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Abstract. The theoretical study of rotating Casson fluid in moving channel disk has been

investigated in this article. The dimensional governing equation of proposed fluid is derived

in the form of partial differential equation with initial and boundary conditions. The non-

dimensional governing equation has been obtained by using the suitable non-dimensional

variables. The expression of velocity for rotating Casson fluid has been obtained by using

Laplace transform method. It is found that, they satisfied governing equation and conditions

imposed. Computations are carried out and the results are analyzed and discussed in details.

1. Introduction
Recently, non-Newtonian fluids are widely used in industries such as chemicals, pharmaceuticals,
food, oil, gas and cosmetic. For example, in the production of several chemicals, oil, gas, paint,
syrup, juice, cleanser, deodorizer, in process of plastic sheets, glass fibre production, movement
of lubricants and biological fluids [1-4]. The non-Newtonian fluid models show the non-linear
relationship between the shear rate and shear stress which do not obey Newtons law of viscosity
compared to Newtonian fluid. In Newtonian fluid, the relationship between the shear stress
and the shear rate is assumed to be linear. However, not all shear stress and shear rate obey
this relationship for certain cases. Thus, the study of non-Newtonian fluids is useful for the
fundamental understanding of certain applications and to describe the fluids in industrial and
other technological applications such as blood, soap, certain oils, paints, and many emulsions
[3].

Some of non-Newtonian fluid models have been used to describe the complex behaviour
of fluids in applications including power law [5], second grade [6], Jeffrey [7], Maxwell [8],
viscoplastic [9], Bingham plastic [10], Brinkman type [11], Oldroyd-B [12] and Walters-B [13]
models. One of the most famous non-Newtonian fluid models is Casson fluid model which
has several applications in food processing, metal lurgy, drilling operations and bioengineering
operations [14]. This fluid model was originally introduced by Casson in 1959 to analyze the
prediction of the flow behaviour of pigment-oil suspensions [15]. Casson fluid model is the non-
Newtonian fluid model which consists of yield stress. When the shear stress of Casson fluid
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is less than yield stress, the fluid behaves like a solid. The examples of Casson fluid are jelly,
tomato sauce, honey, soup, concentrated fruit juices [16].

Chen et al. [17] studied the unsteady state unidirectional MHD flow of Voigt fluids moving
between two parallel surfaces under magnetic field effect using Laplace transform method. Seth
et al. [18] investigated the effect of Hall current on the unsteady hydromagnetic Couette flow
within a rotating porous parallel channel in the presence of an uniform transverse magnetic
field when the magnetic field is fixed relative to the moving plate of the channel. Wang [19]
studied the starting unsteady flow in the presence of an impulsive pressure gradient in a system
of rotating parallel plate channel using Laplace Transform method. The author observed that
as rotation is increased, the asymptotic (steady state) flow rate decreases. Jha et al. [20]
investigated the unsteady hydromagnetic natural convection flow of an incompressible viscous
electrically conducting fluid in the presence of transverse magnetic field in infinite vertical parallel
plates through channel using Laplace Transform method. Seth et al. [21] studied the unsteady
hydromagnetic natural convection flow of a viscous, incompressible, electrically conducting and
heat absorbing fluid in the presence of transverse magnetic field. The flow was considered
through a porous medium in a rotating parallel plate channel with the effect of Hall current.
VeeraKrishna et al. [22] investigated the unsteady convective flow of second grade fluid through
a porous medium in a rotating parallel plate channel by considering the magnetohydrodynamic
(MHD) effect. Mohamad et al. [16] analyzed the influence of thermal radiation on unsteady
MHD free convection flow of Casson fluid over a vertical plate through a porous medium.

To the authors knowledge, no researchers attempted to study the unsteady flow of rotating
Casson fluid in moving channel disk. From the previous literature, Casson fluid model is one of
the important models that should be considered in the fluid flow. Thus, an attempt is made in
this paper to investigate the convective flow by considering the Casson fluid. Motivated by the
above studies, the present work focused on theoretical study on rotating Casson fluid in moving
channel disk. The theoretical exact solution is obtained by using the Laplace transform method.
The behavior of obtained physical parameters are plotted graphically and discussed in details.

2. Problem Formulation and Solution
Consider the unsteady flow of rotating incompressible Casson fluid in two infinite vertical disks
separated by a distance h. The x*-axis is taken along one of the disks in the vertically upward
direction and the z*-axis is taken normal to the disks. Initially, both the disks and fluid are at
rest and at time t* = 0+, the disk at left hand side starts to move in its plane with constant
velocity U0 and while the other disk (right hand side) is remains immovable. Due to that,
the fluid starts solid body rotation with constant angular velocity Ω parallel to z*-axis. The
schematic diagram with a coordinate system is shown in Figure1. Therefore, the appropriate
governing equation is given as

∂F ∗

∂t∗
+ 2iΩF ∗ = υ(1 +

1

γ
)
∂2F ∗

∂z∗2
(1)

together with imposed initial and boundary conditions

F ∗(z∗, 0) = 0 ; 0 ≤ z∗ ≤ h,

F ∗(0, t∗) = U0 ; t∗ > 0,

F ∗(h, t∗) = 0 ; t∗ > 0.

(2)

where F ∗ = F ∗(z, t) = u∗(z∗, t∗) + iv∗(z∗, t∗) is a complex velocity, u∗(z∗, t∗) is a primary
velocity, v∗(z∗, t∗) is a secondary velocity, i is an imaginary number, υ is a kinematic viscosity
and γ is a Casson parameter. Introducing the suitable non-dimensional variables

z =
z∗

h
, F =

F ∗

U0

, t =
t∗υ

h2
. (3)
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Figure 1. Schematic diagram with a coordinate system

Therefore, employing the non-dimensional variables (3) into Eq. (1) along with initial and
boundary conditions (2), obtained the non-dimensional form as

∂F

∂t
+ 2iωF = A1

∂2F

∂z2
(4)

subjected to initial and boundary conditions

F (z, 0) = 0 ; 0 ≤ z ≤ 1,

F (0, t) = 1 ; t > 0,

F (1, t) = 0 ; t > 0.

(5)

where A1 = 1 +
1

γ
is a constant parameter and ω =

Ωh2

υ
is a rotation parameter. In order to

obtain an exact solution of this problem, we use the Laplace transform method. Then, by
applying the Laplace transform into (4) together with conditions (5), we obtained
the transform equations as

d2F̄ (z, q)

dz2
− (

q + 2iω

A1

)F̄ (z, q) = 0 (6)

and

F̄ (0, q) =
1

q
,

(7)

F(1, q) = 0,

which is q is a Laplace transform parameter. Using (7) into (6) leads to

F̄ (z, q) =

∞
∑

n=0

[

1

q
Exp

(

−(2n + z)A2

√

q + 2iω
)

−
1

q
Exp

(

−(2n + 2− z)A2

√

q + 2iω
)

]

. (8)
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Finally, the solution of velocity profile is obtained by using inverse Laplace transform and it can
be written as

F (z, t) =

∞
∑

n=0

[A1(z, t) + A2(z, t)] (9)

where

A1(z, t) =
1

2
Exp

(

−a1

√
2iω

)

Erfc

(

a1

2
√

t
−
√

2iωt

)

+
1

2
Exp

(

a1

√
2iω

)

Erfc

(

a1

2
√

t
+
√

2iωt

)

(10)
and

A2(z, t) =
1

2
Exp

(

−a2

√
2iω

)

Erfc

(

a2

2
√

t
−
√

2iωt

)

+
1

2
Exp

(

a2

√
2iω

)

Erfc

(

a2

2
√

t
+
√

2iωt

)

(11)
which is a1 = 2nA2 + zA2 and a2 = 2nA2 + 2A2 − zA2.

Results and Discussions
This section is written to discuss the impact of flow parameters namely, Casson parameter γ,
rotation parameter ω and time parameter t on velocity profiles which are displayed graphically in
igure 2 until igure 4. The subsections (a) and (b) on plotting indicate the primary u and
secondary v velocities, respectively. Here, Figure 2 shows the effect of Casson parameter γ on
velocity profiles for primary and secondary parts. It is found that the velocity decrease in u but
fluctuate behavior in v when the values of γ increase. This is due to increment of viscosity and
yield stress in fluid flow which retard the movement of the fluid’s velocity. Besides that, the effect
of rotation parameter ω on velocity behavior is displayed in Figure 3. Obviously, it can be seen
that, the velocity of the fluid will decrease in primary velocity but increase in secondary velocity.
This is due to the Coriolis effect that exist in rotation fluid phenomena. This effect will reduce the
force in primary velocity and enhance the formation of secondary velocity. In facts, the Coriolis
force is defined as a deflection of moving objects in a frame rotating in the opposite direction.
Lastly,the Figure 4 shows the behavior of velocity on time changing. It is found that, velocity
increases when the value of t increases. During the change of time, the fluid gains an energy from
the moving disk as an external force and increase the both velocities of fluid flow. In addition, the
results obtained here satisfy all of the initial and boundary conditions (5).

Conclusion
The formulation and solution for the problem of rotating Casson fluid in moving channel disk
have been obtained by using the Laplace transform method. The analysis results on embedded
parameters for velocity profiles have been plotted graphically in igure 2 until igure
4. Therefore, the main conclusions from this study are

(i) Both primary and secondary velocities increase with increasing t.

(ii) Primary velocity decreases while secondary velocity first increases and then decreases when

γ is increased.

(iii) For larger value of ω, the primary velocity is decreasing but increase for secondary velocity.
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Figure 2. Primary (a) and secondary (b) velocities profiles for different values of γ.
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Figure 3. Primary (a) and secondary (b) velocities profiles for different values of ω.
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Figure 4. Primary (a) and secondary (b) velocities profiles for different values of t.


