Vanadium pentoxide nanotubes by electrospinning

Neeta L. Lala, R. Jose, and M. M. Yusoff
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia

ABSTRACT
Nanofibers of vanadium pentoxide (V2O5V2O5) were synthesized by electrospinning a polymeric solution containing vanadium ion and with subsequent sintering. Conventionally, electrospun TNFs were produced by using a co-axial spinneret; however, TNFs in the present study were obtained by manipulating the concentration ratio of the precursor solution, distance, humidity and flow rate during electrospinning using a single spinneret and sintering with time and temperature change. On the basis of this hypothesis, nanofibers could be altered from elongated 1-D nanofibers to nanowires, nanotubes, spheres and flakes respectively. The surface morphology, structure, roughness and the crystal structure were analyzed using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and X-ray diffraction (XRD). The current work has demonstrated a case study for energy storage where V2O5V2O5 nanotubes when tested shows the capacitance of 190 Fg⁻¹ in 2M KCl electrolyte indicating an example for the energy storage which may be applicable for other electrochemical devices such as Li-ion batteries, fuel cells, hydrogen storage etc.

KEYWORDS:
Electrospinning; Nanotubes; Vanadium Pentoxide
REFERENCES


