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ABSTRAK 

          Pada masa kini, kebanyakan syarikat telah menggunakan Internet untuk 

menawarkan perkhidmatan dan produk mereka. Pelanggan Internet dapat melihat ulasan 

pelanggan-pelanggan terhadap produk atau perkhidmatan sebelum mereka hendak 

memilih untuk membeli sesuatu barang atau menonton filem. Syarikat perlu menganalisis 

sentimen dan perasaan pelanggan berdasarkan ulasan mereka. Hasil analisa sentimen 

menjadikan syarikat mudah untuk mencari ungkapan pengguna mereka adalah lebih 

positif atau negatif. Analisis sentimen digunakan dalam data mining. Ketepatan hasilnya 

adalah isu analisis sentimen. Objektif  penyelidikan ini adalah untuk meneroka dan 

menilai bahasa Inggeris dengan menggunakan 3 teknik analitik sentimen yang berbeza 

iaitu Python NLTK Text Classification, Miopia dan MeaningCloud dari segi klasifikasi 

teks mereka (positif atau negatif). 3 teknik analisis sentimen yang telah digunakan dalam 

kajian ini untuk menganalisis analisis sentimen ulasan dan ulasan dari bahasa Inggeris 

dalam media social.Terdapat 8 fasa dalam aliran penyelidikan iaitu pernyataan masalah. 

objektif, ulasan sastera, pemahaman rangka kerja, data sentimen memahami, 

mencadangkan rangka kerja, pengukuran data sentimen dan fasa penilaian keputusan. 

Ketepatan hasilnya untuk teknik analisis sentimen (Python NLTK Text Classification, 

Miopia dan MeaningCloud) dalam bahasa Inggeris akan dibandingkan. Ketepatan Python 

NLTK Text Classification (pendekatan berasaskan Corpus), Miopia (pendekatan 

berasaskan Lexicon) dan MeaningCloud (pendekatan hibrid) adalah 74.5%, 73% dan 

82.13%. Ketepatan MeaningCloud adalah yang tertinggi di antara 3 teknik analisis 

sentiment. Ini kerana teknik ini hibrid ciri-ciri pendekatan berasaskan korpus dan 

berasaskan leksikon dan mencapai ketepatan klasifikasi maksimum. Oleh itu, kaedah 

tafsiran mesin hibrid dianggap yang terbaik antara tiga model ini. 

. 
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ABSTRACT 

 Nowadays, numerous numbers of companies have utilized the web to offer their 

services and products. Web customers dependably look through the comments of other 

customers towards a product or service before they chose to buy the things or viewed the 

films.  The company needs to analyse their customers’ sentiment and feeling based on 

their comments. The outcome of the sentiment analysis makes the companies easily to 

discover the expression of their users is more to positive or negative. The sentiment 

analysis is utilized in data mining. The accuracy of the output is the issue of the sentiment 

analysis. The objective of this research is to explore and evaluate English language using 

3 different sentiment analysis techniques which are the Python NLTK Text 

Classification, Miopia and MeaningCloud tools in term of their text classification 

(positive or negative). 3 sentiment analysis techniques have been used in this research to 

analyse the sentiment analysis of the reviews and comments from English language in 

social media. There are 8 phases in the research flow which are problem statement. 

objective, literature reviews, framework understanding, sentiment data understand, 

propose the framework, measurement the sentiment data and evaluation of the results 

phases. The accuracy of the output for the sentiment analysis techniques (Python NLTK 

Text Classification, Miopia and MeaningCloud) in English language will be compared. 

The exactness of the Python NLTK Text Classification (Corpus-based approach), Miopia 

(Lexicon-based approach) and MeaningCloud (Hybrid approach) are 74.5%, 73% and 

82.13%. The accuracy of MeaningCloud is the highest among the 3 sentiment analysis 

techniques. This is because this technique hybrids the characteristics of corpus based and 

lexicon- based approach and achieve the maximum classification accuracy. Therefore, 

hybrid machine interpretation method is considered the best among these three models. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 INTRODUCTION 

       Nowadays, the web has been broadly utilized by the general population 

universally. Individuals utilize the web to discover films, recreations and books. In the 

meantime, they additionally express their emotions towards those perspectives with the 

goal that other people can without much of a stretch to recognize what happens precisely 

and whether there is any item worth to purchase or attempt through the perception of the 

surveys. For instance, Twitter has 0.218 billion of dynamic users and 0.50 billion tweets 

every day(Cardona-Grau, Sorokin, Leinwand, & Welliver, 2016). Subsequently, huge of 

information has been made and exchange on the web. Big data helps the general 

population particularly business visionary with the end goal to know whether their items 

are valuable, and they can know the evaluation from their clients through the perception 

of the remarks and surveys on the web. The company can carry out sentiment analysis to 

analyze their customers’ sentiment and feeling toward their products and services.  

      There are different sentiment analysis techniques that exist in the market today to 

help the companies to conduct the sentiment analysis for their customers’ reviews and 

comments. This help to improve the company’s products and services. Sentiment analysis 

is the information mining that used to investigate the sentiments of the general population 

towards an element with the end goal to know if individuals like or abhorrence it. It is 

very troublesome and tedious if enlist a man to dissect the information to know whether 

the greater part of clients give a positive or negative audit from a huge number of remarks. 

In this manner, machine learning dependent on sentiment analysis has been presented.  It 

makes the data mining quicker. 
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1.2 PROBLEM STATEMENT 

                                        Table 1.1 Problem Statement 

Problem Problem description Effect 

The sentiment 

analysis techniques 

construct their model 

that only consist of 

one language. 

• The multilingual people 

can comprehend numerous 

languages. 

• They can give the customer 

reviews in social media 

using different languages. 

It is quite hard for the 

sentiment analysis 

technique to extract data. 

Company cannot 

interpret their customer 

reviews from different 

languages. 

Using of words in 

casual languages and 

emoji when 

commenting in 

social media 

• For example, some of the 

sentiment analysis 

technique cannot detect the 

“can’t, wouldn’t “in casual 

language. 

• Using the emoji causes 

some sentiment analysis 

technique hard to detect the 

emojis. 

This will cause the 

positive and negative 

classification in 

sentiment analysis will be 

different.  

This will affect the output 

of the sentiment analysis.  

The accuracy of the 

yield 

• There isn't any sentiment 

analysis technique that can 

accomplish the 100% 

precision. 

• The different sentiment 

analysis technique will be 

used in different situations 

in order to obtain the better 

accuracy of sentiment 

analysis. 

Time-consuming in 

choosing the suitable 

sentiment analysis 

techniques. 

Source: ( Bhuta, Doshi, Doshi, & Narvekar, 2014; Sarlan et al., 2015) 
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      The sentiment analysis techniques construct their model that only consist of one 

language. The language limitation on its sentiment analysis model makes it hard for 

multilingual processing. The multilingual people can comprehend numerous languages. 

They can give the customer reviews in social media using different languages. If the 

model of sentiment analysis technique only consists of one language, it is quite hard for 

the sentiment analysis technique to extract the data. For example, Twitter produces 

enormous amounts of opinion tweets that consist of different languages. It is quite hard 

for single language model sentiment analysis technique to extract the text and make 

sentiment analysis. The company cannot interpret their customer reviews from different 

languages (Sarlan et al., 2015). 

      Using of words in casual languages and emoji when commenting in social media. 

For example, some of the sentiment analysis technique cannot detect the “can’t, wouldn’t 

“in casual language. While some of the sentiment analysis technique can detect it. This 

will cause the positive and negative classification in sentiment analysis will be different. 

Besides that, some of the users tend to use the emoticons to express their expression in 

social media. Using the emoji to comment is a trend for the media social users. This 

causes some sentiment analysis technique hard to detect the emojis. This will impact on 

the evaluation of sentiment analysis technique. This will affect the output of the sentiment 

analysis. This will cause the positive and negative grouping in sentiment analysis will be 

different (Sarlan et al., 2015). 

         

       The accuracy of the yield is the issue of the sentiment analysis. There isn't any 

sentiment analysis technique that can accomplish the 100% precision. For instance, I 

purchased a telephone half a month prior. It is a lovely telephone, although it somewhat 

enormous in size. In term of sentiment order, it is positive or negative grouping? There 

are number of sentiment analysis techniques exists in the market nowadays for the users 

to apply. The different sentiment analysis technique will be used in different situations in 

order to obtain the better accuracy of sentiment analysis. The general population will 

ponder which approach should they utilize, and in which circumstance they are required 

to utilize and bringing about the time-consuming in choosing for the correct approach 

(Bhuta, Doshi, Doshi, & Narvekar, 2014). 
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