COLOUR TEXTURE IMAGE CLASSIFICATION USING COLOUR COMPLETED LOCAL BINARY PATTERN (CCLBP)

HUSSEIN ALI HASAN AL AIDAROS

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THES	DECLARATION OF THESIS AND COPYRIGHT						
Author's Full Name :							
Date of Birth :							
Title :							
Academic Session :							
I declare that this thesis is class	ssified as						
	since as.						
□ CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1997)*						
□ RESTRICTED	(Contains restricted information as specified by the						
☑ OPEN ACCESS	I agree that my thesis to be published as online open access						
	(Full Text)						
I acknowledge that Universiti	Malaysia Pahang reserves the following rights:						
1. The Thesis is the Property	of Universiti Malaysia Pahang						
2. The Library of Universiti N the purpose of research onl	Aalaysia Pahang has the right to make copies of the thesis for y.						
3. The Library has the right to	b make copies of the thesis for academic exchange.						
Certified by:							
(Student's Signature)	(Supervisor's Signature)						
(Sudent's Signature)	(Supervisor's Signature)						
Nou IC/Desenant Number	Name of Supervisor						
Date:	Date:						

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

THESIS DECLARATION LETTER (OPTIONAL)

Librarian, *Perpustakaan Universiti Malaysia Pahang*, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three (3) years from the date of this letter. The reasons for this classification are as listed below.

Author's Name
Thesis TitleReasons(i)(ii)(iii)

Thank you.

Yours faithfully,

(Supervisor's Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, *Perpustakaan Universiti Malaysia Pahang* with its copy attached to the thesis.

SUPERVISOR'S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the degree of *Doctor of Philosophy/ Master of Engineering/ Master of Science in

(Supervisor's Signature)								
Full Name	:							
Position	:							
Date	:							

(Co-supervisor's Signature)								
:								
:								
:								

COLOUR TEXTURE IMAGE CLASSIFICATION USING COLOUR COMPLETED LOCAL BINARY PATTERN (CCLBP)

HUSSEIN ALI HASAN AL AIDAROS

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Computer Science (Graphics & Multimedia Technology)

Faculty of Computer Systems and Software Engineering UNIVERSITI MALAYSIA PAHANG

MAY 2019

ACKNOWLEDGEMENTS

To begin with, I am grateful to Allah for the good health and wellbeing that were necessary to complete this project. I place on record, my sincere thank you to Prof. Dr. Kamal Zuhairi Zamli Dean of the Faculty, for the continues encouragement. I am also grateful to my supervisor Dr. Taha Hussein Rassem, I am extremely thankful and indebted to him for sharing expertise, and sincere and valuable guidance and encouragement extended to me. I take this opportunity to express gratitude to all the Department faculty members for their help and support. I also thank my parents for the unceasing encouragement, support and attention. I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lent their hand in this project.

ABSTRACT

Local Binary Pattern (LBP) descriptor is being used successfully for the classification of textures. Also, it is been used for other tasks such as facial expression, face recognition and texture segmentation. On the other hand, these descriptors are barely used for image categorization due to their calculations which are depend on the gray image and they are invariant to monotonic light variations on the gray level. Despite the key role in distinctive the objects of these descriptors, they ignore color information. In this project, Completed Local Binary Pattern (CLBP) will be enhanced and two colour CLBP descriptors are proposed which RGB_CCLBP and HSV_CCLBP. Moreover, the datasets that have been used in this project are KTH-TIPS, KTH-TIPS 2A and Outex_TC_00013 datasets. The proposed method shows promising results despite the limitations of it.

TABLE OF CONTENT

DECI	LARATION	
TITL	E PAGE	
ACK	NOWLEDGEMENTS	ii
ABST	TRACT	iii
TABI	LE OF CONTENT	iv
CHA	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem statement	2
1.3	Objectives	3
1. Err	or! Bookmark not defined. Scope	3
1.5	Thesis Organization	3
CHA	PTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Preview On Previous Texture Descriptors	6
	2.2.1 Local Binary Pattern (LBP)	6
	2.2.2 Local Ternary Pattern (LTP)	8
	2.2.3 Compound Local Binary Pattern (CLBP)	9
2.3	Comparison of different texture descriptors	11
CHA	PTER 3 METHODOLOGY	12
3.1	Introduction	12
3.2	Colour texture image classification system processes	12

Trans	3.2.1 Model Analysis for Illumination Changes and Photometric formations	13				
	3.2.1.1 RGB_CCLBP	14				
	3.2.1.2 HSV_CCLBP	15				
	3.2.2 Mathematical Models of CCLBP	16				
3.3	Datasets	17				
	3.3.1 KTH-TIPS Dataset	18				
	3.3.2 KTH-TIPS 2A Dataset	18				
	3.3.3 Outex_TC_00013 Dataset	18				
3.4	Software and Hardware Requirements	19				
CHAPTER 4 RESULTS AND DISCUSSION 21						
4.1	Introduction	21				
4.2 Experimental Results of RGB CCLBP descriptor 2						
4.2.1	Implementation	21				
4.2.2	Results	22				
4.3	Experimental Results of HSV CCLBP descriptor	26				
4.3.1	Implementation	26				
4.3.2	Results	27				
4.4	Summary	31				
CHA	PTER 5 CONCLUSION	33				
5.1	Introduction	33				
5.2	Overall System Research Summarization	33				

v

REFEI	RENCES	36
5.5	Summary	35
5.4	Future Work	35
5.3	Research Constraints/Limitations	34

CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays, texture features are spirited in many applications such as face recognition, finger detection, human detectors, object recognition and image retrieval. In addition, many of textures feature algorithms were identified by pervious literature for robust and distinctive texture features. The classification of the texture feature algorithm methods is categorised into three categories which are model-based method, statistical method and structural method.

The difference between the grey level of centre pixel of a specific local pattern and its neighbours are calculated to a histogram that is represent image texture. Then, the absolute difference was used for constructing Local Binary Pattern (LBP) descriptor. By the ability to distinguish the microstructures of an image, LBP became an interesting research topic used by many of the computer vision researchers. Also, LBP used for rotation invariant texture classification and extended for face recognition and image retrieval applications (García-Olalla, Alegre, Barreiro, Fernández-Robles, & García-Ordás, 2015).

LBP has two steps which are thresholding and encoding steps. The values of the neighbouring pixels are converted into binary values (0 or 1) by comparing value of central pixel with value of all neighbouring pixel. Then, to describe a structural pattern, encoding step converts the binary values into decimal numbers. Moreover, many LBP

variants have been proposed to increase the discriminating property for the extraction process of the texture feature. There are six variants included in LBP which are Dominant LBP (DLBP), Completed Modelling of LBP (CLBP), Center-Symmetric Local Binary Pattern (CS-LBP), Local Ternary Pattern (LTP), Completed Ternary Pattern (CLTP) and Local Orientation Adaptive Descriptor (LOAD)(Zhao, Jia, Hu, & Min, 2013).

All the previous texture descriptors are used the intensity value to be extracted. They are totally ignored any colour information. All the above descriptors proposed based on the gray values only and it is difficult to use it for any color image task. Some results are used these descriptors in their system after converting the color image to the gray image(Guo, Zhang, & Zhang, 2010).

1.2 Problem Statement

Most of the local texture descriptors had been shown good performance for many of image processing tasks. However, most of them only focused on the intensity values of the images and totally ignored the colour information even if the image is a color image. In the color image classification using normal texture descriptors, they just converted the image from color to gray and then extract the texture descriptor. While, the color is one of the important information in the image. Considering the color information may led to improve the accuracy of the classification or recognition that lead to high and good results. Moreover, there are different color models and each model has its advantage and disadvantage. Use different color models to extract different color texture descriptor instead of gray texture descriptor may help to improve the performance of the texture descriptor.

1.3 Objectives

- i. To study and investigate different texture local pattern features
- ii. To study and apply different color local texture pattern descriptors for color texture classification
- iii. To evaluate the performance of different color local texture pattern descriptors for color texture classification

1.4 Scope

- i. This research will focus in colour texture image classification.
- Only three existing colour texture datasets are used. These are KTH-TIPS, KTH-TIPS 2A and Outex_TC_00013.

1.5 Thesis Organization

This thesis consists of five chapters and each chapter discuss different issues in the system. Below is the summary for all the chapters in the thesis:

Chapter 1 is an introduction which contains problem statement, objectives and scope of this research.

Chapter 2 is literature review which reviews three previous texture descriptors.

Chapter 3 is a methodology which explains the methodology that is implemented in the development of the system. Also, hardware and software that used in the system will be discussed.

Chapter 4 is about the implementation of the CCLBP method and discussion about the results.

Chapter 5 is about the conclusion and overall summary of the research that has been performed.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter contains information that is related to colour images classification system. Texture classification may involve various algorithms to use in the system to make the system have a high accuracy result from the texture pattern feature descriptor chosen. Before implement the feature extraction, a radius size is assigned to carry out the feature extraction process. The radiuses size can have many sets, the most common set which is (1, 8), (2, 16) and (3, 24), all these radius sizes can come out with a set of different result as show as Figure 2.1. Moreover, there are a few of texture pattern feature descriptor that are used in texture image classification. This project finding classification techniques that have a high accuracy for texture classification among the three texture local pattern features comes into the role play of the feature extraction stage which are Local Binary Pattern (LBP), Local Ternary Pattern (LTP), Compound Local Binary Pattern (CLBP).

Figure 2.1: Radius sizes illustration.

2.2 PREVIEWS ON PERVIOUS TEXTURE DESCRIPTORS

2.2.1 LOCAL BINARY PATTERN (LBP)

Local Binary pattern was presented by Ojala et al. in 1996. The LBP is an effective device to portray the neighborhood gray-level attributes of a surface composition. LBP surface operator has turned into a popular methodology in different applications. It can classify to deal with the generally different factual and auxiliary models of texture investigation.

The LBP has the capable to extract the uniform pattern by extract the data information of the image to be more precise in each image pixel. That makes the LBP to be efficient for arranging the neighbourhood spatial structure of a picture.

The LBP features descriptors were improved to utilize neighbourhoods of various sizes (Ojala et al., 2002). By using a roundabout neighbourhood introducing values at non-whole number pixel organizes permit any sweep and pixels in the area. Below showing the notation of P (neighbourhood) & R (radius) must be utilized for pixel neighbourhoods which imply P focus on a roundabout radius of R.

Moreover, Local Binary Pattern is a very simple texture features that use for image processing by convert the image pixel using the thresholding to the neighbourhood of each pixel and compare it with the value of the central pixel and comes out a result as binary number following by decimal number.

In this situation, p keeps running over the roundabout of the 8 neighbours of the centre pixel c. So, i_c and i_p are the gray scale value at c and p, the value of and s(x) which is the roundabout value of the 8 neighbours will be 1 if $u \ge 0$ and 0 generally. After that multiply the binary code with the power of 2 and add together to get the decimal code which is the LBP code.

The code of LBP is computed by utilizing equation below.

$$s(x) = \begin{cases} 1, x \ge 0\\ 0, x < 0 \end{cases}$$

This is one of the imperative perceptions since it decreases the dimensionality in the technique in view LBP histogram. Besides that, most of the facial districts comprise of uniform areas. Consequently, by utilizing LBP on them might diminish robustness.

2.2.2 LOCAL TERNARY PATTERN (LTP)

In a way to enhance the robustness of neighbourhood code, the Local Binary Pattern (LBP) texture descriptors are supplanted by a Local Ternary Pattern (LTP) texture features.

In LTP, the user can set the number of the threshold (Tan, X. and Triggs, B. 2010). This might make the LTP code to be more impervious to noise; however, the changes of gray -level will no more be will be no more be entirely invariant.

The pixel contrasts between the neighbouring pixels and the inside pixel has been encoded by LTP. This process can be done by compare the different of the middle pixel and P neighbours on a circle of span R. Below is the equation that computes the code of LTP.

$$LTP_{P,R} = \sum_{P=0}^{P-1} 2^{P} s(i_{p} - i_{c})$$

LPT make the different state of threshold pixel three value which is to 0 or 1 or -1 by add the threshold number and subtract the threshold number to an upper and lower set pixel. While the function of the threshold is coming into the value of s(x). By put the value of threshold function to s(x) = 1 if $x \ge 0$; s(x) = 0 if -t < x < t; s(x) = -1 if x < -t. As given in mathematical statement below.

$$s(x) = \begin{cases} 1, & x \ge t, \\ 0, & -t < x < t, \\ -1, & x \le -t \end{cases}$$

A case of LTP is showing below, user specified threshold number is 5, so the central pixel wills added 5 to become an upper pattern and subtract 5 to become a lower pattern the encoding method of LTP is represented in Figure 2.5 (Rassem, T. H. and Khoo, B. E. 2014).

Figure 2.2: LTP encoding method.

2.2.3 COMPOUND LOCAL BINARY PATTERN (CLBP)

The feature extraction of algorithm Complete Local Binary Pattern (CLBP) is a summed-up form of LBP which is presented by Z. Guo et al. The CLBP also become the very successful texture pattern extraction features. CLBP has divided into three different parts which are CLBP_S, CLBP_M and CLBP_C. The part of CLBP_S is showing the different sign between the middle pixel and neighbourhood pixel in positive or negative value. While CLBP_M is showing the compare and different the magnitude of the inside pixel and neighbourhood pixel (Ahmed, F et al. 2011). Last, is the CLBP_C which demonstrates the distinction between neighbourhood pixel value and the mean of all the gray level in the image.

The first components of CLBP_S, it is only ordinary of LBP. There is no different between CLBP_S and LBP, so they share the almost same equation showing in below.

$$CLBP_S_{P,R} = \sum\nolimits_{P=0}^{P-1} 2^{P} s (i_{p} - i_{c}), \qquad s_{p} = \begin{cases} 1, \ i_{p} \geq i_{c} \\ 0, \ i_{p} < i_{c} \end{cases}$$

The following component is CLBP_M which are of proceeds with qualities rather than binary which is "1" and '0', so it cannot be specifically easily to extract as same as of CLBP_S. Therefore, the neighbourhood's pixel will change to 1 if the difference between the middle pixel and the relating neighbourhood pixel is more than the threshold mean of magnitude. Else, it will change to 0. CLBP_M is ascertained as same as CLBP_S but it manages the distinction of the magnitude.

$$CLBP_M_{P,R} = \sum_{P=0}^{P-1} 2^{P} t(m_p - c), t(m_p, c) = \begin{cases} 1, & |i_p - i_c| \ge c \\ 0, & |i_p - i_c| < c \end{cases}$$

There is i_c given to a middle pixel, and P uniformly dispersed neighbours which isi_p, p = [0, P-1], the distinction between i_c and i_p can be computed by $i_p - i_c$. The c is the threshold value for determine the mean value m_p from the whole image. The s_p is utilized to construct the CLBP-Sign (CLBP S), though the m_p is utilized to fabricate CLBP-Magnitude (CLBP M). So, here are the calculation of the sign component s_p = $s(i_p - i_c)$, while magnitude component $m_p = |i_p - i_c|$ as appeared in Figure 2.6 (Ahsan et al. 2013).

11	13	36	-11	-9	14	0	0	1		11	9	14	0	0	0
28	22	10	6		-12	1		0		6		12	0		0
74	66	46	52	44	24	1	1	1		52	44	24	1	1	1
3*3 sample block		Local	differ	ences	 con	Sign npon	ents	ı	Ma con	ignitu 1pone	de ents	 Final 1 com	magni	itude nts	

Figure 2.3: Sign components and magnitude components differences.

2.3 Comparison of different texture descriptors

	Proposed	Proposed	disadvantages	Used for
	by	year		colour texture
				image
				classification
LBP	Ojala et	1994	Small spatial area of support, noise	No
	al.		sensitivity derives a huge variation.	
LTP	X. Tan	2007	Not invariant under grey-scale transform of	No
	and B.		intensity values as its encoding is based on	
	Triggs		a fixed predefined thresholding.	
CLBP	Guo et	2010	The CLBP pattern has the same problem as	No
	al.		of traditional LBP, sensitive to noise as the	
			value of the centre pixel is directly used as	
			a threshold.	

Table 2.1: Comparison of different texture descriptors.

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, methods that used for processing the colour texture images to build classification system are explained. The proposed Completed LBP (CLBP) compares both the sign and the magnitude of the pattern's central grey level value with its neighbours and combines them with all central values of the patterns. By combining sign difference, magnitude difference and threshold of central grey values of the patterns in different way three CLBP operators are constructed which are CLBP_S, CLBP_M and CLBP_C. These three operators are calculated based on two different colour spaces RGB and HSV. Then to construct the final CLBP descriptor the previous descriptors are combined. Then, Evaluate and analyse the performance of the proposed CCLBP descriptor for experimental image classification (Zhao et al., 2013).

3.2 Colour texture image classification system processes

To build colour texture image classification system using colour completed local binary pattern method these processes that are shown in figure 3.1 and explained in the subtopics below are needed:

Figure 3.1: Flowchart of the colour texture image classification system.

3.2.1 Model Analysis for Illumination Changes and Photometric Transformations

Diagonal model and diagonal-offset model used to analyse the photometric transformations and the illumination changes of the proposed CCLBP method. Equation

3.1 expresses the diagonal model while Equation 3.2 expresses the diagonal-offset model (Rassem, Mohammed, Khoo, & Makbol, 2015).

$$\begin{pmatrix} R^c \\ G^c \\ B^c \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} R^c \\ G^c \\ B^c \end{pmatrix}$$

Equation 3.1: The diagonal model.

$$\begin{pmatrix} R^c \\ G^c \\ B^c \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} R^c \\ G^c \\ B^c \end{pmatrix} + \begin{pmatrix} o_1 \\ o_2 \\ o_3 \end{pmatrix}$$

Equation 3.2: The diagonal-offset model.

When it comes to use these two models five different changes are identified to examine colour SIFT descriptors which are light intensity variations, light intensity shifts, light intensity variations and shifts, light colour variations and light colour variations and shifts. Light intensity change is expressed from Equation 3.1 and by a constant factor; i.e., a = b = c, all image values are changed. Moreover, by equal offset value (shift value) the image values are changed in the light intensity shift and the descriptor is shift invariant when the invariant is to the light intensity shifts. Furthermore, image values change by the previous two types of changes. Finally, image values in each channel are independently changed in the light colour variations and light colour variations and shifts models as Equations 3.1 expresses. While Equation 3.2 expresses the image values in each channel that are independently changed and shifted (Park et al., 2016).

3.2.1.1 RGB_CCLBP

By independently computing CLBP in the all three channels of RGB's colour space and connecting the results together, the RGB_CCLBP operators are obtained. It is same with original LBP, RGB_CCLBP has no more invariant properties and it is invariant to monotonic light intensity change.

3.2.1.2 HSV_CCLBP

By independently computing CLBP in the all three channels of HSV's colour space and connecting the results together, the HSV_CCLBP operators are obtained. In addition, it has been proved that in HSV colour space the (Hue) colour model has invariant property against the light intensity changes and shifts. On the other hand, HSV_CCLBP has no invariant properties because of the combination of Hue with the remaining information (Phakade, Flora, Malashree, & Rashmi, 2014). The follow equations show how to convert RGB to HSV colour space:

Changing the range of the colour space from 0 to 255 to 0 to 1:

R' = R/255 G' = G/255 B' = B/255 Cmax = max(R', G', B') Cmin = min(R', G', B') $\Delta = Cmax - Cmin$

$$H = \begin{cases} 0^{\circ} \Delta = 0\\ 60^{\circ} \times \left(\frac{G' - B'}{\Delta} \mod 6\right), C_{max} = R'\\ 60^{\circ} \times \left(\frac{B' - R'}{\Delta} + 2\right), C_{max} = G'\\ 60^{\circ} \times \left(\frac{R' - G'}{\Delta} + 4\right), C_{max} = B' \end{cases}$$

Equation 3.3: Calculate hue.

$$S = \begin{cases} 0, & C_{Max} = 0\\ \frac{\Delta}{C_{Max}}, & C_{Max} \neq 0 \end{cases}$$

Equation 3.4: Calculate saturation.

3.2.2 Mathematical Models of CCLBP

In order to calculate CCLBP operators in each channel these formulas are used:

$$(CCLBP_S_{P,R})^{C1} = \sum_{p=0}^{P-1} 2^p s(i_p - i_c), \ s_p = \begin{cases} 1, \ i_p \ge i_c, \\ 0, \ i_p < i_c, \end{cases}$$

Equation 3.5: Calculate CCLBP_S for the first channel of the colour space.

$$(CCLBP_S_{P,R})^{C2} = \sum_{p=0}^{P-1} 2^p s(i_p - i_c), \ s_p = \begin{cases} 1, \ i_p \ge i_c, \\ 0, \ i_p < i_c, \end{cases}$$

Equation 3.6: Calculate CCLBP_S for the second channel of the colour space.

$$(CCLBP_S_{P,R})^{C3} = \sum_{p=0}^{P-1} 2^p s(i_p - i_c), \ s_p = \begin{cases} 1, \ i_p \ge i_c, \\ 0, \ i_p < i_c, \end{cases}$$

Equation 3.7: Calculate CCLBP_S for the third channel of the colour space.

Where C1, C2 and C3 represent the colour space channels. Also, in order to calculate the final CCLBP_S and the CCLBP_M the following formulas are used:

$$CCLBP_S_{P,R} = \left[(CLBP_S_{P,R})^{C1} (CLBP_S_{P,R})^{C2} (CLBP_S_{P,R})^{C3} \right]$$

Equation 3.8: The formula for calculating CCLBP_S.

$$CCLBP_{M_{P,R}} = \left[(CLBP_{M_{P,R}})^{C1} (CLBP_{M_{P,R}})^{C2} (CLBP_{M_{P,R}})^{C3} \right]$$

Equation 3.9: The formula for calculating CCLBP_M.

Finally, for each colour channel, CCLBP_S, CCLBP_M and CCLBP_C are jointly or hybridized combined in order to construct the remaining operators and the concatenation of all colour channel operators gives the final CCLBP operators (Rassem et al., 2015).

3.3 Datasets

The datasets used for this research are described as follow:

3.3.1 KTH-TIPS dataset:

This dataset consists of 10 classes categorised as follow (aluminium_foil, brown_bread, corduroy, cotton, Etc) and each class has a total of 81 texture images which has the size of 200x200. The total texture images in this dataset is 810 images (Lan & Zhou, 2016).

Figure 3.1: Texture image examples from KTH-TIPS dataset.

3.3.2 KTH-TIPS 2A dataset:

This dataset consists of 11 classes categorised as follow (linen, white_bread, wood, wool, Etc) and each class contains 432 texture images which has the size of 200x200. Also, this dataset contains a total of 4752 texture images (Liu et al., 2019).

Figure 3.2: Texture image examples from KTH-TIPS 2A dataset.

3.3.3 Outex_TC_00013 dataset:

This dataset consists of 68 classes and each class has 20 texture images which has the size of 128x128 and the total number of images in this dataset is 1360 texture images (Kalakech, Porebski, Vandenbroucke, & Hamad, 2018).

Figure 3.3: Texture image examples from Outex_TC_00013 datasets.

3.4 Software and Hardware requirements

3.4.1 Software Requirements

Table 3.1: Software Requirements.

SOFTWARE	DESCRIPTION
Microsoft Word 2016	Used for preparing documentation
Microsoft PowerPoint 2016	Used for preparing presentation slides
Microsoft Windows 10	A platform that runs the computer
Microsoft Visio	Used to create the Flowchart
MATLAB	Programming software used to develop
	the Colour texture image classification system
Google Chrome	Web browser used to access the internet
	and for searching for information that related
	to this research

3.4.2 Hardware Requirements

HARDWARE	DESCRIPTION
Laptop Computer	 This hardware used for the development and implementation of the system Used for writing and preparing all the documents
Printer	Used for printing out the documentation

Table 3.2: Hardware Requirements.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, there will be a description of the implementation process of the proposed method and discussion of the results obtained by the proposed method.

4.2 Experimental results of RGB CCLBP descriptor

4.2.1 Implementation

After reading all the images from the datasets, figure 4.1 shows the method of converting the images into RGB colour space. Then, histogram of CLBP_S, CLBP_M and CLBP_C will be generated. After that, Splits method in MATLAB will get the picture ID and class ID of the training and test samples as shown in figure 4.2. Finally, classification process will be done by classification test using CLBP_S, CLBP_M and CLBP_C and combining them together.

```
For i=1:ClassNum;
ims = dir(fullfile(rootpic, classes{i}, '*.png'))';
ims = cellfun(@(x)fullfile(classes{i},x), {ims.name}, 'UniformOutput', false);
for j=1:length(ims)
filename = sprintf('%s%s', rootpic, ims{j})
picCount = picCount+1;
RGB = imread(filename);
if size(RGB,3) == 1, RGB = cat(3, RGB, RGB, RGB); end
```

Figure 4.1: Converting the images to RGB colour space.

```
col=1;
BiggestNumPicPerClass = 20;

for Auto= 1 : 8

splits =[2 5 7 10 12 15 17 19];

TrainNumPerClass = splits(Auto);
numTrain = splits(Auto);
numTrain = splits(Auto);
numTest=BiggestNumPicPerClass - numTrain ;
```

Figure 4.2: Splits method in Matlab for getting the picture ID and class ID of the training and test samples.

4.2.2 Results

Tables 4.1, 4.2 and 4.3 show the results of the proposed method using KTH-TIPS dataset using Splits = $[30 \ 40 \ 50 \ 60]$ and values of R = (1, 2, 3) and P = (8, 16, 24). And it shows that the highest percentage is 96.20% when Splits= 60 and values of R=1 and P=8.

	Splits= 30	Splits= 40	Splits= 50	Splits= 60
CCLBP_S	53.686	55.453	56.370	60.100
CCLBP_M	69.635	71.165	72.667	72.500
CCLBP_M/C	89.007	90.904	91.774	93.500
CCLBP_S_M/C	90.288	91.902	93.432	96.200
CLBP_S/M	81.474	84.104	85.758	88.900
CLBP_S/M/C	91.033	92.782	94.04	96.100

Table 4.1: Results of CCLBP descriptor using KTH-TIPS dataset based on RGB (R=1, P=8).

Table 4.2: Results of CCLBP descriptor using KTH-TIPS dataset based on RGB (R=2, P=16).

	Splits= 30	Splits= 40	Splits= 50	Splits= 60
CLBP_S	47.433	48.136	48.825	49.500
CLBP_M	67.049	69.346	70.903	72.371
CLBP_M/C	87.847	89.904	91.112	92.095
CLBP_S_M/C	90.452	92.248	93.325	93.957
CLBP_S/M	85.943	88.058	89.780	90.938
CLBP_S/M/C	90.449	91.843	92.993	93.804

Table 4.3: Results of CCLBP descriptor using KTH-TIPS dataset based on RGB (R=3, P=24).

	Splits= 30	Splits= 40	Splits= 50	Splits= 60
CLBP_S	40.009	41.214	41.841	41.704
CLBP_M	60.176	61.660	62.58	63.623
CLBP_M/C	84.221	86.382	88.048	88.690
CLBP_S_M/C	87.443	88.934	90.196	90.952
CLBP_S/M	81.3568	83.734	85.535	86.461
CLBP_S/M/C	88.396	90.0487	90.932	92.276

Tables 4.4, 4.5 and 4.6 show the results of the proposed method using KTH-TIPS 2A dataset using Splits = $[100 \ 180 \ 260 \ 340]$ and values of R = (1, 2, 3) and P = (8, 16, 24). And it shows that the highest percentage is 95.00% when Splits= 340 and values of R=1 and P=8.

1-0).								
	Splits= 100	Splits= 180	Splits= 260	Splits=340				
CLBP_S	43.587	44.341	44.767	44.904				
CLBP_M	54.398	56.168	57.056	57.210				
CLBP_M/C	86.295	89.947	91.659	92.935				
CLBP_S_M/C	87.860	91.226	93.004	94.019				
CLBP_S/M	77.581	81.704	83.726	85.435				
CLBP_S/M/C	89.025	92.455	94.133	95.004				

Table 4.4: Results of CCLBP descriptor using KTH-TIPS 2A dataset based on RGB (R=1, P=8).

Table 4.5: Results of CCLBP descriptor using KTH-TIPS 2A dataset based on RGB (R=2, P=16).

	Splits= 100	Splits= 180	Splits= 260	Splits= 340
CLBP_S	32.199	32.817	32.812	32.682
CLBP_M	52.007	54.189	55.129	55.406
CLBP_M/C	84.279	87.875	89.933	91.006
CLBP_S_M/C	86.502	89.856	91.589	92.864
CLBP_S/M	80.811	85.363	87.811	89.506
CLBP_S/M/C	87.942	91.455	93.122	94.350

//							
	Splits= 100	Splits= 180	Splits= 260	Splits= 340			
CLBP_S	27.780	28.447	28.823	28.633			
CLBP_M	47.895	49.533	50.105	50.360			
CLBP_M/C	80.999	84.952	87.206	88.745			
CLBP_S_M/C	84.286	88.011	90.105	91.296			
CLBP_S/M	78.387	82.914	85.243	87.077			
CLBP_S/M/C	86.006	89.608	91.490	92.745			

Table 4.6: Results of CCLBP descriptor using KTH-TIPS 2A dataset based on RGB (R=3, P=24).

Tables 4.7, 4.8 and 4.9 show the results of the proposed method using Outex_TC_00013 dataset using Splits = [2 5 7 10 12 15 17 19] and values of R = (1, 2, 3) and P = (8, 16, 24). And it shows that the highest percentage is 79.32% when Splits= 19 and values of R=1 and P=8.

Table 4.7: Results of CCLBP descriptor using Outex_TC_00013 dataset based on RGB (R=1, P=8).

	Splits							
	= 2	= 5	= 7	= 10	= 12	= 15	= 17	= 19
CLBP_S	14.264	17.042	17.624	18.752	19.003	19.644	20.177	20.165
CLBP_M	23.591	27.026	28.064	30.320	30.896	31.991	32.543	32.985
CLBP_M/C	60.568	65.600	68.505	70.944	72.366	73.129	72.984	73.838
CLBP_S_M/C	64.347	66.480	70.452	72.195	73.913	74.373	74.561	74.632
CLBP_S/M	52.943	58.263	62.911	64.847	67.052	67.902	69.875	70.000
CLBP_S/M/C	65.638	67.514	72.095	73.264	74.355	74.941	78.526	79.321

	Splits							
	= 2	= 5	= 7	= 10	= 12	= 15	= 17	= 19
CLBP_S	14.625	18.357	17.513	18.827	18.991	19.783	20.652	21.579
CLBP_M	20.557	27.238	27.953	30.468	30.997	30.880	33.467	33.306
CLBP_M/C	61.018	66.366	67.494	71.290	71.259	72.018	72.504	72.566
CLBP_S_M/C	62.907	67.159	69.341	73.361	72.802	73.268	73.450	73.450
CLBP_S/M	51.443	57.058	60.400	63.736	66.941	66.891	68.764	79.499
CLBP_S/M/C	61.582	69.351	71.865	74.031	75.174	76.062	76.621	77.460

Table 4.8: Results of CCLBP descriptor using Outex_TC_00013 dataset based on RGB (R=2, P=16).

Table 4.9: Results of CCLBP descriptor using Outex_TC_00013 dataset based on RGB (R=3, P=24).

	Splits							
	= 2	= 5	= 7	= 10	= 12	= 15	= 17	= 19
CLBP_S	13.763	17.825	16.687	17.999	18.068	20.168	20.544	20.751
CLBP_M	18.828	25.357	26.681	29.862	30.596	29.473	32.811	33.772
CLBP_M/C	60.900	65.982	66.682	70.746	70.679	71.876	71.997	71.896
CLBP_S_M/C	60.836	66.645	68.156	72.952	71.862	72.877	72.439	73.009
CLBP_S/M	50.262	55.830	59.573	62.822	65.637	65.919	67.354	70.355
CLBP_S/M/C	60.980	68.333	70.915	72.840	73.823	74.714	75.424	75.630

4.3 Experimental results of HSV CCLBP descriptor

4.3.1 Implementation

After reading all the images from the datasets, figure 4.3 shows the method of converting the images into HSV colour space by converting the images from RGB to HSV. Then, histogram of CLBP_S, CLBP_M and CLBP_C will be generated. After

that, Splits method in MATLAB will get the picture ID and class ID of the training and test samples as same step in 4.2.1. Finally, classification process will be done by classification test using CLBP_S, CLBP_M and CLBP_C and combining them together.

```
for i=1:ClassNum;
ims = dir(fullfile(rootpic, classes{i}, '*.png'))';
ims = cellfun(@(x)fullfile(classes{i},x), {ims.name}, 'UniformOutput', false);
for j=1:length(ims)
filename = sprintf('%s%s',rootpic,ims{j})
picCount = picCount+1;
RGB = imread(filename);
if size(RGB,3) == 1, RGB = cat(3, RGB, RGB, RGB); end
HSV = rgb2hsv(RGB);
```

Figure 4.3: Converting the images to HSV colour space.

4.3.2 Results

Tables 4.10, 4.11 and 4.12 shows the results of the proposed method using KTH-TIPS dataset using Splits = $[30 \ 40 \ 50 \ 60]$ and values of R = (1, 2, 3) and P = (8, 16, 24). And it shows that the highest percentage is 97.95% when Splits= 60 and values of R=2 and P=16.

Table 4.10: Results of CCLBP descriptor using KTH-TIPS dataset based on HSV (R=1, P=8).

	Splits= 30	Splits= 40	Splits= 50	Splits= 60			
CCLBP_S	54.074	54.870	55.016	55.828			
CCLBP_M	56.727	57.892	58.932	59.247			
CCLBP_M/C	93.615	94.719	95.783	96.276			
CCLBP_S_M/C	93.694	94.841	95.461	96.061			
CLBP_S/M	88.233	90.090	91.432	92.295			
CLBP_S/M/C	94.456	95.560	96.364	96.790			

	Splits= 30	Splits= 40	Splits= 50	Splits= 60
CCLBP_S	36.794	37.217	37.332	37.004
CCLBP_M	48.480	50.239	51.293	52.204
CCLBP_M/C	94.013	95.192	95.667	96.152
CCLBP_S_M/C	94.221	95.439	96.454	96.728
CLBP_S/M	91.001	92.831	94.170	94.876
CLBP_S/M/C	95.717	96.743	97.541	97.947

Table 4.11: Results of CCLBP descriptor using KTH-TIPS dataset based on HSV (R=2, P=16).

Table 4.12: Results of CCLBP descriptor using KTH-TIPS dataset based on HSV (R=3, P=24).

	Splits= 30	Splits= 40	Splits= 50	Splits= 60
CCLBP_S	34.258	34.363	34.196	34.214
CCLBP_M	47.709	49.063	50.619	51.204
CCLBP_M/C	92.211	93.695	94.603	95.123
CCLBP_S_M/C	92.741	94.497	95.087	95.909
CLBP_S/M	88.252	89.563	91.048	91.528
CLBP_S/M/C	93.968	95.192	96.070	96.576

Tables 4.13, 4.14 and 4.15 shows the results of the proposed method using KTH-TIPS 2A dataset using Splits = $[100\ 180\ 260\ 340]$ and values of R = (1, 2, 3) and P = (8, 16, 24). And it shows that the highest percentage is 97.37% when Splits= 340 and values of R=3 and P=24.

	Splits= 100	Splits= 180	Splits= 260	Splits= 340				
CCLBP_S	53.309	53.905	54.450	55.159				
CCLBP_M	55.063	56.098	58.076	58.579				
CCLBP_M/C	92.948	93.069	95.207	95.609				
CCLBP_S_M/C	92.928	93.095	94.906	95.394				
CLBP_S/M	87.787	89.407	90.876	91.608				
CLBP_S/M/C	93.620	95.383	95.851	96.074				

Table 4.13: Results of CCLBP descriptor using KTH-TIPS 2A dataset based on HSV (R=1, P=8).

 Table 4.14: Results of CCLBP descriptor using KTH-TIPS 2A dataset based on HSV (R=2, P=16).

	Splits= 100	Splits= 180	Splits= 260	Splits= 340
CCLBP_S	53.642	54.268	54.783	55.390
CCLBP_M	55.396	56.500	58.409	58.912
CCLBP_M/C	93.282	93.402	95.560	95.942
CCLBP_S_M/C	93.261	93.428	95.239	95.727
CLBP_S/M	88.199	89.740	91.209	91.941
CLBP_S/M/C	93.411	95.788	97.144	97.302

Table 4.15: Results of CCLBP descriptor using KTH-TIPS 2A dataset based on HSV (R=3, P=24).

	Splits= 100	Splits= 180	Splits= 260	Splits= 340
CCLBP_S	53.420	53.035	54.450	55.053
CCLBP_M	55.174	55.000	58.136	58.531
CCLBP_M/C	93.060	93.000	95.203	95.601
CCLBP_S_M/C	93.030	93.005	94.106	95.314
CLBP_S/M	87.077	89.500	90.436	91.602
CLBP_S/M/C	92.934	96.210	96.954	97.368

Tables 4.16, 4.17 and 4.18 shows the results of the proposed method using Outex_TC_00013 dataset using Splits = [2 5 7 10 12 15 17 19] and values of R = (1, 2, 3) and P = (8, 16, 24). And it shows that the highest percentage is 78.91% when Splits= 19 and values of R=3 and P=24.

(K=1, P=ð).								
	Splits							
	= 2	= 5	= 7	= 10	= 12	= 15	= 17	= 19
CLBP_S	15.698	18.365	18.466	19.147	20.951	20.153	21.488	21.904
CLBP_M	24.983	28.364	29.990	31.333	31.369	32.157	33.366	35.311
CLBP_M/C	60.963	66.324	69.347	71.982	73.852	74.953	73.458	74.189
CLBP_S_M/C	61.983	67.638	71.955	73.697	74.741	75.513	75.698	75.325
CLBP_S/M	50.862	59.225	70.344	65.669	68.963	68.624	70.551	71.934
CLBP_S/M/C	58.744	69.200	72.701	75.480	76.865	77.752	78.844	78.790

Table 4.16: Results of CCLBP descriptor using Outex_TC_00013 dataset based on HSV (R=1, P=8).

Table 4.17: Results of CCLBP descriptor using Outex_TC_00013 dataset based on HSV (R=2, P=16).

	Splits							
	= 2	= 5	= 7	= 10	= 12	= 15	= 17	= 19
CLBP_S	14.888	17.090	17.753	18.547	18.805	18.679	18.950	18.602
CLBP_M	17.544	20.873	22.042	23.182	23.737	24.600	24.941	24.926
CLBP_M/C	59.087	69.087	71.950	74.485	75.772	76.935	77.156	77.764
CLBP_S_M/C	59.638	70.154	73.049	75.680	76.485	77.814	77.789	78.897
CLBP_S/M	51.517	63.083	67.022	70.310	72.130	73.876	74.750	75.926
CLBP_S/M/C	58.017	69.283	72.354	74.845	76.279	77.382	77.514	78.529

	Splits							
	= 2	= 5	= 7	= 10	= 12	= 15	= 17	= 19
CLBP_S	11.112	12.442	12.714	12.923	13.064	13.097	13.318	13.029
CLBP_M	18.598	22.298	23.736	25.135	25.770	27.108	27.343	28.323
CLBP_M/C	60.133	69.676	72.414	74.670	76.128	76.820	77.421	77.411
CLBP_S_M/C	60.702	70.527	73.522	75.519	76.584	77.441	78.112	78.455
CLBP_S/M	52.357	64.082	67.995	71.554	72.810	74.917	76.387	76.897
CLBP_S/M/C	59.649	69.656	72.760	75.383	76.477	77.858	78.519	78.911

Table 4.18: Results of CCLBP descriptor using Outex_TC_00013 dataset based on HSV (R=3, P=24).

4.4 Summary

To sum up, the proposed method in this research (CCLBP) has shown good results for KTH-TIPS and KTH-TIPS 2A datasets while for Outex_TC_00013 dataset the results was not satisfying. Furthermore, HSV colour space has better results than RGB colour space. So, it can be said that the proposed method is good in term of colour texture images classification, but in term of some datasets it needs to be improved. Table 4.19 shows summary of the highest classification, (for all values of R and P, for all datasets used and for all colour spaces that have been used), for all descriptors.

Table 4.19: Summary of the highest classification, (for all values of R and P, for all datasets used and for all colour spaces that have been used), for all descriptors.

	RGB Colour Space									HSV Colour Space									
	KTH-TIPS K			KTH	KTH-TIPS2A			Outex_TC00013			KTH-TIPS			KTH-TIPS2A			Outex_TC00013		
	R1,	R2,	R3,	R1,	R2,	R3,	R1,	R2,	R3,	R1,	R2,	R3,	R1,	R2,	R3,	R1,	R2,	R3,	
	P8	P16	P24	P8	P16	P24	P8	P16	P24	P8	P16	P24	P8	P16	P24	P8	P16	P24	
CCLBP_S	60.1	49.5	41.7	44.9	32.8	28.6	20.2	19.1	17.8	55.8	37.0	34.2	44.5	38.2	31.9	15.3	18.6	13.0	
CCLBP_M	72.5	72.4	63.6	57.2	55.4	50.4	33.0	31.4	29.4	59.2	52.2	51.2	54.9	50.0	52.4	27.9	24.9	28.3	
CCLBP_M/C	93.5	92.1	88.7	92.9	91.0	88.7	73.8	71.2	69.6	96.3	96.2	95.1	95.9	95.4	93.2	76.7	77.8	77.4	
CCLBP_S_M/C	96.2	94.0	91.0	94.0	92.9	91.3	74.6	72.8	70.0	96.1	96.7	95.9	95.6	96.1	95.0	78.6	78.9	78.5	
CCLBP_S/M	88.9	90.9	86.5	85.4	89.5	87.1	70.0	68.5	66.3	92.3	94.9	92.2	91.7	95.6	90.7	76.7	75.9	76.9	
CCLBP_S/M/C	96.1	93.8	92.3	95.0	94.4	92.7	79.3	77.0	75.1	96.8	97.9	96.6	91.1	97.3	97.4	78.8	78.5	78.9	

CHAPTER 5

CONCLUSION

5.1 Introduction

This chapter is about the summary of overall system research which is about Colour Texture Image Classification system using Colour Completed Local Binary Pattern (CCLBP) method.

5.2 Overall System Research Summarization

Texture features are spirited in many applications such as face recognition, finger detection, human detectors, object recognition and image retrieval. In addition, many of textures feature algorithms were identified by pervious literature for robust and distinctive texture features. The classification of the texture feature algorithm methods is categorised into three categories which are model-based method, statistical method and structural method.

This project is a research-based project that used three different datasets to obtain the images which are KTH-TIPS, KTH-TIPS 2A and Outex_TC_00013 datasets. From each dataset images are taken for training process and testing process. The Colour Texture Image Classification system uses Colour Completed Local Binary Pattern (CCLBP) method based on two colour space which are RGB colour space and HSV colour space for the classification process. Histogram is been generated for CLBP_S, CLBP_M and CLBP_C. Then, classification process is done by using these operators and combining them together.

The implementation has been done by using MATLAB software. The performance has been tested correctly and the objective is accepted.

5.3 Research Constraints/Limitations

During the research phase, there are some constraints/limitations occurred, which are:

- Image quality limitation: image quality affects the result of the classification.
 For example, texture features extraction process is difficult when it comes to use unclear images.
- Time limitation: it requires a lot of times to get perfect research. For people who are doing researches the limitation of time is one of the worst problems.
 Because, the work needed to be done as it stated in the timeline.
- Ideas limitation: lack of ideas is treated as a difficulty in completing this research, it is a major problem. But, for researchers who need to do researches in the right timeframe this research may help. Extra studies are needed to enhance the system for future work.

5.4 Future Work

Future work of this project can be done by using different types of colour spaces. Moreover, it can be done by using different method for the classification instead of CLBP method.

5.5 Summary

Even with the limitations occurred the Colour Texture Image Classification Using Colour Completed Local Binary Pattern (CCLBP) method is successfully completed. More studies are needed to be explored for better results.

REFERENCES

- García-Olalla, O., Alegre, E., Barreiro, J., Fernández-Robles, L., & García-Ordás, M. T. (2015). Tool Wear Classification Using LBP-based Descriptors Combined with LOSIB-based Enhancers. *Procedia Engineering*, 132, 950–957. https://doi.org/10.1016/j.proeng.2015.12.582
- Guo, Z., Zhang, L., & Zhang, D. (2010). A Completed Modeling of Local Binary Pattern. *IEEE Transaction on Image Processing*, 19(6), 1657–1663. https://doi.org/10.1109/TIP.2010.2044957
- Kalakech, M., Porebski, A., Vandenbroucke, N., & Hamad, D. (2018). Unsupervised Local Binary Pattern Histogram Selection Scores for Color Texture Classification. *Journal of Imaging*, 4(10), 112. https://doi.org/10.3390/jimaging4100112
- Kalluri, H. K., & Prasad, M. V. N. K. (2016). Palmprint Identification Using Gabor and Wide Principal Line Features. *Procedia Computer Science*, 93(September), 706–712. https://doi.org/10.1016/j.procs.2016.07.272
- Lan, R., & Zhou, Y. (2016). Quaternion-Michelson Descriptor for Color Image Classification. *IEEE Transactions on Image Processing*, 25(11), 5281–5292. https://doi.org/10.1109/TIP.2016.2605922
- Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., & Pietikäinen, M. (2019). From BoW to CNN: Two Decades of Texture Representation for Texture Classification. *International Journal of Computer Vision*, 127(1), 74–109. https://doi.org/10.1007/s11263-018-1125-z
- Park, W., Pak, S., Shim, H., Le, H. A. N., Im, M., Chang, S., & Yu, J. (2016). Photometric transformation from RGB Bayer filter system to Johnson–Cousins BVR filter system. *Advances in Space Research*, 57(1), 509–518. https://doi.org/10.1016/j.asr.2015.08.004
- Phakade, S. V, Flora, D., Malashree, H., & Rashmi, J. (2014). Automatic Fruit Defect Detection Using HSV and RGB Color Space Model. (3), 67–73.
- Rassem, T. H., Mohammed, M. F., Khoo, B. E., & Makbol, N. M. (2015). Performance evaluation of Completed Local Ternary Patterns (CLTP) for medical, scene and event image categorisation. 2015 4th International Conference on Software Engineering and Computer Systems, ICSECS 2015: Virtuous Software Solutions for Big Data, 33–38. https://doi.org/10.1109/ICSECS.2015.7333119
- Zhao, Y., Jia, W., Hu, R. X., & Min, H. (2013). Completed robust local binary pattern for texture classification. *Neurocomputing*, 106, 68–76. https://doi.org/10.1016/j.neucom.2012.10.017

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. *Pattern recognition*, *29*(1), 51-59.

Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. *Image Processing, IEEE Transactions on, 19*(6), 1635-1650.

Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modelling of local binary pattern operator for texture classification. *Image Processing, IEEE Transactions on, 19*(6), 1657-1663.

Ahsan, Tanveer, Rifat Shahriar, and Uipil Chong. (2013). Application of Completed Local Binary Pattern for Facial Expression Recognition on Gabor Filtered Facial Images. *International Journal of Digital Content Technology and its Applications* 7.12.2013: 88.

Rassem, T. H., Mohammed, M. F., Khoo, B. E., & Makbol, N. M. (2015, August). Performance evaluation of Completed Local Ternary Patterns (CLTP) for medical, scene and event image categorisation. In *Software Engineering and Computer Systems (ICSECS), 2015 4th International Conference on* (pp. 33-38), 2015.

Rassem, T. H., & Khoo, B. E. (2014). Completed local ternary pattern for rotation invariant texture classification. *The Scientific World Journal*, 2014.

Li, L., Fieguth, P. W., & Kuang, G. (2011). Generalized Local Binary Patterns for Texture Classification. In *BMVC* (pp. 1-11).

Raja, G. M., & Sadasivam, V. (2013). Optimized local ternary patterns: A new texture model with set of optimal patterns for texture analysis. *Journal of Computer Science*, 9(1), 1.

Shrivastava, N., & Tyagi, V. (2014). An effective scheme for image texture classification based on binary local structure pattern. *The Visual Computer*,*30*(11), 1223-1232.

Reddy, K. S., Kumar, V. V., & Reddy, B. E. (2015). Face Recognition Based on Texture Features using Local Ternary Patterns. *International Journal of Image, Graphics and Signal Processing (IJIGSP)*, 7(10), 37.

Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 24(7), 971-987.

Ahmed, F., Hossain, E., Bari, A. S. M. H., & Shihavuddin, A. S. M. (2011, November). Compound local binary pattern (CLBP) for robust facial expression recognition. In Computational Intelligence and Informatics (CINTI), 2011 IEEE 12th International Symposium on (pp. 391-395). IEEE.

Faudzi, S. A. A. M., & Yahya, N. (2014, June). Evaluation of LBP-based face recognition techniques. In *Intelligent and Advanced Systems (ICIAS), 2014 5th International Conference on* (pp. 1-6). IEEE.