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Abstract: Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such
as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering.
The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR),
and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast
proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound
healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated
using an electrospinning technique and were characterized for surface morphology, the successful
incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers.
SEM revealed that there was a decrease in the fiber diameter (ranging from 360 to 770 nm) upon the
addition of AV, CUR and TCH in PCL nanofibers, which were randomly oriented with bead free
morphology. FTIR spectra of various electrospun samples confirmed the successful incorporation of
AV, CUR and TCH into the PCL nanofibers. The fabricated nanofibrous scaffolds possessed mechanical
properties within the range of human skin. The biocompatibility of electrospun nanofibrous scaffolds
were evaluated on primary human dermal fibroblasts (hDF) by MTS assay, CMFDA, Sirius red and
F-actin stainings. The results showed that the fabricated PCL/AV/CUR and PCL/AV/TCH nanofibrous
scaffolds were non-toxic and had the potential for wound healing applications. The disc diffusion
assay confirmed that the electrospun nanofibrous scaffolds possessed antibacterial activity and
provided an effective wound dressing for skin tissue engineering.
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1. Introduction

The skin is a critical structure comprising of an epidermis (which acts as a waterproof layer)
followed by the dermis which gives the ability to withstand wear and tear [1]. As the largest organ in the
body of human, covering approximately 8% of total body weight, with a thickness that varies between
1.5 to 4.0 mm, the skin acts as a barrier to distinguish exterior from interior surroundings. The loss
of skin tissue by injuries, such as lacerations and burns (>4 cm thick), lead to an inadequate healing
process. Surgical treatment by conventional methods, such as autografts and allografts, may be the
only solution for chronic wounds. However, these methods have limitations that include the morbidity
of donor sites, transmission of infections and immune-rejection [2]. An effective wound healing
process could include cell to cell interaction, vascularization and extracellular matrix (ECM) secretion.
The ECM comprises of collagen, elastin growth factors, bioactive molecules and fibronectin, all of
which are controlled via cell signaling by cytokines and hormonal proteins that help in determining
the characteristics of the cells, such as proliferation, adhesion and migration [3].

Regenerative medicine is a promising field that encompasses a tissue engineering approach by
combining life sciences with engineering that helps in developing biological substitutes to repair,
retain and expand the functions of tissue, through understanding the behavior of normal and diseased
or injured tissues. A modern approach of tissue engineering which has paved the way for the
healing of chronic wounds is fabrication of skin substitutes [4]. Inchingolo et al. fabricated a
grafting material with platelet rich plasma in which the in-vitro study demonstrated that fabricated
material actively aided in bone tissue regeneration [5]. A 3D tissue engineering construct of sericin
using the co-culture of keratinocytes and fibroblast, has demonstrated the significance of paracrine
signaling between keratinocytes and fibroblast in the expression of the ECM protein for dermal
repair [6]. Tissue engineering works by combining cells and scaffold which mimics the ECM [7].
A cell-scaffold interaction induces signaling for cell behavior making the ECM composition a crucial
factor in proliferation, growth and differentiation. The physiology of the ECM is a connective network
composed of fibrous glycoprotein that co-ordinates in-vivo tissue functions to provide the mechanical
stability and biochemical cues necessary for tissue morphogenesis and homeostasis [8]. The ultimate
aim of skin tissue engineering is to fabricate skin substitutes so as to accelerate the wound healing
process using the principles of: mimicking native physiological skin; guarding the loss of fluid and
growth factors; being biocompatible; evading the invasion of microorganisms; promoting the release
of cytokines and growth factors at the wound site for skin regeneration [9]. Wound dressings have
been fabricated in several structural forms such as nanofibers, films and meshes. The key factors for
successful wound repair with the support of biomaterials are based on surface topography, the type of
polymer used, fabrication techniques, biocompatibility and biodegradability of the scaffolds [10,11].

Electrospinning is a well-known technique for its versatility to fabricate fibers of micro and
nanometer scale. Electrospun nanofibers have been used as scaffolds and architectural resemblance to
the ECM [12]. Synthetic polymers have good flexibility in fabricating and altering scaffolds, but synthetic
compound lacks cell attachment due to their low hydrophilicity and lack of surface cell recognition
sites. Compared with synthetic compounds, natural compounds provide good biocompatibility but
tend to exhibit poor synthesizing capability and mechanical properties. Therefore, it is advantageous to
fabricate composite fibrous scaffolds containing both synthetic polymers for the backbone and natural
polymers for cellular attachment, which does not only acquire appropriate mechanical properties,
but also a bioactive surface [13,14].

Poly-ε-caprolactone (PCL), is a Food and Drug Administration (FDA) approved polymer renowned
in properties such as biodegradability, biocompatibility, chemical stability, thermal stability, good
mechanical properties, tissue-compatible nature and permeability [15]. The absence of a cell
adhering site, makes the cells difficult to attach for the tissue regeneration. To overcome this
limitation, natural components are blended with PCL to produce functionalized nanofibers for wound
dressing. Aloe vera (AV) has numerous physiologically active components and possesses antioxidant
properties and increases collagen, hyaluronic acid and dermatan sulfate production which are key
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constituents of the ECM that lead to effectual wound healing. Aloe vera is particularly appealing
in the field of regenerative medicine as it supports cell migration, proliferation, and growth [16,17].
Curcumin (CUR), an active component of turmeric, is well-known to display properties such as
antioxidant, anti-inflammatory, antitumor, anticoagulant and antimicrobial activity which are favorable
factors for wound healing [18,19]. Tetracycline, is an antibiotic with antimicrobial and anti-inflammatory
properties [20]. Soares et al. have proposed that the treatment of tetracycline hydrochloride (TCH) in
dentin could increase the fibroblast attachment and growth by binding to the ECM glycoprotein and
fibronectin [21]. The incorporation of TCH may support the regeneration of fibroblasts for an effective
wound healing by its controlled release from the nanofibrous scaffolds. Anges et al. reported that
PCL/AV supports fibroblast cell proliferation without the cytotoxic effect for skin tissue engineering [22].
Mesenchymal stem cells (MSCs) popularly differentiate into many descents such as cartilage, bone,
muscles and adipose tissues. MSCs stimulate wound repair by increasing angiogenesis, promoting
resolution of wound inflammation, favourably regulating the ECM remodelling, and driving the
regeneration of skin with normal architecture and functions [23]. Adipose derived stem cells (ASCs)
play an indispensable role in the repair of skin wounds more than stem cells because of their advantages,
such as immune compatibility and freedom from ethical concerns. Despite its advantages, clinical trials
on the efficacy of ASCs are very few and only in the early stages. More clinical trials are still required
to verify the therapeutic value of ASCs in wound repair [24]. The objective of this study is to analyze
PCL and AV loaded with CUR and TCH hybrid nanofibrous scaffolds for cell cytotoxicity, the secretion
of collagen and antimicrobial activity for the application of wound healing in skin tissue engineering.

2. Results and Discussion

2.1. Characterization of Nanofibers

The development of the biocompatible wound dressing nanofiber mesh is highly dependent on
the characteristic properties of the nanofibers. Electrospun nanofibers can be fabricated in a nanoscale
dimension by both synthetic and natural polymers to mimic the native physiological ECM. It has
characteristic features, such as high porosity, biocompatibility, well interconnected pores, and a large
surface area which promotes cell growth, adhesion and spreading along the nanofibers for enhanced
wound healing. The cell adhesion, proliferation and immobilized release of biomolecules are influenced
by the morphology and internal structure of the nanofibers [25]. Electrospun nanofibers were analyzed
under a field emission scanning electron microscope (FESEM) at an accelerating voltage of 15 kV.
FESEM is a useful technique to observe the basic characteristics such as the morphology, size, shape
of nanofibers. Figure 1 displays the surface morphology of nanofibers PCL, PCL/AV, PCL/CUR,
PCL/AV/CUR, and PCL/AV/TCH analyzed by FESEM. All nanofibers revealed randomly oriented bead
free, smooth surfaced morphology with a uniform distribution of nanofibers.

The average fiber diameter of PCL, PCL/AV, PCL/CUR, PCL/AV/CUR, and PCL/AV/TCH
scaffolds were 770 ± 98 nm, 561 ± 49 nm, 695 ± 57nm, 665 ± 64 nm and 360 ± 87 nm respectively.
Among all the scaffolds, PCL (770 ± 98 nm) displayed higher mean fiber diameter while PCL/AV/TCH
(360± 87 nm) showed a lower fiber diameter indicating a decrease in the average fiber diameter (Table 1).
The significant variations in the diameter of the scaffold were observed due to the incorporation of
bioactive components. There was a decrease in fiber diameter upon blending with natural polymer
AV (561 ± 49 nm) and the nanofiber diameter decreased further with the incorporation of TCH into
the PCL/AV hybrid structures. The decrease in fiber diameter could be possibly due to the increase
in conductivity of polymer solution by the addition of biological substitutes (AV and TCH) [26].
The incorporation of CUR to PCL (695 ± 57 nm) and PCL/AV (665 ± 64 nm) showed an increase in the
fiber diameter which may be due to the precipitation of CUR in nanofibers as reported by Shababdoust
et al. [27].

The affinity of the cells towards the surface of the biomaterial is a key consideration for the fabrication
of a successful skin substitute. The hydrophilicity of nanofibers is a primary criterion for the cell adhesion
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which leads to cell spreading and focal adhesion along the nanofibers for cell proliferation [28]. The surface
wettability and porosity of the nanofibrous scaffolds supports the cells in maintaining a constant supply of
nutrient and excretion of cellular waste by diffusion. The water contact angle which is a basic technique
that determines the surface wettability of mats by a liquid [26,29]. Table 1 shows the water contact
angle values of the electrospun mats in which the values greater than 90◦ delivers poor spreading of
liquid over the nanofibers while values less than 90◦ resemble the characteristics of the water absorbing
surface (hydrophilic). The contact angle of PCL, PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH were
128.3 ± 6◦, 47.3 ± 2.5◦, 94.3 ± 3.7◦, 79 ± 1.6◦ and 57.3 ± 5◦, respectively. PCL exhibits the water contact angle
of 128.3 ± 6◦ which is above 90◦, thus it has hydrophobic properties. The increase in the wettability of PCL
mats was observed on adding AV, CUR and TCH. PCL/CUR showed 94.3 ± 3.7◦ (a decrease in wettability
when compared to the PCL/AV nanofibers) which may be due to the hydrophobic nature of CUR [30].
PCL/AV/CUR showed an increase in wettability (79 ± 1.6◦) when compared to PCL/CUR (94.3 ± 3.7◦),
which could be possibly due to the presence of biologically active components in AV. The PCL/AV/TCH
nanofibers contact angle showed 57.3 ± 5◦ to increase the surface wettability when compared to PCL,
PCL/CUR and PCL/AV/CUR.
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Figure 1. SEM images for biocomposite nanofibrous scaffolds (a) poly-ε-caprolactone (PCL), (b) PCL/

aloe vera (AV), (c) PCL/ curcumin (CUR), (d) PCL/AV/CUR (e) PCL/AV/ tetracycline hydrochloride
(TCH). Scale bar = 1µm.

Table 1. Fiber diameter and water contact angle of nanofibrous scaffolds. ** p < 0.01, **** p < 0.0001.

Nanofiber Construct Fiber Diameter (nm) Water Contact Angle (◦)

PCL 770 ± 98 128.3 ± 6

PCL/AV 561 ± 49 **** 47.3 ± 2.5

PCL/CUR 695 ± 57 ** 94.3 ± 3.7

PCL/AV/CUR 665 ± 64 **** 79 ± 1.6

PCL/AV/TCH 360 ± 87 **** 57.3 ± 5

The functional groups and chemical bonds of compounds incorporated into the nanofibers were
analyzed using FTIR spectrum. Figure 2 represents the FTIR spectrum of the various electrospun
scaffolds PCL, PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH. PCL showed the characteristic
peaks of –CH2 (symmetric) and –CH2 (asymmetric) vibrations at 2865 cm−1 and 2945 cm−1 and a
predominant peak at 1722 cm−1 corresponding to ester stretching which were observed in all electrospun
mats to prove the existence of PCL nanofibers. The presence of hydroxyl group at 3420 cm−1 in
all scaffold except PCL confirms the incorporation of AV, which further the peaks at 800 cm−1 to
1000 cm−1 providing evidence in the presence of mannose, pyranose, glucan, monopyranose in AV [26].
The stretching vibration at 1513 cm−1 (C=C) and bending vibration at 1418 cm−1 (C-H) correspond to
the characteristic peaks of CUR [31]. PCL/AV/TCH nanofibers show peaks at 1613 cm−1 (C=O A and C
ring) and 1579 cm−1 (NH2 amide), which correlate with the presence of TCH [32].
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Figure 2. FTIR spectra of biocomposite nanofibrous scaffolds of PCL, PCL/AV, PCL/CUR, PCL/AV/CUR
and PCL/AV/TCH.

The mechanical properties of nanofibers are critical factors for skin tissue engineering in order to
withstand the physiological forces, such as a substantial vascular network, nerve bundles, collagen
deposition and other skin anatomy in the wound healing process. Figure 3 and Table 2 show the
non-linear graph of the stress-strain curve and the values of ultimate tensile stress, ultimate tensile
strain and Young’s modulus of various electrospun samples. PCL displayed tensile strain of 9.2 MPa
with the maximum elasticity of 164.5%. The stiffness of the PCL mat increased upon the incorporation
of AV. The study of Suganya et al. showed that the mechanical strength of the scaffold increases upon
the incorporation of AV in the PCL mats [33]. Lee et al. proposed that increasing the crystallinity of
nanofibers by the freezing and thawing technique, made it prime to elevate the mechanical strength of
the nanofibers [34]. It was observed, in this study, that PCL/AV/TCH has a maximum stress of 20 MPa
(Figure 3), which may be due to the increase in crystallinity of the nanofibers upon the incorporation
of crystalline TCH into the PCL/AV nanofibers. Among all the samples, PCL/AV/TCH (360 ± 87 nm)
recorded a smaller fiber diameter, while PCL/CUR showed a higher fiber diameter of 695 ± 57 nm.
Hence, it can be inferred that a rise in the ultimate tensile strength value of nanofibers is directly
proportional to a decrease in the fiber diameter i.e., by increasing the packing density of the fibers by
decreasing the fiber diameter primes the increase of the tensile strength [35].
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Table 2. Mechanical properties of various electrospun nanofibrous scaffold.

Nanofiber Construct Ultimate Tensile Stress (MPa) Ultimate Tensile Strain (%) Young’s Modulus (MPa)

PCL 9.2 164.5 19.8

PCL/AV 14.9 53.1 72.3

PCL/CUR 11.1 64.2 79.7

PCL/AV/CUR 14.4 65.2 25.5

PCL/AV/TCH 20.0 40.1 92.6

2.2. Drug Release

The release of CUR and TCH were analyzed by immersing 50 mg of PCL/AV/CUR and PCL/AV/TCH
mats in 3 mL PBS solution (37 ◦C, pH 7.4). Figure 4 represents the uniform release kinetics of CUR
and TCH for a period of 9 days, with the initial burst release of 30.1% and 41.5%, respectively. This is
followed by the sustained slow release of drugs which is present in the core structure of the nanofibers.
The burst release occurrence could not be avoided as the drug (CUR and TCH) were co-electrospun
with polymers and immobilized at the surface area of the nanofibers [36]. Chen et al. reported that the
scaffold with a lower fiber diameter displayed a higher release of the drug compared to the scaffold
with a larger diameter as the drug could not diffuse faster from the interior of the larger diameter
nanofibers [37]. Similarly, due to higher specific surface area from the lower diameter nanofibers,
PCL/AV/TCH with 360 ± 87 nm displayed a higher release of drugs when compared to PCL/AV/CUR
with 665 ± 64 nm in diameter. The sustained slow release was followed by a linear release behavior of
PCL/AV/CUR and PCL/AV/TCH until day 9. After 9 days of the drug release study 42.1% CUR and
16.9% TCH remained in the nanofibers.
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2.3. Cell Viability

When the fibroblasts are seeded on biomaterials, the interaction with the scaffolds may disturb the
viability of the cells due to the cytotoxic effect of the substances included in the scaffolds. To analyze
the effect of TCH and CUR on cell viability of fabricated nanofibers, 5-Chloromethylfluorescein
diacetate (CMFDA) assay was performed for the viable cells. CMFDA is cell-tracker dye which
provides sharp fluorescence to observe the size, shape and morphology of the viable cells in vitro.
The CMFDA compound penetrates through the cell membrane of the viable cells to exhibit a fluoresce
acting upon cytosolic esterase enzymes. Figure 5 shows the CMFDA tagged hDFs on day 6 of post
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seeding in the nanofibers. It was found that fabricated scaffolds were biocompatible and non-toxic to
cells. The difference in morphological features was observed between PCL scaffolds and the scaffold
loaded with natural polymers such as AV, CUR and TCH. Some of the cells on PCL/CUR displayed
structural abnormalities. The lower cell viability observed in PCL and PCL/CUR nanofibers due to the
hydrophobic nature of PCL and CUR. In PCL/AV, PCL/AV/CUR and PCL/AV/TCH scaffolds, the cells
were distributed around the scaffolds with a normal spindle shaped morphology [38]. PCL/AV/TCH
displayed an increased number of cells with better cell to cell interactions and a controlled arrangement
along the nanofibers when compared to PCL/AV/CUR. The synergetic effect of AV and TCH could be
the possible reason for the observation of the high cell viability in PCL/AV/TCH nanofibrous scaffolds
(Figure 5f).
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2.4. Cell Proliferation

For the proliferative phase of wound repair, the fibroblasts proliferate to form new
tissue granulation composed of procollagen, elastin, proteoglycans and hyaluronic acid (HA).
Fibroblasts further differentiate into myofibroblasts with enhanced α-smooth muscle actin cytoskeleton
which aids to wound contraction and the ECM formation [39]. To analyze the biocompatibility and
cell proliferation potency of nanofibers, MTS proliferation assay was performed. Figure 6 shows
the hDF proliferation on the tissue culture plate (TCP), PCL, PCL/AV, PCL/CUR, PCL/AV/CUR and
PCL/AV/TCH nanofibers on day 3, 6, and 9. PCL shows a lower proliferation rate when compared
with all other scaffolds which could be possibly due to the absence of the cell recognition motif in
PCL that fails to form focal adhesion between the nanofibers and the seeded cells. On day 3, 6, and 9,
PCL/CUR displayed lower proliferation when compared to PCL/AV, PCL/AV/TCH and PCL/AV/CUR
as CUR possesses a hydrophobic character which may have disturbed the fibroblast adhesion on the
scaffolds. However, PCL/AV/CUR showed increased proliferation when compared to PCL, PCL/AV
and PCL/CUR which could be due to the release of hydrophobic drug CUR by the augmentation of the
hydrophilic character of nanofibers through the immobilization of AV. Nina et al., who have studied
TCH as a model drug in PCL/CA/Dextran/TCH nanofibrous scaffolds, observed better antibacterial
and antifungal activities with improved fibroblast proliferation in scaffolds containing TCH [32]. It is
evident that PCL/AV/TCH nanofibers facilitate the high proliferation of hDF compared with all the
other scaffolds (Figure 6). The proliferation results suggest that the drug loaded scaffold was nontoxic
and biocompatible to stimulate the proliferation of dermal fibroblasts for enhanced wound healing.
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2.5. Expression of Collagen

Collagen is a primary component of ECM and also an abundant protein in mammals. Collagen has
a stiff triple-helical structure of a three molecular chain which supports the ECM for high stiffness
and has anisotropic mechanical properties [40]. Collagen acts as a structural support for skin and
helps in functioning the cell migration, maintaining the cell shape and inducing protein synthesis.
For the proliferative phase, fibroblasts produce collagen which replaces the fibronectin-fibrin matrix
that produce structure to the wound. In the remodeling phase, myofibroblasts deposit the collagen by
cross linking in the wound which helps in wound contraction along with the increase in mechanical
strength of the wound [41,42]. Figure 7 shows the collagen expressed by hDFs seeded on various
scaffolds, PCL, PCL/AV, PCL/AV/CUR and PCL/AV/TCH by Sirius red staining on day 6. The reduced
level of collagen secretion with structural abnormalities in PCL and PCL/CUR scaffold was clearly
observed at different time points. This may be due to the hydrophobic nature of the PCL and PCL/CUR
nanofibers. Among all the scaffolds, PCL/AV/TCH displayed a higher distribution of collagen along
the nanofibers with an increased intensity (red colour), signifying that PCL/AV/TCH nanofibrous mats
supported the enhanced proliferation of hDFs. The increased collagen secretion in PCL/AV/TCH may
also be attributed to the presence of TCH, which has the ability to inhibit collagenase activity and
elevate the deposition of the ECM proteins with increased fibroblast proliferation [21,43].
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2.6. Cell-scaffold Interactions

The physical and chemical property of the fabricated scaffold is responsible for the cells-scaffold
interaction, cell communication, nutrients uptake of the cells from the scaffold, molecular cell signaling
and the deposition of the ECM components which prime the development of a successful skin
substitute [25]. For the effects of the fabricated nanofibers over the cell morphology, cell spreading, cell
attachment, a SEM analysis was conducted on the mats incubated with hDFs. Figure 8 shows the SEM
images of hDFs cultured on PCL, PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH nano-scaffolds
on day 9. For the PCL scaffolds, the cells decreased in number with an altered shape and structure
owing to the absence of active integrin sites. The scaffolds with the incorporation of AV showed an
increased cell density and cell spreading along the nanofibers which may be due to the presence of
polar phytochemicals in AV. The micro-architecture of human connective tissues is dictated by the
controlled cellular arrangement which regulates the biological and mechanical function of the tissue.
It is important that the tissue engineered constructs the supports for the controlled cell alignment
along the nanofibers [44]. PCL/AV/TCH shows improved cell spreading, cell to cell communication
and controlled extension of fibroblasts along the nanofibers in comparison to PCL, PCL/AV, PCL/CUR
and PCL/AV/CUR nanofibers. Overall, PCL/AV/TCH nanofibrous mats as a wound dressing can
support cell attachment, which spreads and promotes proliferation with controlled cell growth for
wound healing.
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2.7. Expression of F-actin

The actin cytoskeleton network subjects for wound contraction help in tissue granulation which
enables wound closure [43]. hDFs cultured for 9 days were stained with Rhodamine phalloidin
and DAPI. Cytoplasmic F-actin inter-network bundles were stained red by phalloidin and nucleus
stained blue by DAPI (Figure 9). PCL and PCL/CUR scaffolds, the distribution of F-actin was not
clearly observed due to spatial scattering of F-actin with abnormal cell cytoskeleton morphology.
This may be due to the nanofibers hydrophobic effect which can affect the cell cytoskeleton structure
by not supporting the cell attachment and spreading. hDFs grown on PCL/AV, PCL/AV/CUR and
PCL/AV/TCH displayed an elongated spindle shaped morphology and a notable cytoskeleton structure
with the distribution of F-actin fibers throughout the cell cytoplasm when compared to PCL and
PCL/CUR, due to the presence of the bioactive components. hDFs on PCL/AV/TCH scaffold expressed
a highly aligned F-actin filament through the cell cytoskeleton with a notable elongated fibroblast
morphology and better cell to cell interactions when compared to PCL, PCL/CUR, PCL/AV and,
PCL/AV/CUR nanofibers.
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2.8. Antimicrobial Activity

The antimicrobial efficacy of electrospun nanofibrous scaffolds PCL, PCL/AV, PCL/CUR,
PCL/AV/CUR and PCL/AV/TCH were accessed by a Kirby-Bauer disc diffusion assay (Figure 10).
The contact mediated inhibition of all five bacteria was noticed, while no clear zone of inhibition was
observed around the following mats namely, PCL/AV, PCL/CUR and PCL/AV/CUR mats. No zone
of inhibition and contact inhibition was observed in PCL as it is a synthetic polymer without any
biologically active properties. In contrast, PCL/AV/TCH represent clear zones around the mats
compared to all other nanofibers. The observed results proved that the antibiotic activity of TCH was
not disturbed by encapsulating the nanofibrous scaffolds for cell proliferation and the secretion of
collagen for wound healing.
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3. Materials and Methods

3.1. Materials

The human dermal fibroblasts (hDF), foetal bovine serum (FBS), Dulbecco’s modified eagle’s
medium (DMEM) were obtained from Gibco®, Thermo Fisher Scientific, Singapore, Singapore.
penicillin-streptomycin antibiotics, trypsin-EDTA (Sigma Aldrich, Singapore, Singapore) were used for
culturing the cells. Alexa Fluor 647 Phalloidin (Life technologies Corporation Singapore, Singapore)
and bovine serum albumin (Sigma-Aldrich, Singapore, Singapore) were used for analysing the protein
expression. 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP), poly-ε-caprolactone, curcumin (CUR),
tetracycline hydrochloride (TCH) (Sigma-Aldrich, Singapore, Singapore) and lyophilized Aloe vera
(AV) powder (Xian Yuen Sun Biological Technology Co. Ltd., Shaanxi, China) to fabricate electrospun
nanofibers. CellTiter 96® and Cell Tracker Green CMFDA dye (Promega Pte. Ltd., Singapore,
Singapore) and Sirius Red (Sigma-Aldrich, Singapore, Singapore).

3.2. Fabrication of Electrospun Nanofibers

Polymer solution for electrospinning was prepared by dissolving PCL, AV, CUR, TCH in HFIP
and stirred overnight at room temperature (RT). Five different combinations of PCL with natural
polymers PCL (13%), PCL (10%)/AV (3%), PCL (10%)/CUR (3%), PCL (9%)/AV (3%)/CUR (1%), and PCL
(9%)/AV (3%)/TCH (1%) were organized for electrospinning, with the ultimate concentration of 13%
for all polymer composites. The polymer solution was loaded in a 5 mL standard syringe fitted with
a capillary needle at a flow rate of approximately 1.5 mL/h controlled by a syringe pump (KDS 100,
KD Scientific, Holliston, MA, USA) and high voltage 14–15 kV was applied by using high voltage
power supply (Gamma High Voltage Research Inc., Ormond Beach, FL, USA) for electrospinning the
nanofibers (Table 3).

Table 3. Parameters applied for the fabrication of electrospun hybrid nanofibers.

Samples Concentration (%) Voltage (kV) Flow Rate (ml/h) Needle Size

PCL 13 14 1.5 24G

PCL/AV 10:3 14 1.5 24G

PCL/CUR 10:3 14 1.5 24G

PCL/AV/CUR 9:3:1 14 1.5 24G

PCL/AV/TCH 9:3:1 15 1.5 24G

3.3. Characterization of Nanofibrous Scaffolds

The electrospun nanofibers were sputter coated with gold JFC-1600 auto fine coater (JEOL, Peabody,
MA, USA) and visualized using a field emission scanning electron microscope JSM-6701F FESEM
(JEOL, Peabody, MA, USA). The diameters of the electrospun nanofibers were analyzed using image
analysis software ImageJ Software (National Institutes of Health, Bethesda, MD, USA). The tensile
properties of electrospun nanofibrous scaffolds were determined with a table-top tensile tester (Instron
3345, Instron Inc., Norwood, Ma, USA) using a load cell of 10 N capacity. The rectangular nanofiber
mats of dimensions 10 mm width and 20 mm height were used for testing, at a crosshead speed of
10 mm/min and the data was recorded for every 50 s. The tensile stress, strain and elastic modulus
were calculated based on the generated tensile stress-strain curve. The wettability of the electrospun
nanofibrous scaffolds was measured by a sessile drop water contact angle measurement VCA optima
surface analysis system (AST products, Billerica, MA, USA). The contact angle results reflected the
hydrophilicity of the nanofibrous scaffolds. FTIR spectroscopic analysis of electrospun nanofibrous
scaffolds was performed on (Bruker GmbH, Ettlingen, Germany) over a range of 500–4,000 cm−1 at a
resolution of 2 cm−1.
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3.4. Drug Release

The release profile of CUR and TCH were analyzed by immersing the fabricated PCL/AV/CUR,
PCL/AV/TCH nanofibrous mats in phosphate buffer saline (PBS) at 37 ◦C (pH 7.4). Approximately 50 mg
of PCL/AV/CUR, PCL/AV/TCH mats were immersed in 3 mL of PBS solution and incubated at 37 ◦C.
At time periods, 2 mL of PBS was withdrawn to study the release kinetics and substituted with
the equal amount of fresh PBS. Then, 2 mL of PBS aliquot was further analyzed using a UV-Visible
spectrophotometer at 420 nm for CUR and 350 nm for TCH. Using the calibration curve of CUR and
TCH measured, the CUR and TCH release percentages were determined and plotted on the graph.

3.5. Human Dermal Fibroblast (hDF)

As primary human dermal fibroblast cells (hDF) play a key role in the wound healing process,
hDF was used for determining the cytocompatibility of the electrospun mats. The hDF cells were
cultured in DMEM medium (Gibco®, Thermo Fisher Scientific, Singapore, Singapore) supplemented
with fetal bovine serum 10% (v/v), 50 µL mL−1 penicillin and 50 mg mL−1 streptomycin at 37 ◦C and
5% CO2 in a humidified incubator. The 15 mm scaffolds on the cover slips were sterilized under UV
light for 3 h. Each of the nanofibrous scaffold on 15 mm cover slips was placed in a 24-well plate and
round stainless-steel rings were added to each well to protect the fibers lifting from the coverslips.
Then, each well with the scaffold was washed thrice with PBS and subsequently immersed in complete
media overnight before cell seeding. For biocompatibility study experiments, the cells (1 × 104 cells
well−1) were seeded onto nanofiber collected coverslips, placed in 24-well plates and allowed to grow
for 24 hrs before analysis.

3.6. MTS Assay

The cell proliferation was monitored on day 3, 6 and 9 by MTS (3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay. The metabolically
active cells react with tetrazolium salt in the MTS reagent to produce soluble formazan dye that can
be observed at 490 nm. The cellular constructs were rinsed with PBS followed by incubation with
20% MTS reagent in serum free medium for 3 hrs. Thereafter, the aliquots were pipetted into 96 well
plate and the samples were read in a spectrophotometric plate reader (FLUOstar OPTIMA, BMG Lab
Technologies, Ortenberg, Germany) at 490 nm.

3.7. Cell-scaffold Interactions

The fibroblasts harvested on different scaffolds at day 9 were washed with PBS to remove
non-adherent cells and then fixed in 4% glutaraldehyde for 1 hr at RT, dehydrated through a gradient
of alcohol solution and finally, critical point dried using hexamethyldisilazane overnight to maintain
the normal cell morphology. The dried cellular constructs were sputter coated with gold and observed
under the scanning electron microscope at an accelerating voltage of 15 kV.

3.8. CMFDA Staining

On day 6, the scaffold-containing cells were washed with PBS after removing DMEM and
stained with fluorescent molecules 5-Chloromethylfluorescein diacetate (CellTracker Green CMFDA,
Promega, Singapore, Singapore). Labelling the cells was performed as described by the manufacturer.
Briefly, the cells were incubated with dye at a concentration of 5 µM. After 1 hr of incubation at 37 ◦C,
the CMFDA dye was discarded and the cells were washed with PBS. Futher the cells were incubated
with the medium and supplemented with 10% fetal bovine serum at 37 ◦C for an additional 24 h to
complete the labelling process. The cells were washed twice with PBS and mounted over the glass
cover slides using the mounting medium. Fibroblast morphology was observed by a confocal laser
scanning microscope at the wavelength of 490 nm.
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3.9. Sirius Red Staining

Sirius red staining was used for analysing the presence of collagen in the cell secreted matrix.
Sirius red is a strong anionic dye containing sulfonic acid groups, which interact with the basic group of
collagen. On day 6, the cells were first fixed with 10% formaldehyde, stained with Harris’ haematoxylin
to distinguish the nucleus of the cells and washed three times with deionized water. This was followed
by staining with Sirius red stain consisting of 0.1% Sirius red F3B in a saturated aqueous solution of
picric acid for 1 h. The cells were washed with mild acidified water followed by 100% ethanol and
viewed under Leica DM IRB microscope. The collagen fibers were stained red on a yellow background.

3.10. F-actin Staining

The fibroblast cells cultured on the nanofibrous scaffolds were stained for F-actin on day 9 to
analyze the expression of F-actin protein. The cells were first fixed in 100% ice-cold methanol for 15 min.
The samples were washed with PBS for 15 min and incubated in Triton-X100 solution (0.5%) for 5 min
which permeabilized the cell membrane. The non-specific binding sites were blocked by incubating
the cells in 3% BSA for 1 h. The samples were then incubated with Alexa Fluor 647 Phalloidin in the
dilution of 1:200 for 90 min. The samples were washed with PBS thrice to remove the excess staining
and then incubated with DAPI in the dilution of 1:3000 for 30 min. The samples were then removed and
mounted over a glass slide using a Vectashield mounting medium and examined under an Olympus
FV1000 (USA) fluorescence microscope.

3.11. Disc Diffusion Assay

The antibacterial activity of electrospun mats were evaluated using the Kirby-Bauer radial
disc diffusion method. The experiment was carried out in accordance with the Clinical and
Laboratory Standards Institute (CLSI). Using a cotton swab, the bacterial cultures (concentration
adjusted to 0.5 McFarland standards) were spread onto the sterile Muller Hinton Agar (MHA) plates.
Electrospun mats (10 × 10 mm) were placed on the swabbed bacterial cultures and incubated at
35 ± 2 ◦C for 24 h. The antibacterial activity was assessed as a zone of inhibition in millimeters.
The bacterial strains such as Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa,
Escherichia coli and methicillin resistant Staphylococcus aureus (MRSA) were used for the study [45].

3.12. Statistical Analysis

The data presented were expressed as the mean ± standard deviation (SD). The statistical analysis
was performed by one way analysis of variance (ANOVA), and significance was at p < 0.05.

4. Conclusions

The electrospinning technique used to fabricate TCH and CUR loaded PCL/AV nanofibrous
antibacterial wound dressing mats for skin tissue engineering. The results proved that TCH
loaded nanofibrous scaffolds are attributed with biocompatibility, good mechanical properties,
hydrophilicity and antibacterial properties. The release study indicated an initial burst release
followed by a sustained release of TCH. The release of TCH in the PCL/AV/TCH mat supported
fibroblast growth, attachment, spreading along the nanofiber orientation with the enhanced deposition
of collagen. The PCL/AV/TCH scaffold possessed a broad spectrum of antibacterial activity against both
Gram-positive and Gram-negative bacteria. Overall, the TCH loaded PCL/AV mats displayed high
biocompatibility, increased mechanical property, better surface wettability and antibacterial activity in
comparison with PCL/AV mats loaded with CUR. Aloe vera is generally used for cosmetic applications,
however, the authors are fabricating a modified AV membrane for diabetic wound healing applications.
In conclusion, this study presents a smart scaffold with essential physical and biological properties
that can topically deliver bioactive drugs to improve wound healing.
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