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Abstract—The objective of this study is to determine the 

probability of injury of human crack vertebra condition 

subjected to compressive loading. The model has been used in 

this study was reconstructed from image processing and 
develop using SolidWorks. Three dimensional finite element 

model of human lumbar was conducted using Ansys software. 

In this work, all the model components were meshed using the 

tetrahedral solid element (SOLID186). In order to simplify the 

model, all the spinal components were modeled as an 

isotropic, elastic material and symmetry model. The model 

failure was occurred when the stress intensity factor (SIF) of 

the bone exceeds the fracture toughness. Biological structures, 

as well as a vertebra, exists a lot of related uncertainties and 

should not be solved by deterministic analysis. A Monte Carlo 

Simulation (MCS) technique was performed to conduct the 

probabilistic analysis using the built-in ANSYS parametric 
design language (APDL) modules. The results observed that 

the highest stress was found 2% on the adjacent pedicle to 

create the weakness area and probability of failure for 

cracked condition. Therefore, pedicle was become the most 

critical area to be emphasize. Despite, any flaws exist on the 

model such as crack will give a huge effect to the results 

especially fracture. Hence, the current study was very useful 

to investigate how the bone toughness and bone 

characteristics capable of sustained compressive loading in 

terms of the probabilistic approach. 

Keywords:Probabilistic, Finite element model, Lumbar spine, 

Monte Carlo, Crack 

I.  INTRODUCTION (HEADING 1) 

Biological structure such as a vertebra has many aspects of 
biomechanics and orthopedics parameters which variable in 
nature. These uncertainties are usually described by 
randomness, fuzziness, and intervals [1]. Normal bones in 
humans and animals are known to exist small cracks in vivo 
[2, 3]. Due to this discrepancy, chances of bone failure and 
fracture are higher. Obviously, the prediction of crack shape is 
based on the SIF solution [4]. The uncertainties of fracture 

response parameters are including the crack geometry, loading 
distribution, material properties and clinical outcomes [5]. 
Any uncertainty in these parameters is then accounted for by  
a safety factor. Conversely, this approach may be 
unacceptable for structures due to the maximum potential of 
the structure is not realized, and reliability of the structure is 
never quantified [6]. Moreover, significant uncertainty in the 
response of the system due to the inherent variability of the 
parameters and the degree of uncertainty increases as more 
parameters are considered [7].  

In the finite-element analysis (FEA), the stresses of the 
structure are determined using fixed values for the fracture 
response parameters that control the behaviour of the structure 
[7]. This deterministic analysis was developed and validated to 
neglect the existence uncertainty in the systems. However, a 
purely deterministic approach provides an incomplete picture 
of the reality [8]. Therefore, probabilistic analysis was 
proposed to account for the uncertainty of fracture response 
parameters. This probabilistic approach can be also considered 
an extension of previous deterministic studies [9, 10].  

The most common and traditional probability method is 
Monte Carlo simulation (MCS). Probabilistic analysis allows 
the effects of uncertainty in the parameters to be included 
explicitly in the analysis and the resulting statistical variation in 
the system response. Probabilistic analysis considers the 
potential interaction effects between parameters by perturbing 
multiple input parameters in each trial [5]. The analysis is 
modeled accurately, the effect of structure integrity can be 
observed in actual behavior [11]. Each random variable is 
sampled underlying its distribution and probability of failure is 
determined by repeating the deterministic analysis.   

The ideal of surface crack geometry in bone is 
approximately semi-ellipse [12]. However, some element 
constraint such as irregular cracks, vertebra, and material 
properties need to modify the following crack shape [4]. 
Obviously, the prediction of crack shape is based on the stress 
intensity factor (SIF) [11]. 

The aims of the present study were to determine the 
probability of failure based on SIF of crack shape of a vertebra 
under compressive loading. Sensitivity analysis becomes a 



significant tool to determine which crucial parameters relative 
to failure condition. 

II. METHODOLOGY 

A. Finite element model 

The finite element model was created using with 20-nodes 

tetrahedral elements (SOLID186). This element is a higher 

order 3D type that exhibit quadratic displacement behavior 

and well suit to modeling irregular meshes.  

In nature, bone is a nonlinear, inhomogeneous and 

anisotropic material and varies among the boundary regions 

between cortical and cancellous bone [13, 14]. However, most 

studies performed in this area were based on the assumption 

that bone material was isotropic and inhomogeneous 

distribution of material properties due to its simplicity [15]. 
Therefore, this study was conducted on linear isotropic and 

assume that the whole vertebra considered as cortical bone 

properties. Material properties that have been used in this 

study were summarized in Table 1. 

TABLE I.  MATERIAL PROPERTIES 

Description Parameters Mean COV
a 

Distribution 

Young Modulus YOUNG 12GPa 0.21 Lognormal 

Poisson ratio PSSNRAT 0.3 ±0.017 Uniform 

Body force FORBDY 414 N 0.1 Normal 

Facet force FORFCT 46 N 0.1 Normal 

Body area AREBDY 1298 mm2 0.1 Lognormal 

Facet area AREFCT 166 mm2 0.1 Lognormal 

Crack radius R 3.0 mm 0.1 Normal 

Fracture  K 1.46 MPa.mm2 0.19 Lognormal 

a. coefficient of variation 

 

The vertebrae are comprised by six components. There are 

vertebral body, spinous process, transverse process, lamina, 

pedicle, and facet joints. The boundary condition of vertebra 

anatomy was shown in Figure 1 while the unilateral crack was 

developed on the left pedicle. Pressure force of loading was 

subjected to the superior at the vertebral body whereas fixed in 

the inferior side. 

Superposition principle was employed to estimate the SIF, in 

order to avoid modeling cracks on the model. This technique 

required the crack develop before attached together with the 

original vertebrae. The area of the critical region is refined 

using finer meshes so that the reliable results are necessarily 

produced especially in the vertebra body. 
Consider a mixed mode problem for this case, uncertain 

mechanical and geometric characteristics for cracked structure 

that is subject to random loads. Let random variables, X that 

affected from other parameters are given by 

 , , , , cX R E W K   (1) 

where R is crack radius, E is the Young modulus, υ is Poisson 

ratio, W total body weight and Kc is fracture toughness for this 

model. 

B. Fracture toughness 

For simple boundary value problems with idealized crack 

geometry, the SIF or fracture toughness may be expressed as 

K f R      (2) 

where f  is the correction factor, σ is applied stress and R is the 

crack radius. Alternatively, fracture toughness can be derived 

in terms of the strain energy release rate, G, defined as the 

change in potential energy per unit increase in crack area. For 

linear elastic release rate (LEFM), the relationship between 

strain energy and SIF were close. It can be expressed in terms 

of the mode I, II, and III as follows: 
2 2 2
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where µ is the shear modulus, υ is Poisson ratio and E’ is 

defined as follows: 
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The crack was dividing by three type modes of loading 

condition. Mode I is represented the crack opening, mode II is 

crack sliding and mode III is tearing. Typically, SIF is given 
by the subscript such as KI, KII, or KIII. In order to make SIF 

significant to the real condition, three modes of loading must 

be considered. However, this complex shape model limits the 

evaluation. Hence, the assessments only refer to the most 

significant fracture on the structure which is mode I. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Figure 1 Boundary condition of vertebra 

Pressure Force, P 

Transverse 

Process 

Spinous Process 
Vertebral 

body Lamina 

Pedicle 

Facet joints 

Fixed 



Further modification of this superposition technique was 

required to obtained the effective SIF method defined in Eq. 

(5) 
2
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       (5) 

where Keff is the combination between three modes of crack 

loading on the model. 

C. Probabilistic Algorithm 

Uncertainties of parameters were determined which 

affected to the stress intensity factor. Denote by X and n 

number of total samples with components X1,X2,…,Xn 

characterizing the load, crack geometry and material 

properties. By formulating a performance function g(X), which 

is a function of random variables and typically defined as 

( ) ( ) ( )g X R X S X    (6) 

where R(X) is the limiting strength of material or resistance 
and S(X) is applied stress. The probability of failure, Pf is 

given by 

( ( ) 0)fP P g X     (7) 

It is the likelihood that the stress exceeds the strength, whereas 

the reliability of the structure is the converse Ps = 1 – Pf. 

Nevertheless, probability of failure may be expressed as 

/f f TP N N    (8) 

where Nf  is the number of the sample will be fail divide by the 

total number of samples, NT.  

 
 

 

 

 

 

 

 

 

 

 

Figure 2 Algorithm of the automatic probability of failure 

 

The probabilistic algorithm in Figure 2 demonstrates the 

steps have been used to develop programming code using the 

built-in modules in ANSYS. The most commonly applied 

probabilistic model is the Monte Carlo method which involves 

randomly generating values for each variable according to its 

distribution and then predicting the distribution of performance 

through repeated trials [9]. This method is computational 

expensive as the accuracy due to dependent on the number of 

samples. For this study, number of samples, n equal to 100 

after considering the irregular surface, number of elements, and 

size of crack. 

Latin hypercube sampling (LHS) was used to generate the 
parameters according to its distribution type. It also requires 
fewer sampling point and more accurate rather than direct 
Monte Carlo sampling technique (DMCS). Besides it, LHS 
will decrease time consuming for analyze the data since the 
number of samples decrease.  

D. Sensitivity Analysis 

In designing the sensitivity parameter, output response 
parameter was needed to determine first. Requirements of that 
parameter due to the model failure are based on strength and 
fracture toughness of the vertebra. So, therefore, the most 
sensitive parameter was a measure from small changes the 
input parameters gives huge effect to the output parameter. 
This determines from gradient correlation of the scatter plot. 
Commonly, Spearmann and Pearson rank correlation is the 
most popular used in study the monotonic relationship.  

Relative sensitivities are commonly referred to as 
probabilistic sensitivity factors, α and the change in safety 
index, β with respect to the standard normal variate, u. The 
probabilistic sensitivity factor was defined as  
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 
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   (9) 

where p equal to a specific probability level. 

III. RESULTS & DISCUSSION 

The maximum stress in Figure 3 was appeared at the left 
superior at the pedicle with 4.5 MPa Von mises stress. It is due 
to the crack exist, and moment effect occurred on the same 
area. The critical fracture area is commonly on the crack tip 
due to stress fracture. According to the [16], the maximum 
stress is located in the inferior part of the pedicle and facet 
surface. It is convinced that the pedicle is the most critical 
region in vertebra structure. That value 4.5 MPa is greater than 
the yield stress which is obtained from [17]. From this 
observation, the failure envisaged occurred in this stage. 
However, yield assessment did not account for the plastic 
deformation in crack tip, and SIF will take place the evaluation 
of analysis. 

 

 

Figure 3: Von Mises stress on crack tip 

Furthermore, the deterministic analysis of SIF evaluation 

indicates that the crack tip occurred stress fracture. Mode I 

become the greatest crack loading since the shape and loading 

Determine the fracture response parameters, X 

Solve stress analysis and SIF using FEA 

Arrange the deterministic information 

i = 1 

Probabilistic of failure, Pf = Nf / NT 

Generate the parameters randomly, n 

i = i + 1 



conditions are representing to the crack opening. The SIF 

effective value is 0.532 MPa.m1/2 while the fracture 

toughness is 1.46 MPa.m1/2. Despite, it shows that the value 

still not exceeded the critical fracture toughness and assumed 

the structure is not failed. Nevertheless, the uncertainties are 

affected the vertebra structure in random variables. The 
probabilistic analysis was performed to determine the 

probability of failure based on deterministic analysis. 

Therefore, Figure 4 illustrated the probability of failure of 

crack mode I based on maximum SIF. 

 
Figure 4 Probability of failure for Mode I 

The probability for maximum value of SIF is representing 
by projected line from 0.525 MPa.m1/2 reflects to the 98% of 
probability in percent. The graph shows that the value greater 
than the 0.525 MPa.m1/2 is referring 1-0.98=0.02. It is meant 
the probability of failure for this model is 2%. From this result, 
conclude that the uncertainties inherent the biological structure 
is to affect the vertebra failure. However, all parameters related 
to the uncertainty still cannot determine by this figure. 
Therefore, Figure 5 indicates the sensitivity parameter analysis 
based on Spearman correlation value.  

 

Figure 5 Sensitivity parameter analysis 

The sensitivity parameter can be determined by using 
Spearmann correlation with monotonic relationship. From 

figure 5, the most significant parameter for the fracture 
toughness evaluation is crack size. Besides it, that parameter is 
almost equivalent to one. It symbolizes that only crack size 
sensitive and significant than the vertebra failure rather than 
others. Therefore, the crack parameter needs to be emphasized 
to control the vertebra failure conditions. The insignificant or 
unimportant random variables have eliminated from the 
sensitivity chart to improving the computational efficiency.  

IV. CONCLUSION 

Finite element analysis was performed to measure the SIF 
for vertebra structure in the unilateral crack. This study 
objective is achieved to determine the probability of failure of a 
vertebra under compressive loading. The uncertainties are 
reflected the structure to be fail depends on the three basic 
parameters in material properties, loading and geometry. All 
the uncertainties decided in this study are based on knowledge 
and experience. In deterministic, the SIF is indicated that the 
structure is not failed while in probabilistic analysis shows in 
contrast. Effect of uncertainties in biological structure is 
significant into representing the real-life phenomena. About 
2% probability of failure obtained from probabilistic analysis 
with respect to the SIF 0.532 MPa.mm1/2. Crack size becomes 
the most significant parameter affect the failure evaluation on 
sensitivity analysis. Therefore, emphasizing of this parameter is 
too crucial in order to avoid the system failure. This study is 
useful to investigate the inherent uncertainties and variations in 
biological structures. 
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