UMP Institutional Repository

The need for operational reasoning in data-driven rating curve prediction

Mount, Nick J. and Abraharta, Robert J. and Dawson, Christian W. and Ngahzaifa, Ab. Ghani (2012) The need for operational reasoning in data-driven rating curve prediction. Hydrological Processes, 26 (26). pp. 3982-3400. ISSN 0885-6087

[img]
Preview
Pdf
The need for operational reasoning in data-driven rating curve prediction.pdf

Download (284kB) | Preview

Abstract

The use of data‐driven modelling techniques to deliver improved suspended sediment rating curves has received considerable interest in recent years. Studies indicate an increased level of performance over traditional approaches when such techniques are adopted. However, closer scrutiny reveals that, unlike their traditional counterparts, data‐driven solutions commonly include lagged sediment data as model inputs, and this seriously limits their operational application. In this paper, we argue the need for a greater degree of operational reasoning underpinning data‐driven rating curve solutions and demonstrate how incorrect conclusions about the performance of a data‐driven modelling technique can be reached when the model solution is based upon operationally invalid input combinations. We exemplify the problem through the re‐analysis and augmentation of a recent and typical published study, which uses gene expression programming to model the rating curve. We compare and contrast the previously published solutions, whose inputs negate their operational application, with a range of newly developed and directly comparable traditional and data‐driven solutions, which do have operational value. Results clearly demonstrate that the performance benefits of the published gene expression programming solutions are dependent on the inclusion of operationally limiting, lagged data inputs. Indeed, when operationally inapplicable input combinations are discounted from the models and the analysis is repeated, gene expression programming fails to perform as well as many simpler, more standard multiple linear regression, piecewise linear regression and neural network counterparts. The potential for overstatement of the benefits of the data‐driven paradigm in rating curve studies is thus highlighted.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Data-driven; Modelling; Operational validity; Rating curve; Suspended sediment
Subjects: Q Science > QA Mathematics > QA76 Computer software
Faculty/Division: Faculty of Computer System And Software Engineering
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 27 Feb 2020 03:13
Last Modified: 27 Feb 2020 03:13
URI: http://umpir.ump.edu.my/id/eprint/26633
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item