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ABSTRACT 

The FCC process operates in a dynamic heat balance with hot regenerated catalyst 

supplying the net heat demand required by the reaction system. Finely sized solid 

catalyst continuously circulates in a closed loop between the reaction system and the 

catalyst regeneration system. The feed and catalyst are intimately contacted in the riser 

reactor, in the proper ratio and with the proper residence time and temperature to 

achieve the desired level of conversion. The catalyst passes through a highly efficient, 

patented, spent catalyst stripper where any hydrocarbon product vapors entrained with 

the catalyst are removed and recovered. The process of cracking hydrocarbon provide 

human a fuel but the side effect is very dangerous to the environment because of 

releasing flue gases at regenerator. In this study, the non regenerate catalyst will be 

used in order to replace the current catalyst that need to be regenerate. This 

experiment was carried out in the reactor that has high test pressure so that it will stand 

still at high temperature. The catalyst was mixed with kerosene and burned at 190°C. 

The result obtained were test for it viscocity, density and funtional group. The catalyst 

funtional group is similar to the zeolite V which have been used in modern cracking 

process. The funtional group for product contain of several type of disturbance. The 

density obtained was 0.7461 g/cm3 and the viscosity obtained was 2.4 cP. The result 

showed that catalyst that had been used can crack down the hydrocarbon.



ABSTRAK 

Proses FCC beroperasi dalam keseimbangan panas dinamik dengan mangkin dipulih 

panas membekalkan keperluan panas yang cukup yang diperlukan oleh sistem 

reaksi. Mangkin padat bersaiz halus terus menerus beredar dalam satu lingkaran 

tertutup antara sistem reaksi dan sistem regenerasi mangkin. Mangkin kemudian 

memasuki stripper dan dibuang semua hidrokarbon yang menghalang permukaan reaksi 

pada mangkin. Sistem regenerasi mengembalikan aktiviti katalitik dari mangkin 

menghabiskan coke-sarat dengan pembakaran dengan udara. Hal mi juga menyediakan 

reaksi panas dan pengewapan bahan mentah 

dengan kembali panas, mangkin baru kembali ke sistem proses. Pemecahan 

hidrokarbon memberikan manusia bahan bakar tetapi kesan samping yang sangat 

berbahaya bagi persekitaran kerana mengeluarkan gas rumah hijau dan 

regenerator. Dalam kajian mi, mangkin yang tidak perlu diregenerasi akan digunakan 

untuk menggantikan mangkin saat mi yang perlu regenerasi. Penelitian mi dilakukan 

dalam reaktor yang memiliki ujian tekanan tinggi yang tahan pada suhu yang 

tinggi. Mangkin dicampur dengan minyak tanah dan dibakar di 190°C. Keputusan yang 

diperolehi ujian untuk itu viskositas, ketumpatan dan kumpulan funtional. Kepadatan 

diperolehi 0,7461 g/cm3 dan viskositas diperolehi 2,4 cP. Keputusan kajian 

menunjukkan bahawa mangkin yang telah digunakan boleh menindak hidrokarbon.
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CHAPTER 1 

INTRODUCTION 

1.0 BACKGROUND OF THE STUDY 

In all modern refineries, the fluid catalytic cracking unit (FCCU) remains the 

major means of gasoline production. In a FCCU heavy oil feedstocks are converted 

(cracked) into high-value liquids such as gasoline and heating oil in the presence of a 

fluid cracking catalyst (FCC) operating at temperatures in the 480-550 °C range. 

Following the cracking reaction, the spent catalyst is first exposed to steam (480-540 

°C) to remove occluded hydrocarbons, and then it is sent to the regenerator where 

coke deposits are removed by heating in air at temperatures in the 600-700 °C range. 

The regenerated FCC is then ready to be recycled to the FCCU reaction zone (the 

riser). Easy accessibility of active sites in the internal porosity of fluid cracking 

catalysts is essential to the efficient and selective cracking of gas oils to gasoline and 

other valuable products. [1] 

In the FCC unit, hydrocarbon feed contacts the catalyst. The hydrocarbons 

crack and deposit carbonaceous material (coke) on the catalyst. Cracked hydrocarbon 

products are separated from the coked catalyst. The spent catalyst is then stripped of 

volatiles by steam and regenerated. In the catalyst regenerator, coke is burned from 

the catalyst with an oxygen-containing gas. [2]
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Thus, every time the catalyst contact with coke, the catalyst will have a 

weight loses due to the burn of coke at the catalyst regenarator. This will produce a 

economical loses and every time the process of cracking hydrocarbon start, the 

catalyst need to be added in the cracking unit and this will lead to non economical 

process. The contact of coke with the catalyst also will reduce the catalyst activity 

due to contact surface of the catalyst and the hydrocarbon will become limited. [5] 

An approximately 2000 tlyear of NO is released from a typical refinery and 

that FCC regenerator flue gases contribute approximately 50% of the total NO 

emissions. The concentrations of NO emissions from regenerator flue gases vary 

between 50 and 500 ppm depending on the feed, the operating conditions, and the 

amount of CO combustion promoter (Pt-based additive) used. [3] 

In the FCC process, nitrogen-containing species in the feedstock are cracked 

in the riser reactor to lighter molecules, while approximately 40% of the nitrogen is 

deposited in the coke on the spent catalyst. The aromatic feedstock composition and, 

in particular, the basic nitrogen-containing molecules enhance the coke yield. During 

oxidative regeneration, approximately 90% of the coke-bound nitrogen is converted 

to molecular nitrogen (N2), and the rest is released in the form of NOR. The main 

source of nitrogen leading to NO formation is the FCC feedstock ("fuel NOR"), 

whereas only minor amounts (<10 ppm) are formed by N 2 oxidation ("thermal NOT") 

and the reaction between radicals ("prompt NON") in the regenerator. [3] 

In the regenarator reactor, the process of regenarating catalyst is very hot. In 

order to cool the flue gas, the hot regenarator is injected with oxygen and then the 

cooled flue gas is contacted with a solid particulate material which has the capability 

of associating with and binding sulfur oxides in the flue gas to form a stable solid 

material which is separated from the gases. It also generates carbon dioxide, carbon 

monoxide and water as combustion products and releases large amounts of heat. This 

produce another hazardous gases that is not environmental friendly. [4]
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From those statement, the catalyst regenarator will produce environmental 

pollution which is hazarduous to human being. Thus, the study of a new non 

regenarative catalyst is needed in order to reduce the polution. 

1.1 PROBLEM STATEMENT 

When the reaction occurred between the catalyst and crude oil in the cracking 

reactor, the coke will surrounding the catalyst. This lead the catalyst to have a lower 

activity and result the lower yield. In order to save the cost of catalyst, the spent 

catalyst is need to be regenerate and the method to is fill the spent catalyst into the 

reactor. In the reactor, the spent catalyst will be burn at high temperature in order to 

eliminate coke that surrounding the catalyst.The catalyst compositon is weaker 

during the burning of coke in the regenator and causes the industries the economical 

loses.

The burning of coke also produce the environmental hazard because it 

releases some hazardous gases such as NOx,SOx,CO2 and some other flue gas. Due 

to goverment legislation for releasing of the flue gas, the industries need to find a 

way to overcome the problem. 

1.2 RESEARCH OBJECTWES 

1. To apply the non regenarative catalyst for fluid catalyst cracking unit. 

2. To determine the performance of the non regenerative catalyst.



1.3 SCOPE OF RESEARCH 

In order to achive the objectives of the study, the scopes of research were listed 

down as below: 

1. The study of non regenarative catalyst that contained zeolite and have a large 

amount in Malaysia. 

2. Used non regenarative catalyst can be used for the other purpose such as 

construction. 

3. The studied catalyst must have low price value.



CHAPTER 2


LITERATURE RWIEW 

Fluid catalytic cracking (FCC) is a key process in modem refineries. 

Worldwide approximately 300 FCC units are operated, converting vacuum gas oil 

and high boiling residues into lighter fuel products and petrochemical feedstocks. 

Because of the central function of the FCC process, a range of technological 

improvements have been implemented to increase its economical benefits [4]. In 

addition to investments concerning the process design, new catalysts and additives 

have been developed to fulfill the economic demands of the market and to obtain the 

desired products. [7]. However, refiners are bound to invest also in eco-efficient 

technologies for the production of fuels and petrochemicals with significantly 

reduced emissions of environmental pollutants. 

This is imposed by various national and international regulations addressing 

emissions from a range of refinery processes and especially FCC regenerators, such 

as NO, SOS, CO, and CO2 emissions from regenerator flue gases. Approximately 

2000 tons of NOR/year are released from a typical refinery, among which the FCC 

units contribute approximately 50%. The concentrations of the NO emissions from 

regenerator flue gases vary between 50 and 500 ppm depending on the nature of the



6 

feed, the operating conditions of the FCC unit, and the amount of CO promoter 

added. [8]
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2.1 Coke Formation 

In the fluid catalytic cracking (FCC) process, the reversible deactivation of FCC 

catalysts has been mainly associated with the carbonaceous deposits or coke formed 

on the catalyst surface. [10]. Coke yield is an important measurement of FCC 

catalyst performance and one of the key criteria in catalyst selection and catalyst 

performance optimization. A detailed understanding of coke composition and the 

impact of catalyst properties, feed composition, and feed—catalyst interactions on 

coke formation is critical to the development of FCC catalysts and commercial FCC 

operation. In addition, since a majority of the coke is combusted in the FCC 

regenerator and released as flue gases, a better understanding of coke composition, 

particularly the heteroatomic coke components, may have significant implications for 

FCC environmental technologies,(SO, NON, and CO controls). 

It has been generally recognized that coke is formed in an FCC process via 

reactions of feedstock molecules on acid sites of the FCC catalyst. Both feedstock 

composition and catalyst formulation have significant impact on coke yield. 

Hydrocarbon coking on catalyst have been extensively studied, where coking rate 

and selectivity were found to be closely related to the zeolite types and pore 

structures. Coke can be formed from a wide range of hydrocarbons, including small 

molecules such as propene, via a series of polymerization and dehydrogenation 

reactions. Polynuclear aromatics (PNA) and heteroatomic molecules in feedstocks 

are the most important precursors of FCC coke. Nitrogen molecules, particularly 

basic nitrogen compounds (pyridinic compounds), have the greatest impact on coke 

yield.-[13]



2.2 Sulfur oxide formation 

In the last few years great attention has been focused to control pollutant 

emissions.Among the major contributors to these emissions are energy power plants, 

which contribute with 65% of sulfur oxides, and petroleum refinery processes, more 

specifically the fluid catalytic cracking (FCC) process, with 7% . Sulfur oxides, a 

mixture of SO2 + S0 3, commonly referred as SOS, are one of the most dangerous 

atmospheric pollutants since they contribute directly to acid rain formation and the 

destruction of the ozone layer [19]. In the FCC process the SO production and 

removal mechanisms are different from those of energy power plants; for this 

purpose the characteristics of the sorbent should be different. After cracking 

reactions, the catalyst is deactivated and the coke deposited on it needs to be burned 

off to regenerate the catalyst activity; thus, sulfur compounds present in coke are 

oxidized to produce SO emissions in the regeneration zone. [12] 

Sulfur oxide emissions (SOX = S02 + S03) from fluid catalytic cracking units 

(FCCU) are increasingly becoming the target of EPA and local regulations [17]. The 

removal of such pollutants from FCC units has been the subject of a considerable 

amount of attention over the past few years. The amount of SOX emitted from a FCC 

unit regenerator is a function of the quantity of sulfur in the feed, coke yield, and 

conversion. Generally, 45-55% of feed sulfur is converted to 1-12S in the FCC reactor, 

35-45% remains in the liquid products, and about 5-10% is deposited on the catalyst 

in the coke. It is this sulfur in the coke which is oxidized to S02 (90%) and S03 

(10%) in the FCC regenerator. 

S (in coke)+02 —+ S02+S03 

FCC regenerators operate in total and/or partial combus tion, depending on 

the operating conditions. In the total combustion regime an oxygen excess will

o 



promote the SO2 - S03 oxidation, while in partial combustion the oxygen deficit 

could result in an incomplete SO 2 - S03 oxidation [21] 

2.3 Formation of Nitrogen 

Emission of NO (i.e., NO, NO 2, and N20) from the fluid catalytic cracking 

regenerator is increasingly controlled by various state and local regulations. The FCC 

regenerator poses a very challenging environment for controlling NOR. Other than 

NO, the high-temperature flue gas contains 02, CO. CO2. SO2, SO3, H2O, and 

possibly other nitrogen oxygen species. Any NO control technology has to be 

designed in a way that it neither interferes with the catalytic cracking reaction in the 

riser nor substantially increases the emissions of other pollutants, e.g., CO or SO2. 

NO levels in the FCC regenerator flue gas are typically in the range of 100-500 

ppm. NO is the primary component of NO from the FCC regenerator. 

NO2 is formed only after being released to the air, while N 20 exists typically 

at very low levels. In addition to the level of feed nitrogen, it is also known that 

operating conditions and hardware design of the regenerator can significantly affect 

NO emission. For example, higher excess oxygen in the flue gas is known to 

correlate with higher NO emission, which has led to the notion that NO is formed 

from the oxidation of molecular nitrogen from the air, or the so-called thermal NOR. 

Until very recently, a few systematic studies existed on the formation and control of 

nitrogen oxide in the FCC regenerator. [23] 

2.4 Nitrogen Compounds in Feeds. 

The nitrogen content in most FCC feeds is quite low, typically between 0.005 

to about 0.5 wt %. Nitrogen is found at ppm levels in light and middle distillates, but 

increase significantly around 620 K (650 °F). The nitrogen compounds are typically 

distinguished by their basicity. Much work has been reported to determine the 

basicity of each particular group of nitrogen compounds [24]. According to their



IV 

molecular structure, most of the nitrogen compounds fall into the following four 

groups with decreasing basicity: amines, pyridine derivatives, pyrrole derivatives, 

and amides. 

Typically, about one-third of the nitrogen is considered basic nitrogen 

according to titration analysis with perchioric acid. Most of the amine and pyridine 

types of nitrogen compounds are considered to be basic and are expected to be 

converted to coke. Literature also showed that these two types of nitrogen constitutes 

about one-third of the total nitrogen [32]. Most of the basic nitrogen is expected to be 

adsorbed on the acidic sites of the catalysts and be converted to coke during the 

cracking process, as we have shown in the nitrogen balance experiments. The 

percentage of nitrogen being converted to coke approximates the percentage of basic 

nitrogen in total nitrogen. Some of the nonbasic nitrogen may also contribute to coke. 

The fractions of nitrogen compounds left in the liquid products are expected to be the 

neutral or acidic types of nitrogen, e.g., pyrrole derivatives [27]. 

2.5 Nitrogen in Coke. 

Judging from the nature of the nitrogen compounds in the feed, a significant 

fraction of the nitrogen probably exists in aromatic rings. If one assumes the coke 

molecule contains about 15-20 aromatic rings, each molecule has to contain at least 

two nitrogen atoms at a nitrogen in a coke level of 5 wt % [27]. One of the 

byproducts from the reaction between carbon and NO is C2N2. It has been speculated 

that the polymerization of C2N2 could in turn form a high melting point (CN) 

polymer [28].
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2.6 Formation of NOR. 

The exact chemistry on how the coke-bound nitrogen is being converted to 

NO/N2 is not sufficiently understood. However, we can draw an analogy between 

the regeneration process (coke combustion) with fluidized bed coal combustion. 

There exists extensive literature on the nitrogen chemistry during coal combustion 

[29,30]. Systematic work was also reported for the formation of nitrogen compounds 

during the regeneration of spent hydroprocessing catalysts [31]. 

Nitrogen in the coke has to go through some intermediates before being 

converted to NO or molecular nitrogen. For coal-bound nitrogen, HCN, and NH3 are 

considered the intermediates for the formation of NOR. Regeneration of spent 

hydroprocessing catalysts also follows the same mechanisms. It is expected that 

nitrogen in FCC coke would probably go through a similar route. Regeneration of 

hydroprocessing catalysts indicated that the selectivity to HCN/N111 3/N2 from fuel-

bound nitrogen is strongly affected by the type of nitrogen in the coke, or originally 

in the feedstocks [33]. Pyrrolic-N yields higher HCN than pyridinic nitrogen does. 

Model compounds studies for solid fuel combustion also showed that phenolic OH 

groups were found to increase the conversion of HCN to NH 3 [34]. Although there is 

very little evidence of amine groups in coal, the amine groups in FCC feed may be 

easily adsorbed on the catalyst and converted to coke. 

The nitrogen in amine groups are converted to ammonium intermediates 

before being further converted. Some of the amine groups may also be cracked and 

released as ammonia in the riser. The subsequent destruction of HCN or NH 3 is more 

affected by the process or operating conditions. In a typical full combustion 

regenerator condition, most of the HCN and NH 3 should be oxidized to NO/N20 as 

along as enough oxygen is available, especially with the presence of catalysts/metals. 

Part of the N20 and NO can then go through reduction or decomposition to nitrogen. 

In the coal combustion process, there is evidence that N 20 is formed mainly 

from cyano species, whereas N143—based compounds tend to react toward NO.
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Laboratory experiments have shown [32] than HCN is more readily oxidized than 

ammonia, through both are very reactive and are readily oxidized to N2/NO. In 

partial combustion conditions, it is not difficult to imaging the presence of a 

significant amount of N}i13/HCN, which subsequently are converted to NO/N2 in the 

downstream CO boiler. Thus, NO reduction in partial combustion requires different 

approaches from full combustion. 

2.7 Catalysts 

Modern FCC catalysts are fine powders with a bulk density of 0.80 to 0.96 

g/cc and having a particle size distribution ranging from 10 to 150 pm and an 

average particle size of 60 to 100 pm.- [37]The design and operation of an FCC unit 

is largely dependent upon the chemical and physical properties of the catalyst. The 

desirable properties of an FCC catalyst are: 

Good stability to high temperature and to steam 

• High activity 

• Large pore sizes 

• Good resistance to attrition 

• Low coke production 

A modern FCC catalyst has four major components: crystalline zeolite, matrix, 

binder and filler. Zeolite is the primary active component and can range from about 

15 to 50 weight percent of the catalyst. The zeolite used in FCC catalysts is referred 

to as faujasite or as Type Y and is composed of silica and alumina tetrahedra with 

each tetrahedron having either an aluminum or a silicon atom at the center and four 

oxygen atoms at the corners. 

It is a molecular sieve with a distinctive lattice structure that allows only a 

certain size range of hydrocarbon molecules to enter the lattice. In general, the 

zeolite does not allow molecules larger than 8 to 10 nm to enter the lattice [35]. The



faujasite price per specimen size of 30x25x15 mm is €7.00. The catalytic sites in the 

zeolite are strong acids (equivalent to 90% sulfuric acid) and provide most of the 

catalytic activity. The acidic sites are provided by the alumina tetrahedra. The 

aluminum atom at the center of each alumina tetrahedra is at a +3 oxidation state 

surrounded by four oxygen atoms at the corners which are shared by the neighboring 

tetrahedra. Thus, the net charge of the alumina tetrahedra is -1 which is balanced by a 

sodium ion during the production of the catalyst. 

The sodium ion is later replaced by an ammonium ion which is vaporized 

when the catalyst is subsequently dried, resulting in the formation of Lewis and 

Brønsted acidic sites. In some FCC catalysts, the Brønsted sites may be later replaced 

by rare earth metals such as cerium and lanthanum to provide alternative activity and 

stability levels. [35] 

The matrix component of an FCC catalyst contains amorphous alumina which 

also provides catalytic activity sites and in larger pores that allows entry for larger 

molecules than does the zeolite. That enables the cracking of higher-boiling, larger 

feedstock molecules than are cracked by the zeolite. The binder and filler 

components provide the physical strength and integrity of the catalyst. The binder is 

usually silica sol and the filler is usually a clay. Nickel, vanadium, iron, copper and 

other metal contaminants, present in FCC feedstocks in the parts per million range, 

all have detrimental effects on the catalyst activity and performance. [37] 

2.7.1 Natural Zeolite 

Conventional open pit mining techniques are used to mine natural zeolites. 

The overburden is removed to allow access to the ore. The ore may be blasted or 

stripped for processing by using front-end loaders or tractors equipped with ripper 

blades. In processing, the ore is crushed, dried, and milled. The milled ore may be 

air-classified based on particle size and shipped in bags or bulk. The crushed product 

may be screened to remove fine material when a granular product is required, and



some pelletized products are produced from fine material. Producers also may 

modify the properties of the zeolite or blend their zeolite products with other 

materials before sale to enhance their performance. 

2.7.2 Natural Zeolite Consumption 

Approximately 55,800 t of natural zeolite was sold in 2006 in the United 

States compared with an estimated 58,000 t in 2005. Domestic uses for natural 

zeolite were, in decreasing order by tonnage, animal feed, pet litter, water 

purification, odor control, horticultural applications (soil conditioners and growth 

media), oil absorbent, fungicide or pesticide carrier, gas absorbent, wastewater 

cleanup, desiccant, and aquaculture. Animal feed, pet litter, and water purification 

applications accounted for nearly 70% of the domestic sales tonnage. Sales in all 

except two end-use categories increased. 

The largest increases in tonnage sales were for animal feed applications, and 

the largest declines in tonnage sales were for fungicide and pesticide carrier, pet 

litter, and water purification applications. The conference Zeolite '06, held in 

Socorro, NM, highlighted new uses being investigated for natural zeolites. 

The discussions ranged from modeling of the crystalline structure of zeolite 

minerals to application-oriented work. The conference talks covered a range of topics 

including deposit formation, theoretical modeling of zeolite structures during 

adsorption of exchange cations, thermodynamics of ion exchange, radiation and 

thermal effects on the zeolite structure, environmental applications of zeolites, use of 

natural zeolites in agriculture, and innovative industrial systems that use zeolites. 

Surfactant-modified zeolites were shown to be a possible solution to the removal of 

microbial contamination in groundwater, making it potable. 

A system for removing pollutants from storm water in densely populated 

areas was discussed. The zeolite-base system removed polycyclic aromatic 

hydrocarbons, mineral oils, and heavy metals. Another sector of interest considering
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the current issues of petroleum resources was the potential for natural zeolites to 

pretreat oil sands in Canada. 

Currently, the bitumen is separated from the sand by flotation. Because it is 

so viscous, it must be thinned with toluene for shipment by pipeline to the refineries. 

A Canadian research group found that chabazite can crack the long-chain organics in 

the bitumen, thereby reducing the viscosity of the bitumen. Such a system could 

reduce or eliminate the need for toluene to thin the bitumen and reduce costs [22].
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