LEARNING OBJECT FOR EDUCATION WITH AR AND HAND GESTURE RECOGNITION

SEAN SENN A/L POW CHIOK

BACHELOR OF COMPUTER SCIENCE (SOFTWARE ENGINEERING) WITH HONOURS

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the degree of *Doctor of Philosophy/ Master of Engineering/ Master of Science in

(Supervisor's Signature)

Full Name: Dr. Abdulrahman Ahmed Mohammed Al-SewariPosition:Date: 9 JANUARY 2019

(Co-supervisor's Signature) Full Name : Position :

:

Date

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : SEAN SENN A/L POW CHIOK ID Number : CB15011 Date : 9 JANUARY 2019

LEARNING OBJECT FOR EDUCATION WITH AR AND HAND GESTURE RECOGNITION

SEAN SENN A/L POW CHIOK

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Computer Science (Software Engineering) with Honours

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

JANUARY 2019

ACKNOWLEDGEMENTS

The success and outcome of this project required a lot of guidance and assistance from many people and I am extremely privileged to have got this all along the completion of my project. All that I have done is only due to such supervision and assistance and I would not forget to thank them.

I would like to respect and thank to my supervisor, Dr Abdulrahman Ahmed Mohammed Al-Sewari, for giving me guidance and support which made me complete the project successfully.

I would like to thanks to University Malaysia Pahang (UMP) for providing good study environment and facilities that help me to complete the project.

I would also very thankful to my family for supporting my project throughout my study years especially my father, Pow Chiok A/L Kun Gan and my mother, Tan Hua See.

ABSTRACT

Augmented Reality (AR) allows us to interact with the world and unlocking information and experiences by simply pointing our smartphone at any image, object or location. Over the past several years, AR applications becoming more popular and widely available in the smartphones. This project will show the implementation of gesture recognition to Augmented Reality to help improve the current AR technologies to interact with the realworld motion such as hand movements. This enable the users to make use of Augmented Reality to learn and explore in a different way. By implementing gesture recognition to Augmented Reality, the education method can become interesting and learn better using 3-D objects because it is visualized and the user able to interact with the objects. The project is build using Unity 3D and developed based on ManoMotion SDK. The methodology used in this application development is Rapid Application Development model.

ABSTRAK

Augmented Reality (AR) membolehkan kita berinteraksi dengan dunia dan mendapatkan maklumat dan pengalaman dengan hanya menunjuk telefon pintar ke arah imej, objek atau lokasi. Aplikasi AR menjadi lebih popular dan banyak tersedia di telefon pintar sejak beberapa tahun tahun yang lalu. Projek ini akan menunjukkan pelaksanaan pengiktirafan isyarat kepada Augmented Reality untuk membantu meningkatkan teknologi AR semasa untuk berinteraksi dengan gerakan dunia sebenar seperti pergerakan tangan. Ini membolehkan pengguna menggunakan Augmented Reality untuk belajar dan meneroka dengan cara yang berbeza. Dengan melaksanakan pengiktirafan isyarat kepada Augmented Reality, kaedah pendidikan boleh menjadi menarik dan belajar dengan lebih baik menggunakan objek 3-D kerana ia divisualisasikan dan pengguna dapat berinteraksi dengan objek tersebut. Projek ini dibina menggunakan dalam pembangunan aplikasi ini adalah model Pembangunan Aplikasi Pantas.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACk	KNOWLEDGEMENTS	ii
ABS	TRACT	iii
ABS	TRAK	iv
ТАВ	BLE OF CONTENT	v
LIST	Г OF TABLES	viii
LIST	Г OF FIGURES	ix
LIST	Γ OF ABBREVIATIONS	X
CHA	APTER 1 INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PROBLEM STATEMENTS	3
1.3	OBJECTIVES	4
1.4	SCOPE	4
1.5	THESIS ORGANIZATION	4
CHA	APTER 2 LITERATURE REVIEW	6
2.1	INTRODUCTION	6
2.2	AUGMENTED REALITY (AR)	6
2.3	TYPES OF AUGMENTED REALITY (AR)	7
2.4	HAND GESTURE RECOGNITION	7
2.5	EXISTING SYSTEM	9

	2.5.1	CONSTRUCT3D		9
	2.5.2	EcoMOBILE		11
	2.5.3	ATTech System		12
2.6	THE (COMPARISON BETWEEN EXISTING	EDUCATION-BASED AR	
	APPL	ICATIONS		15
2.7	SUM	MARY		15
CHA	PTER 3	B METHODOLOGY		16
3.1	INTR	ODUCTION		16
3.2	METH	łODOLOGY		16
	3.2.1	SDLC METHODOLOGY		17
	3.2.2	METHODOLOGY USED (RAPID AP	PLICATION	
		DEVELOPMENT)		17
3.3	HARI	OWARE AND SOFTWARE REQUIREN	MENT	20
	3.3.1	HARDWARE		20
	3.3.2	SOFTWARE		21
	3.3.3	OVERVIEW OF HARDWARE AND S	SOFTWARE CHOSEN	23
3.4	GAN	IT CHART		24
CHA	PTER 4	IMPLEMENTATION, TESTING AN	D RESULT DISCUSSION	26
4.1	INTR	ODUCTION		26
4.2	IMPL	EMENTATION		26
	4.2.1	Setting Up New 3D Project in Unity	Error! Bookmark not defin	ned.
	4.2.2	Import the Manomotion SDK and ARC Bookmark not defined.	ore to the project. Er	ror!
	4.2.3	Building scenes.	Error! Bookmark not defin	ned.
4.3	TEST	ING AND RESULT DISCUSSION		34

4.4	USER	34	
СНА	PTER 5	5 CONCLUSION	35
5.1	INTR	ODUCTION	35
5.2	2 CONSTRAINTS		
	5.2.1	The Version of Unity 3D	35
	5.2.2	The Specification of The Hardware Available	36
	5.2.3	The Complexity of Camera Usage	36
5.3	Future	e Work	36
REF	ERENC	CES	37
APP	ENDIX	Α	38
APP	ENDIX	В	39
APPENDIX C			40
APPENDIX D			41

vii

LIST OF TABLES

Table No.	Title	Page
Table 1.1	Problem Statements with Description and Effects	3
Table 2.1	Comparison Between Existing Education-Based	14
	AR Application	
Table 3.1	The advantages and disadvantages of RAD model	18
Table 3.2	Hardware Requirement List	23
Table 3.3	Software Requirement List	23

LIST OF FIGURES

Figure No.	Title	Page
Figure 2.1	Hand detection processing from RGB image to hand	8
	binary	
Figure 2.2	Students using Construct3D that shows a simple	10
	example from vector algebra.	
Figure 2.3	A teacher working with his current construction	10
	with Construct3D	
Figure 2.4	An example of Augmented Classroom setup for	11
	Construct3D.	
Figure 2.5	Students working with smartphone and TI NSpire	12
	handheld device.	
Figure 2.6	Ecosystem science information presented by	12
	EcoMOBILE.	
Figure 2.7	The 3D objects are animal cell presented by ATTech	14
	system.	
Figure 3.1	Rapid Application Development Model	17
Figure 3.2	Gantt chart 1	24
Figure 3.3	Gantt chart 2	25
Figure 4.1	The binary hand images	28
Figure 4.2	The bounding box which detect the hand	29
Figure 4.3	The value of hand state when the hand opened	30
Figure 4.4	The value of hand state when the hand closed	31
Figure 4.5	Continuous gesture detects pointing	31
Figure 4.6	Continuous gesture detects push pointing	32
Figure 4.7	Background colour	33
Figure 4.8	The rotation gizmo	34

LIST OF ABBREVIATIONS

AR	Augmented Reality
VR	Virtual Reality
2-D	2-Dimension
3-D	3-Dimention
GPS	Global Positioning System
API	Application Programming Interface
FPS	Frame Per Second
RAD	Rapid Application Development
SDK	Software Development Kit
SRS	Software Requirement Specification
SDD	Software Design Document
UML	Universal Modeling Language

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The development of the smartphone had changed the technologies nowadays becoming more advanced than before. The mobile market is continuing to grow, and smartphone owners now represent more than 25 percent of the global population. On average people spend more than 7 hours daily on smartphone devices. As a result, the businesses can no longer ignore the importance of smartphone technologies as companies try to capitalize on these opportunities. The market has become saturated with the applications and it is more important than ever to find a way to stand out in the crowd. Many businesses have embraced Augmented Reality (AR) as it gives their mobile campaigns the competitive edge.

The aim of Augmented Reality systems is to mix the interactive real world with an interactive computer-generated world in a way that they appear as one environment (Vallino, 1998). Augmented Reality or AR allows us to interact with the world and unlocking information and experiences by simply pointing our smartphone at any image, object or location. According to A Survey of Augmented Reality, the development of AR technologies starts early research from 1960's and become widespread availability by the 2010's there been steady progress towards the goal of being able to seamlessly combine the real world and virtual worlds(Mark Billinghurst, Adrian Clark, 2014). Augmented Reality is widely used in many fields nowadays such as education, interior design, fashion, medical, and entertainment. This project is developing an education-based AR application which implemented the gesture technologies that can help students learning through hand interaction with 3-D object in the application. It let the students to look around an object by using hand movement to enable gesture recognition that can rotate, zoom-in or zoom out the education 3-D objects.

1.2 PROBLEM STATEMENTS

No	Problems		Descriptions	Effects
1.	The lack of real-world	1.	Most of AR	Users lack of interest to explore
	interaction with the		applications have	more using AR technologies.
	AR.		limited interaction	
			with the users.	
		2.	Gestures based-	
			interaction still not	
			available in AR.	
2.	The traditional	1.	Traditional	Students cannot fully understand
	education system not		education does not	or imagine from reading words in
	fully visualize.		implement enough	the books or explaining from
			technology to help	teachers.
			students study better.	
		2.	Education	
			technologies not	
			fully support by	
			teachers.	
3.	The lack of education-	1.	There is still not	1. Students will stick to the
	based application in		much education-	traditional study method
	the market.		based application in	because there is no suitable
			the market that can	application to help them study
			help students with	better.
			their study.	
		2.	Lack of education	
			system implement	
			latest technologies	
			like Augmented	
			Reality.	

 Table 1.1
 Problem Statements with Description and Effects

REFERENCES

Azuma, R. T. (1997). A Survey of Augmented Reality, 6, 355–385.

- Coleman, G., & Verbruggen, R. (1998). A quality software process for rapid application development. *Software Quality Management VI*, 7, 107–122. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4471-1303-4 22
- Derpanis, K. G. (2004). A Review of Vision-Based Hand Gestures. Department of Computer Science York University, 18. https://doi.org/10.1.1.60.8109
- Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. *Computers and Education*, 68, 545–556. https://doi.org/10.1016/j.compedu.2013.02.018
- Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. *Computers and Graphics (Pergamon)*, 27(3), 339–345. https://doi.org/10.1016/S0097-8493(03)00028-1
- Mark Billinghurst, Adrian Clark, and G. L. (2014). A Survey of Augmented Reality. *Foundations and Trends in Human-Computer Interaction*, 8(2–3), 1. https://doi.org/10.1561/1100000049
- The New Media Consortium. (2010). *The Horizon Report. Horizon*. https://doi.org/10.1227/01.NEU.0000280154.19237.36
- Weng, N. G., Bee, O. Y., Yew, L., & Hsia, T. (2016). An Augmented Reality System for Biology Science Education in Malaysia. *International Journal of Innovative Computing*, 6(2), 8–13.