer write a source code with their own style. As an example,

some of programmer write ‘SearchMenu’ and another programmer write

‘searchmenu’. As noticed that there are two style of writing for variable

‘searchmenu’. For all variable that has same function, the code detection tools

should detect this variable as the clone that can produce as a clone in the results.

Therefore, to detect different variable that have same function is important to

Generic Code Clone Detection tools to get a better result for code clone.

50

Every output that produced by every process will be used for next process

until the code clone result is found. Normalized codes or known as a source unit

which is still in the form of source code and represent the function of source code.

There are a few parameters to make this process is:

• C application, C1

• Source File, [S1, S2, S3, ….. , Sn]

• Source Code, [SC1, SC2, SC3, … , SCn]

• Source Unit, [SU1, SU2, SU3, …., SUn]

• Pre- processing Rule 1, PR- 1

• Pre- processing Rule 2, PR- 2

• Pre- processing Rule 3, PR- 3

• Pre- processing Rule 4, PR- 4

• Pre- processing Rule 5, PR- 5

For the first process, read the input which is the source code with code

SC1. The source code is from source file (S1) that is in C application (C1). Then

continue with the five pre- processing rules from PR- 1, PR- 2, PR- 3, PR- 4 and

PR- 5. The purpose of the pre- processing rule is to remove the unnecessary

component for detect the code clone. After done go through all the pre- processing

rule phase, the source unit (SU1) are produced. Once the process is done for S1,

the remaining process will continue for Sn in C1. The output for this process will

be used for the next phase of Generic Code Clone Detection tools process. The

pseudocode of this process will be shown at figure 4.3.

51

Figure 4.3 Pseudocode of Pre- processing process

C application, C1

Source File, [S1, S2, S3, ….. , Sn]

Source Code, [SC1, SC2, SC3, … , SCn]

Source Unit, [SU1, SU2, SU3, …., SUn]

Pre- processing Rule 1, PR- 1

Pre- processing Rule 2, PR- 2

Pre- processing Rule 3, PR- 3

Pre- processing Rule 4, PR- 4

Pre- processing Rule 5, PR- 5

1. Read source file S1 in C1

2. For each S1,

3. Check SC1,

4. For each existing SC1,

5. Apply PR-1

6. Apply PR-2

7. Apply PR-3

8. Apply PR-4

9. Apply PR-5

10. Repeat on the remaining source code [SC2, SC3, .. , SCn] in S1

11. Continue step 2 until step 10 on the remaining source files [S2, S3, … , Sn] in C1

52

4.2.1.1 Improvement in Pre- processing Process

Pre-processing is the first process on the generic code clone detection tool.

The enhancement of this process is to add more rules for detect the unnecessary

component to be detected for code clone detection and to produce a source unit

that will be used for next process which is transformation process. As for a

mention before, this research is to enhance the prototype of code clone program

that already make by other researcher which are to detect code clone for java

programming language. Table 4.1 is explanation of the rules added to enhance the

prototype for C programming language code clone detection.

Table 4.1 Rules added for pre- processing process

Rules Unnecessary component

added

Pre-processing Rule 1 (PR-1) -

Remove namespace and using

statements

- “namespace”

- “using”

Pre-processing Rule 2 (PR-2) -

Remove comments

- “ ‘ “

Pre-processing Rule 3 (PR-3) -

Remove empty lines

Pre-processing Rule 4 (PR-4) -

Regularize function access keyword

to public

- “protected”

- “friend”

- “protectedfriend”

- “private”

- “shared”

- “shadow”

- “readonly”

- “withevents”

Pre-processing Rule 5 (PR-5) -

Regularize source codes to

lowercase

- A = a

- B = b

- C = c

- D = d

- E = e

- F = f

- N = n

- O = o

- P = p

- Q = q

- R = r

- S = s

53

- G = g

- H = h

- I = i

- J = j

- K = k

- L = l

- M = m

- T = t

- U = u

- V = v

- W = w

- X = x

- Y = y

- Z = z

Besides that, there are categories that are unnecessary to detect the code

clone for the programming language of C, some of the rules are already mentioned

in the prototype but the rules before are used to detect the code clone for the

programming language of Java. The above table shows the rules to be removed,

changed or transformed.

4.2.2 Transformation

Transformation process is the second process in the generic code clone

detection tool. This process is to transform into a number or measurable units.

The source units already produced by the pre-processing process. After

transforming the source units, the source units will be used to determine the

parameters for the next process. Figure 4.4 shows the diagram of this process.

54

 Figure 4.4 Transformation process flow

PRE- PROCESSING PROCESS

INPUT OUTPUT
TRANSFORMATION PROCESS

Read Source Unit

Apply Letter to Number Substitution

Concept

Continue to Other Source Units

Source

Units
Transformed

Source Units

PARAMETERIZATION PROCESS

CATEGORIZATION PROCESS

MATCH DETECTION PROCESS

55

In the previous process, pre- processing process produced source units.

The source unit will be use in this process. The aim of this transform source code

into measurable units which is using the letter inside the source code and

transform it into substitution concept that transform the letter into a measurable

unit.

56

 Table 4.2 Letter to numerical substitution concept value

The objective of this process is to transform the letter that are from source units into a

numerical form. After finish transform the source units into numerical form, they are divided

into two group which are header (h) and body (b). Header refer to the head or beginning of the

source unit that already transformed that prior to the body. Meanwhile, body is the body of the

source unit. In figure 4.5 below shown pseudocode of the transformation process.

Letter Value Letter Value

a 01 n 14

b 02 o 15

c 03 p 16

d 04 q 17

e 05 r 18

f 06 s 19

g 07 t 20

h 08 u 21

i 09 v 22

j 10 w 23

k 11 x 24

l 12 y 25

m 13 z 26

57

 Figure 4.5 Transformation process pseudocode

4.3 The Generic Code Clone Detection Prototype

Other researchers are already conducting the GCCD prototype. This

research enhances the GCCD tool to detect the code clone in the programming

language of C. In addition, the generic code clone detection tools interface will

be displayed in Figure 4.6. Improvement or improvement is not an interface

effect. The enhancement adds only more rule that the prototype can detect.

Source unit, [SU1, SU2, SU3,…,SUn]

Transformed source unit, [TSU1, TSU2, TSU3, … , TSUn]

header [h1, h2, h3, … , hn]

body [b1, b2, b3, … , bn]

letter to number substitution, LN, [a=01, b=02, c=03, d=04, e=05, f=06, g=07, h=08,

i=09, j=10, k=11, l=12, m=13, n=14, o=15, p=16, q=17, r=18, s=19, t=20, u=21,

v=22, w=23, x=24, y=25, z=26]

1. Read a source unit SU1,

2. For SU1,

3. Apply LN

4. Save header of source unit SU1 as h1

5. Save body of source unit as b1

6. Continue with step 2 units 5 on the remaining source units [SU2, SU3, …

SUn]

58

 Figure 4.6 Generic Code Clone Detection prototype interface

Except for the process of categorization and match detection, it will be

presented on the button for each process in generic code clone detection. The

name will change to "Pool" for the categorization process as the output is the

pools or groups of code clones. There is also a Pre - detect and Detect button to

present the process of match detection. For Type-1 and Type-2 clones, the pre -

detection processes the code clone. The Detect button for Type-3 and Type-4

clones will process the code clone. The display of the process and the result is

separated, making it easier to compare the result with the existing model. The

process time for each process will also be displayed for the Run Time label until

the result is obtained.

In the figure 4.6 below start with pre- processing until match detection

process as marked the flow from 1 until 6. The explanation of the mapping

prototype will be explained in the table 4.3.

59

Table 4.3 Mapping of Generic Code Clone Detection to prototype

GCCD Model The start of the process Result of the

process

(Output)

Pre-processing process Pre-process button 1

Transformation process Transform button 2

Parameterization process Parameterize button 3

Categorization process Categorize button 4

Match Detection process Pre-detect and Detect button 5 and 6

As displayed above, there is a source file was executed using GCCD

prototype. For number 1, represented the pre- processing process. The textbox

displayed the source code lines that are used for pre- processing process. The

textbox showed all the function that available in the processed the source file.

Advantages

a. Filtering the unnecessary component to be detected as a code clone

b. Faster in detecting a code clone

c. Support all type of code clone

Disadvantages

a. Selection of file type

b. Result of code clone are not shown in a line of code

c. Still in development phase

d. Can be used in three (3) programming language: Java, C#. Net and

C

60

4.4 Comparison Result

As we discuss in chapter 3, four dataset from Bellon has been taken for

the result of code clone using Generic Code Clone Detection tools. This research

focusing on C application. Four dataset are available which are cook, snns, wetlab

and postgresql.

4.4.1 Comparison Code Clone Detection tools for Cook application

Figure 4.7 shows the result for Cook application that researcher compares

from another tools detection.

 Figure 4.7 Total number of Clone Pair for Cook Application

From the figure above, the result from cook application. The researcher

compares the result between three tools which are CLAN, NICAD and

CloneManager. For Generic Code Clone Detection tool, the research can the

detect the clone from Type- 1 until Type- 4. There are two tools that only can

detected the code clone from Type-1 until type- 3 only. From the GCCD the total

number of files scanning is 537 files.

61

4.4.2 Comparison Code Clone tools for Postgresql application

This figure 4.8 above shows the result for Postgresql application. The

researcher compares GCCD tool between three tools which are CLAN, NICAD

and CloneManager.

 Figure 4.8 Total number of Clone Pair for Postsgresql Application

The result from the figure 4.8 displayed the total number of clone pair for Postsgresql

application. The GCCD tools shows the number of clone pair can be detected from

Type-1 until Type-4. For this application total files are this tool scanned is 747.

62

4.4.3 Comparison Code Clone tools for SNNS application

This figure 4.8 above shows the result for SNNS application. The

researcher compares GCCD tool between three tools which are CLAN, NICAD

and CloneManager.

 Figure 4.9 Total number of Clone Pair for SNNS Application

The figure 4.9 above shows the total number of Clone pair for SNNS application.

The number of file scanning for this application is 557. From the result of the GCCD

tools it detects a higher number of clones in Type- 2 which is 178. For CLAN and

NICAD tools, these tool only can detect until Type- 3 clone pair.

63

4.4.4 Comparison Code Clone tools for Wetlab application

This figure 4.8 above shows the result for Wetlab application. The

researcher compares GCCD tool between three tools which are CLAN, NICAD

and CloneManager.

 Figure 4.10 Total number of Clone Pair for Wetlab Application

 The Figure 4.10 showed the total number of Clone Pair for Wetlab Application.

Due to the result GCCD tools give a 33 number for Type-1 followed by 52 for Ttpe-2

and for Type- 3 has 10 clone pair. Lastly for Type-4 the number of clone pair is 51.

64

4.5 Summary

As a summary of this chapter, the improvement in the detection of generic

code clones was made to fulfil this research's objective. There are five (5)

processes to detect the code clone in the detection of generic code clones, the

improvement is made only at two (2) processes at the beginning of the entire

process which is pre-processing and transformation. Pre-processing process

involves removing some unnecessary component to be detected as a code clone

and converting all code into a lower case. The second process that made the

improvement is the process of transformation. This process is aimed at converting

the code into something that can be measured by changing the alphabet into a

number. The GCCD can detect the code clone for the C application platform that

is the main objective of this research as a result of this evaluation.

65

CHAPTER 5

5.1 Overview

In this chapter will explain in detail every objective of the research. In

addition, the recommend suggestions of future work for improving the Generic

Code Clone Detection tools.

5.2 Objective Revisited

This research aims at enhancing the existing GCCD (Generic Code Clone

Detection) code detection tools. This code clone detection tool has the advantage

of detecting all kinds of code clones (Type-1, Type-2, Type-3 and Type-4). The

other tools that another research or company has already developed are detected

only until type-3. The tools capable of detecting the code clone up to type-4 must

make some payment. And this researcher's scope is to use the free source that the

internet can provide. The generic code clone detection that is still under

development process is to be added to this software, which is the rule of another

programming language.

The first objective of the research is to enhance the rules in the process of

pre - processing and transformation in the model of generic code clone detection

for C code detection. Only 2 processes at the beginning to enhance from 5

processes in GCCD, because the rule to be added is only in these two processes,

the rest of the process is the software's main function, that part of the process

cannot be changed or altered to avoid software error or accidentally change the

software's structure. Researchers need to conduct a research or study on the C

programming structure to enhance the rules. This helps the researcher to find out

what kind of uninterested things in the code clone detection process are not to be

detected. For more details, this explanation is already discussed in Chapter 4.

66

Continue with the second objective, by modifying the

existing prototype to develop the improvement. The prototype runs on the

programming language of java. The researcher needs to learn a little bit of java

programming language to avoid the mistake of changing or modifying the

prototype. NetBeans is the software used by the researcher to modify the existing

prototype. The prototype that recommends by developer for this software. In

enhancing the prototype, there are some problems that researcher must ask the

prototype developer's suggestion for the problem.

The last goal that the researcher needs to achieve is to evaluate the

enhanced prototype of the generic code clone detection tool model using the data

set using the code clone detection result. This goal is to run the prototype without

any error. The prototype must be tested with the dataset to prove that the

researcher is successful in adding the rule of C application. There are four datasets

of the cook, snns, postgresql, and, wetlab for C application. The prototype runs

smoothly without any error from all the dataset that tested with this prototype.

From the result, this research fulfils the goal of detecting the C application code

clone. The outcome of detection of code clones is discussed in Chapter 4

67

5.3 Recommendation for Future Work

A lot of programming language is currently being used by developers to

develop the software or system. Another programming language can be added to

improve the generic code clone detection prototype for future work. This

prototype helps the developer detect the clone of code that may affect software or

system performance. It is also easier for the software or system to maintain and

evolve without the code clone inside the code.

Another possible improvement is to locate the code clone detail. The

maintenance clone in which part of their code needs to be known. This

enhancement will help the programmer decide to make a code change that is

detected as a code clone. Otherwise, this improvement can make the generic code

detection tool prototype more functional, better, and can be a reference for other

code clone detection tools evolution.

The future work can be done in terms of interface by enhancing the

interface for this prototype. Some option at the top can be added. Also, a single

click button can automate the step for each process, but the result still shows the

same as before.

68

REFERENCES

Al-Fahim. (2015). Generic Code Clone Detection Model for Java Applications, (August).

Baker, B. S. (1995). On Finding Duplication and Near-Duplication in Large Software Systems.

Basit, H. A., Rajapakse, D. C., & Jarzabek, S. (2005). Beyond templates: a study of clones in

the STL and some general implications. Proceedings of the 27th International Conference

on Software Engineering, 451–459. https://doi.org/10.1145/1062455.1062537

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., & Bier, L. (1998). Clone detection using

abstract syntax trees. Proceedings. International Conference on Software Maintenance

(Cat. No. 98CB36272), 368–377. https://doi.org/10.1109/ICSM.1998.738528

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo, E. (2007). Comparison and

Evaluation of Clone Detection Tools, 33(9), 577–591.

Biegel, B., & Diehl, S. (2010). Highly configurable and extensible code clone detection. In

Proceedings - Working Conference on Reverse Engineering, WCRE (pp. 237–241).

https://doi.org/10.1109/WCRE.2010.34

Cordy, J. R., & Roy, C. K. (2011). The NiCad clone detector. In IEEE International Conference

on Program Comprehension (pp. 219–220). https://doi.org/10.1109/ICPC.2011.26

Dang, Y., Zhang, D., Ge, S., Huang, R., Chu, C., & Xie, T. (2017). Transferring code-clone

detection and analysis to practice. Proceedings - 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software Engineering in Practice Track, ICSE-

SEIP 2017, 53–62. https://doi.org/10.1109/ICSE-SEIP.2017.6

Duala-Ekoko, E., & Robillard, M. P. (2007). Tracking code clones in evolving software. In

Proceedings - International Conference on Software Engineering (pp. 158–167).

https://doi.org/10.1109/ICSE.2007.90

Duala-Ekoko, E., & Robillard, M. P. (2008). Clonetracker: Tool Support for Code Clone

Management. In Proceedings of the 13th international conference on Software

engineering - ICSE ’08 (p. 843). https://doi.org/10.1145/1368088.1368218

Giesecke, S. (2007). Generic modelling of code clones. Duplication, Redundancy, and

Similarity in Software, (06301), 1–23.

69

Göde, N., & Koschke, R. (2009). Incremental clone detection. In Proceedings of the European

Conference on Software Maintenance and Reengineering, CSMR (pp. 219–228).

https://doi.org/10.1109/CSMR.2009.20

Harder, J. (2013). The Limits of Clone Model Standardization, 10–11.

Higo, Y., & Ueda, Y. (2007). Simultaneous Modification Support based on Code Clone

Analysis, 262–269. https://doi.org/10.1109/ASPEC.2007.44

Jiang, L., Misherghi, G., & Su, Z. (2007). D ECKARD : Scalable and Accurate Tree-based

Detection of Code Clones ∗, (0520320).

Kamiya, T., Kusumoto, S., & Inoue, K. (2002a). CCFinder: A Multilinguistic Token-Based

Code Clone Detection System for Large Scale Source Code CCFinder: A Multilinguistic

Token-Base Code Clone Detection System for Large Scale Source Code. Ieee

Transactions on Software Engineering, 28(28), 654–670.

Kamiya, T., Kusumoto, S., & Inoue, K. (2002b). Review of CCFinder : A Multi-linguistic

Token-Based Code Clone Detection System for Large Scale Source Code, 28(7), 3.

Kapser, C. J., Harder, J., & Baxter, I. (2012). A common conceptual model for clone detection

results. 2012 6th International Workshop on Software Clones, IWSC 2012 - Proceedings,

72–73. https://doi.org/10.1109/IWSC.2012.6227870

Kodhai, E., & Kanmani, S. (2014). Method-level code clone detection through LWH (Light

Weight Hybrid) approach. Journal of Software Engineering Research and Development,

2(1), 12. https://doi.org/10.1186/s40411-014-0012-8

Komondoor, R., & Horwitz, S. (2001). Using Slicing to Identify Duplication in Source Code,

40–56. https://doi.org/10.1007/3-540-47764-0_3

Kontogiannis, K. A., Demori, R., Merlo, E., Galler, M., & Bernstein, M. (1996). Pattern

matching for clone and concept detection. Automated Software Engineering, 3(1–2), 77–

108. https://doi.org/10.1007/BF00126960

Krinke, J. (2001). Identifying similar code with program dependence graphs. Proceedings

Eighth Working Conference on Reverse Engineering, 301–309.

https://doi.org/10.1109/WCRE.2001.957835

70

Lavoie, T., Eilers-Smith, M., & Merlo, E. (2010). Challenging cloning related problems with

GPU-based algorithms. Proceedings of the 4th International Workshop on Software

Clones - IWSC ’10, 25–32. https://doi.org/10.1145/1808901.1808905

Liu, C., Chen, C., Han, J., & Yu, P. S. (2006). GPLAG: detection of software plagiarism by

program dependence graph analysis. Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 872–881.

https://doi.org/10.1145/1150402.1150522

Livieri, S., Higo, Y., Mazushita, M., & Inoue, K. (2007). Very-Large Code Clone Analysis and

Visualization of Open Source Programs Using Distributed CCFinder: D-CCFinder.

Proceedings of the 29th International Conference on Software Engineering (ICSE ’07).

Mayrand, Leblanc, & Merlo. (1996). Experiment on the automatic detection of function clones

in a software system using metrics. Proceedings of International Conference on Software

Maintenance ICSM-96, 244–253. https://doi.org/10.1109/ICSM.1996.565012

Morshed, M., Rahman, M., & Ahmed, S. (2012). A Literature Review of Code Clone Analysis

to Improve Software Maintenance Process. ArXiv Preprint ArXiv:1205.5615.

Nguyen, T. T., Nguyen, H. A., Pham, N. H., Al-Kofahi, J. M., & Nguyen, T. N. (2009).

ClemanX: Incremental clone detection tool for evolving software. 2009 31st International

Conference on Software Engineering - Companion Volume, ICSE 2009, 437–438.

https://doi.org/10.1109/ICSE-COMPANION.2009.5071050

Perumal, A., Kanmani, S., & Kodhai, E. (2010). Extracting the similarity in detected software

clones using metrics. 2010 International Conference on Computer and Communication

Technology, ICCCT-2010, 575–579. https://doi.org/10.1109/ICCCT.2010.5640465

Rattan, D., Bhatia, R., & Singh, M. (2013). Software clone detection: A systematic review.

Information and Software Technology (Vol. 55). Elsevier B.V.

https://doi.org/10.1016/j.infsof.2013.01.008

Roy, C. K., & Cordy, J. R. (2007). A Survey on Software Clone Detection Research. Queen’s

School of Computing TR, 115, 115. https://doi.org/10.1.1.62.7869

Sasaki, Y., Yamamoto, T., Hayase, Y., & Inoue, K. (2010). Finding file clones in FreeBSD

ports collection. Proceedings - International Conference on Software Engineering, 102–

105. https://doi.org/10.1109/MSR.2010.5463293

71

APPENDIX A

72

