Recent developments on (−)-colchicine derivatives: synthesis and structure-activity relationship

Abdullah A. Ghawanmeha, Hussein M. Al-Bajalanb, Mukram Mohamed Mackeenb,c, Feras Q. Alalid, Kwok Feng Chonga

a Faculty of Industrial Sciences \& Technology, Universiti Malaysia Pahang, Gambang, 26300, Kuantan, Pahang, Malaysia
b Chemistry Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
c Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
d Health Research and Graduate Office, Qatar University, 2713, Doha, Qatar

ABSTRACT

(−)-Colchicine, an anti-microtubulin polymerization agent, is a valuable medication and the drug of choice for gout, Behçet’s disease and familial Mediterranean fever. It has a narrow therapeutic index due to its high toxicity towards normal cells. Nonetheless, numerous (−)-colchicine derivatives have been synthesized and studied for their structure-activity relationship and preferential toxicity. Different functional groups such as amides, thioamides, N-arylurea and 8,12-diene cyclic have been incorporated into (−)-colchicine, resulting in derivatives (with moieties) that include electron-withdrawing and electron-donating groups. This review article focuses on recent developments in the chemical synthesis of (−)-colchicine derivatives, the substituents used, the functional groups linked to the substituents, the moieties and biological studies. Moreover, the current classification of derivatives based on the (−)-colchicine rings, namely ring A, B, and C (−)-colchicine derivatives, is discussed. This work demonstrates and summarizes the significance of (−)-colchicine derivatives in the biological field, and discusses their promising therapeutics for the future.

KEYWORDS
(−)-Colchicine; (−)-Colchicine derivatives; Structure-activity relationship
ACKNOWLEDGEMENTS
The authors would like to acknowledge the Doctoral Research Scheme (DRS) scholarship from Universiti Malaysia Pahang, Malaysia.