PROTEIN DENATURATION IN PILOT SCALE SPRAY DRYER

KIOH SHIN FANG

A thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering

.

FACULTY OF CHEMICAL & NATURAL RESOURCES ENGINEERING UNIVERSITI MALAYSIA PAHANG

DECEMBER 2010

ABSTRACT

The aim of this project is to investigate the protein denaturation in a pilot scale spray dryer. The occurrence of protein denaturation is due to external stresses, such as heat. Thus, this project describes a pilot process for obtaining protein isolates from whey protein in powder form via spray drying process with improved water solubility and technofunctional properties as well as reduced thermal damage. The experiment, including varying the inlet air temperature at 100°C and 160°C as well as utilising the microencapsulation technique using a starch derived polysaccharide (or known as maltodextrin) to minimize the protein denaturation. The Reversed phase HPLC (RP-HPLC) technique has been applied to measure the denaturation of proteins in the samples which are with maltodextrin and without maltodextrin resulting from the spray drying of milk solution at inlet temperature of 100°C and 160°C. The combination of maltodextrin (MD) and fresh milk (FM) is at standard ratio of FM/MD (9: 1) in order to produce spherical and smooth powder. Apart from the RP-HPLC method, the SDS-PAGE method also used to analyze the protein content. The morphology of the milk powders was examined using a Scanning Electron Microscopy (SEM) while the particle size of milk products can be easily assessed using Mastersizer with model Scirocco 2000. To determine the portion of whey protein in the spray dried milk samples, the Total Solid Content method was employed. Besides, sterilization tests such as detection of Salmonella sp., and detection of Escherichia coli sp. along with microbial tests which is Standard Plate Count Method also applied. The spray-drying process was particularly critical for inducing some thermal damage but it is hypothesized that the crust formation which resulting in high particle temperatures while still maintaining a wet core, is likely to lead to high levels of denaturation up to 55% at high temperature (160 °C). Stability of α -lactalbumin proved higher as compare with β -lactoglobulin. The study reveals that low outlet gas temperatures along with microencapsulation are required to avoid excessive denaturation of protein which can reduce the protein denaturation until 16%. Up to 93.2% reduction of the microorganisms also proved that spray drying is another form of sterilization.

ABSTRAK

Tujuan projek ini adalah untuk menyiasat penyahaslian protein dalam pengering semburan skala perintis. Terhasilnya penyahaslian protein adalah disebabkan oleh pengaruh luaran, seperti haba. Oleh hal yang demikian, projek ini menggambarkan proses perintis untuk mendapatkan pengasingan protein daripada dadih protein dalam bentuk serbuk melalui proses pengeringan semburan dengan kelarutan air yang telah dipertingkatkan serta sifat technofunctional dan juga mengurangkan kerosakan akibat terma. Eksperimen ini, termasuk mempelbagaikan suhu udara masuk seperti pada 100 °C dan 160 °C serta memanfaatkan pemikrokapsulan dengan menggunakan polisakarida terbitan kanji (atau dikenali sebagai maltodekstrin) untuk meminimumkan penyahaslian protein. Teknik Reversed phase HPLC (RP-HPLC) telah dilaksanakan bagi mengukur kehilangan kelarutan α -lactalbumin dan β lactoglobulin dalam sampel yang bersama dengan maltodekstrin serta tanpa maltodekstrin yang dihasilkan daripada pengeringan semburan larutan susu pada serokan suhu 100 °C dan 160 °C. Kombinasi maltodekstrin (MD) dan susu segar (FM) adalah pada nisbah standard FM / MD (9: 1) untuk menghasilkan serbuk yang bulat dan halus. Selain daripada kaedah RP-HPLC, kaedah digunakan SDS-PAGE juga untuk menganalisis kandungan protein. Morfologi daripada sebuk susu adalah diperiksa menggunakan Scanning Electron Microscopy (SEM) manakala saiz zarah produk susu boleh ditaksif dengan mudah dengan menggunakan Mastersizer model Scirocco 2000. Untuk menentukan bahagian dadih protein dalam sampel susu yang telah dikering semburan, kaedah Total Solid Content telah digunapakai. Selain itu, ujian pensterilan seperti pengesanan Salmonella sp. dan pengesanan Escherichia coli sp. bersama dengan ujian mikrob, di mana kaedah Standard Plate Count juga diterapkan. Proses pengeringan semburan ini penting terutamanya dalam mendorong beberapa kerosakan akibat terma tetapi hipotesis menunjukan bahawa pembentukan kerak yang mengakibatkan zarah pada suhu yang tinggi sementara mengekalkan teras yang lembap, bermungkinan membawa kepada penyahaslian berperingkat tinggi sehingga 55% pada suhu yang tinggi (160 °C). Kestabilan α -lactalbumin terbukti lebih tinggi berbanding dengan β lactoglobulin. Penyelidikan ini mendedahkan bahawa suhu yang rendah berserta dengan pemikrokapsulan adalah diperlukan untuk mengelakkan penyahaslian protein yang melampau dengan mengurangkan penyahaslian protein hingga 16%. Pencapaian 93.2% daripada pengurangan mikroorganisme juga membuktikan bahawa pengeringan semburan merupakan bentuk pensterilan yang berlainan.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

.

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xii
LIST OF EQUATIONS	xiii
LIST OF APPENDICES	xiv

1	INTRODUCTION	1
	1.1 Problem Statement	1
,	1.2 Objectives	2
	1.3 Scopes	2
	1.4 Rationale & Significance	2
	1.5 Thesis Outline	3
2	LITERATURE REVIEW	6
	2.1 Introduction	6

2.1.1 Literature review	7
2.1.2 Overview of literature review	8

vii

۰,

2.2 Proteins	15
2.2.1 Denaturation of Protein	17
2.2.2 Efforts for resolving	18
Denaturation of Protein	
2.2.3 Recommends for resolving	18
Denaturation of Protein	
2.3 Spray Dryer	19
2.3.1 Previous works on Spray Drying	19
2.3.2 Overview of previous works	24
2.3.3 Applications of Spray Drying	24
2.3.4 Features of Spray Drying	24
2.3.5 Principles of Spray Drying	25
2.3.5.1 Spray-air contact	26
2.3.5.2 Atomisation	27
2.3.6 Advantages of Spray Drying	29
2.4 Summary	30
METHODOLOGY	32
3.1 Introduction	32

3.1 Introduction	32
3.2 Spray Dryer	33
3.2.1 Experiment setup of Spray Dr	yer 34
3.2.2 Typical Spray Drying Systems	s 35
Operating Procedure	
3.3 Materials for Spray Drying and Ana	alysis 36
3.3.1 Milk samples	36
3.3.2 Protein standards	37
3.3.3 Chemicals for the solubility an	nalysis 37
3.4 Methods of Characterisation	41
3.4.1 Total solid content	41
3.4.2 Scanning Electron Microscopy	y (SEM) 41
3.4.3 Particle size analysis	42

3

Ś

3.5 RP-HPLC Analysis	43
3.5.1 Principles of reversed phase HPLC	44
3.5.2 RP-HPLC analytical procedure	45
3.5.3 Protein Standard Calibrations	47
3.6 SDS-PAGE	48

4	RES	SULTS AND DISCUSSION	49
		4.1 Expected Results	49
		4.2 Effect on Particle Size	50
		4.3 Effect on Powder Morphology	54
		4.4 Effect of Microorganisms	57
		4.4.1 Sterility test	57
		4.4.2 Microbial test	58
		4.5 Effect on Total Solid Content	60
		4.6 Protein Separation by SDS-PAGE	61
		4.7 Protein Separation by RP-HPLC	63
		4.7.1 α -Lac and β -lg	65
		4.7.2 BSA	67
		4.7.3 IgG and CMP	67
		4.7.4 Protein denaturation	67
		4.8 Summary	69
	5	CONCLUSIONS AND	70
		RECOMMENDATIONS	
		5.1 Conclusion	70
		5.2 Recommendations	70
		REFERENCES	71
		RELEVANT PUBLICATIONS	74
		APPENDIX A	75
		APPENDIX B	78

LIST OF TABLES

• .

TABLE NO.	TITLE	PAGE
2-1	2-1 Published Journal of Denaturation protein by using Spray –drying and their finding	
2-2	Published Spray –drying and their finding	20
4-1	Effect of spray dryer on the particle size	51
4-2	Effect of spray drying on sterilization	57
4-3	Standard Plate Count Method for samples before spray drying	58
4-4	Standard Plate Count Method for samples after spray drying	59
4-5	Comparison of existence of Salmonella sp. at before and after spray drying	59
4-6	Data's accumulation for calculation of percentage of total solid content	61
4-7	Individual protein area of each sample	63
4-8	Data of area and concentration for α -Lac standard curve	66
4-9	Effect of parameters on protein denaturation	68
4-10	Effect of microencapsulation with maltodextrin on protein denaturation	68

•

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1-1	Road map for the thesis	4
2-1	Protein structural level	16
2-2	Protein Denaturation	17
2-3	The process stage of spray drying	26
2-4	Flow patterns in spray drying	27
2-5	Spray nozzles	28
3-1	Structure of Chapter 3	32
3-2	Flow diagram of spray-drying operation	34
3-3	Operation of pilot scale spray dryer in FKKSA Lab	35
3-4	Schematic of protein denaturation study	36
3-5	Principal features of SEM of overall design	42
3-6	Schematic diagram of particle measurements	43
3-7	Scheme diagram of an RP-HPLC System	45
4-1	Effect on particle size (100°C)	51
4-2	Effect on particle size (160°C)	52
4-3	Effect on particle size (100°C with maltodextrin)	52
4-4	Effect on particle size (160°C with maltodextrin)	53
4-5	Effect of spray dryer on the particle size	53
4-6	SEM of spray dried powder (100°C)	55
4-7	SEM of spray dried powder (160°C)	55
4-8	SEM of spray dried powder (100°C with maltodextrin)	56
4-9	SEM of spray dried powder (160°C with maltodextrin)	56
4-10	Growth of Salmonella sp. on XLD agar	60
4-11	SDS-PAGE (standard, samples, and marker)	62
4-12	SDS-PAGE gel	62
4-13	RP-HPLC (samples and standards)	64
4-14	Standard curve of α -Lac using average area	66

LIST OF ABBREVIATIONS/TERMINOLOGY/ SYMBOL

°C	=	Degree Celsius
α-lac		α-lactalbumin
β-lg	=	β -lactoglobulin
BSA	=	Bovine Serum Albumin
CFU/ml	=	Colony forming Unit (Microbial test)
CMP	=	Caseinomacropeptide
ECSA	=	Electron Spectroscopy for Chemical Analysis
e.g.	-	for example
et al.		and others
hr	=	hour
IgG	=	Immunoglobulin G
i.e.	=	that is
LAWN	=	Result not clear (Microbial test)
LP	=	Lupin Protein
MCA	=	MacConkey Agar (Sterility test)
mAU.ml	=	Unit for protein area (HPLC analysis)
Pa	=	Pascal (pressure)
RP-HPLC	=	Reversed phase HPLC
SDS-PAGE	=	Sodium Dodecyl Sulfate - Polyacrylamide gel
		electrophoresis
SEM	=	Scanning Electron Microscopy
WPC	=	Whey Protein Concentrate
TNTC	=	Too many spots to be counted (Microbial test)
XLDA	=	Xylose, Lysine, Deoxychocolate Agar (Sterility test)

LIST OF EQUATIONS

EQUATION NO.	TITLE	PAGE

3-1	Percentage of total solid content	41
3-2	Percentage of denaturation	47

.

LIST OF APPENDICES

.

APPENDIX	TITLE	PAGE
А	Technical paper (abstract) for <i>BioMalaysia 2010</i> and <i>Pertandingan Rekacipta & Inovasi UMP 2010</i>	76
В	Notification for Official Approval of Patent's Application	79

1.1 Problem Statement

One of the problems associate with the spray drying process is that it is very hard to predict the quality of the product. The quality of product that describe here include the parameters such as moisture content, thermal degradation, aroma retention, shape and size of the particles, stickiness and so on. Firstly, recognised that a quality parameter in the end product is the result of what a particle experiences (temperatures and humidities) in the spray dryer and how it reacts to that (evaporation rate, thermal degradation rate).

The combination of factors that address the environment of a particle (air temperature, air humidity) is called the equipment model, while the set of factors that address the responses of a particle is called the feedstock model. Thus, the equipment model comprises the influence of the spray drying process on the quality of the product. In most cases, spray drying operates at a very high temperature up to 170°C which cause protein denaturation happened.

Denatured protein has little or no nutritional value. For example in 2004, up to 50 babies die due to malnutrition in China when the substandard baby milk which contained only 6% of the protein needed for a growing infant was consumed. Another incident of melamine issue (protein pretense) due to tainted baby formula kills three, sickens 6,000-plus children in China may also be prevented. The formula used the chemical (melamine) to give the product artificially high protein content.

Even though there are a huge number of studies on spray drying, unfortunately relatively few work has been reported on the effects of spray drying operating conditions on denaturation of proteins.

1.2 Objectives

- To establish a more favorable method for preserving protein content in milk during the spray drying operation.
- To develop a reliable analytical method for quantifying the protein content in milk powder.

1.3 Scopes

- (i.) To perform a spray drying of milk:
 - with and without microencapsulation
 - at various operating condition
- (ii.) To analyze the morphology, particle size distribution and protein content of milk powder.

1.4 Rationale & Significance

Spray-drying is one of the well established methods for producing dry powders in which an atomised spray is contacted with hot gas which is used as the drying medium. Evaporation takes place to yield dried particles, which are subsequently separated from the gas stream by a variety of methods (Masters, 1991). Currently, spray drying is the preferred method for producing whey proteins in powder form (Anandharamakrishnan et al., 2007). Normally, it comes at the endpoint of the processing line, as it is an important step to control the final product quality. It has some advantages such as, rapid drying rates, a wide range of operating temperatures and short residence times.

Proteins are known to suffer from denaturation process when exposed to high temperature over long period. Anandharamakrishnan et al. (2007) for instance, reported an increase rate in protein denaturation in a tall pilot scale spray dryer when the operating temperature increases. Protein denaturation during spray drying also reported by many authors (e.g. Matzinos and Hall, 1993; Mumenthaler et al., 1994; Prinn et al., 2002; Anandharamakrishnan et al., 2007).

This work attempt to establish a more favorable method for preserving protein content in milk during the spray drying by controlling the spray drying operating parameters and also by employing the microencapsulation technique.

Finding from this work is useful for production of high quality milk powder. A novel RP-HPLC method has been developed for protein analysis as the purpose of further milk formulation's development in Malaysia.

1.5 Thesis Outline

The outline of this thesis is presented as a schematic form as displayed in Figure 1.1, and the brief description of each individual chapters is showed at the remainder of this chapter.

Figure 1-1: Road map for the thesis

Chapter 2 describes literature review and research background of spray drying operation including the related fields of drying and atmospheric drying. It also involves proteins' properties along with technological challenges involved in the spray dried of whey protein.

Chapter 3 is a detailed description of research methodology or design for this research. It is mentioning about the various materials used and the methods of characterising the samples and standards. Furthermore, it includes product quality analysis techniques which are denaturation measurements by reversed phase HPLC (RP-HPLC/ RPC) methods. Particulate characterisation tests include total solid content, particle sizing, morphology (SEM) and microbial tests.

Chapter 4 is about the results and discussions of this research. The detailed report on experimental result along with the discussion of spray-drying milk powder is displayed at this chapter. The effects of process variables (outlet temperatures and employment of microencapsulation) on protein denaturation and also the effects on particle size, morphology, solid content and sterility is being discussed.

Chapter 5 gives the conclusion of this research where the contribution of main findings and also the recommendations for future work.

2.1 Introduction

Spray drying is the technology most widely used in the liquid technology shaping and in the drying industry. The drying technology is most suitable for producing solid powder or particle products from liquid materials, such as solution, emulsion, suspension and pump able paste states, For this reason, when the particle size and distribution of the final products, residual water contents, mass density and the particle shape must meet the precise standard, spray drying is one of the most desired technologies. The most important responsibility for an operator of a spray drier is to maintain constant moisture content of the powder. This is required to meet legal standards and for maintaining a uniform quality.

Average operating conditions for spray drying will vary somewhat depending upon the dryer system used and must be adjusted to produce the desired uniform moisture content. It is important to understand how the final moisture content can be controlled by changing the conditions. But first, it should be noted that the final moisture content is controlled by the relative humidity of the outlet air. If that value is too high, then the powder particles will absorb moisture rather than give moisture away.

The primary conditions which may be controlled directly by the operator are inlet temperature (setting of thermostat), flow rate of liquid feed (pump speed and pump pressure), air flow rate (fan speed and position of baffles), particle size (adjustment of atomizer). Among other operating conditions, outlet temperature and relative humidity of the outlet air are particularly important and need careful attention. However these can only be indirectly controlled by adjusting the primary conditions. For outlet temperature, the condition is dependent upon liquid feed intake. If the feed intake is increased, the outlet temperature will drop. If the intake is reduced, the outlet temperature will increase and approach the inlet temperature. The outlet temperature will also be affected by the air flow rate. For a constant inlet temperature and constant feed intake, an increase in the air flow will raise the outlet temperature.

2.1.1 Literature review

Spray drying has become the most important method for dehydration in the Western world. Drying is the oldest method of preserving food. In ancient times, man froze seal meat on ice in frozen climates and in tropical climates he dried food under the sun. The first artificial drying of food was recorded in the 18th century (Anandharamakrishnan et al., 2008). A British patent on drying of vegetables was issued in 1840 and dried vegetables produced in Canada were shipped to South Africa for the British forces in the Boer War in 1899 – 1902 (Vanarsdel and Copley, 1963).

However, the technology has been expanded to cover a large food group which now is being successfully sprayed dried. Relatively high temperatures are needed for spray drying operations. Nevertheless, heat damage to products is generally only slight, because of an evaporative cooling effect during the critical drying period and because the subsequent time of exposure to high temperatures of the dry material may be very short. The typical surface temperature of a particle during the constant drying zone is 45-50 °C. For this reason, it is possible to spray dry some bacterial suspensions without destruction of the organisms.

2.1.2 Overview of literature review

The physical properties of the products are intimately associated with the powder structure which is generated during spray drying. It is possible to control many of the factors which influence powder structure in order to obtain the desired properties (Richert, 1974). The advanced techniques measurements have been used for this purpose; however those advanced measurements have limitation because, measurements of air flow, temperature, particle size and humidity within the drying chamber are very difficult and expensive in large scale spray dryers. (Anandharamakrishnan et al. (2007). Several researchers (e.g. Kelly et al., 1998; David et al., 2004; Paul et al, 2004; Alessandra et al., 2005; Rong Reynolds, 2005; Sodini et al., 2006; Anandharamakrishnan et al., 2008) had carried out detail measurement of analysis on protein content for products obtained from spray dryer chamber using High Performance Liquid Chromatography.

The table of the comparison of journals for denaturation of protein by using Spray –drying with the focus of their findings is shown in Table 2.1.

Burke et al. (1984)	Matthews (1983)	Modler and Emmons (1976)	Richert (1974)	Author Eskew et al. (1957)	Table 2-1:
Darbepoetin alfa (NESP, Aranesp®).	Whey proteins in base milk products (cheese and casein)	Serum proteins in cheese whey	Whey proteins in dairy products	Protein Type Whey proteins in fresh pasteurized milk.	Published Journal o
Focus on amount recovered by denaturing instead of temperature.	At least 90°C for maximum yields	 Heating of the HCl (acidified whey was at 90 °C ± 2 °C) Cooling of temperature from 50 °C to 63°C (measured at 25 °C) 	 Precipitation temperature (30 to 35 °C) Heating temperature (44 to 46 °C) 	Temperature 73, 100, and 190°F.	f Denaturation protein by us
• •	• •	• • • •	• • • •		ing (
Size-Exclusion Chromatography Western blot	Ultrafiltration Gel Filtration	Micro-Kjeldahl procedure (Nitrogen determination) Mojonnier procedure(Fat content determination) Vacuum-oven method (moisture determination) Mojonnier procedure (solids content of liquid samples determination)	Precipitation Ultrafiltration Gel filtration Electrodialysis	alytical Methods racentrifugal tests	Spray –drying and their find
Spray drying, conducted at pilot scale with commercial equipment, is comparable to spray-freeze drying for encapsulation of darbepoetin alfa.	Yields are normally low, particularly for highly purified products. The total capital cost is high for most of these processes, regardless of the cost of the protein recovery step itself, because of costs of ancillary plant.	 Protein recoveries in the range of 35% to 53% (No iron added) are low and of questionable value to potential whey processors. Low protein recovery was accounted for on the basis of incomplete protein denaturation/aggregation during heating in an acidic environment (7, 8, 10, 17). In view of the unique functional properties of WPC prepared by this process, additional studies will evaluate alternative means of recovering whey proteins. 	Production rates increase with temperature due to greater ion mobilities, but this, again, is limited by the temperature sensitivity of the membranes and whey proteins.	Remarks The value of foam drying as a means for improving the dispersibility of other dry fat-containing milks is discussed.	ding

9

•

	Remarks	Phycocyanin fraction provide a food colourant and biomarkers, and a protein-rich leftover useful as aquaculture feed.	• Succeeded in correlating the effects of process parameters of this technically advanced pilot plant (Tall-form drier) with the physicochemical properties of powders containing varying fat (20-80%) and protein contents	• The free fat content of powders may now be controlled much more precisely using an appropriate combination of total fat, atomiser nozzle selection and post-drying blending.	 Spray-drying whey protein concentrate (WPC) without sugars resulted in a dramatic decrease in the foam stability, whereas drying in the presence of sugars gave better retention of the original foaming properties 	 Microencapsulated fat powders were developed and optimised to suit various baking applications. Free fat was found to have the greatest effect on the Properties of the bread.
6 optag august and mon n	nalytical Methods	Activated charcoal adsorption, ultrafiltration and spray drying (for high quality colourant grade phycocyanin) Activated charcoal adsorption, ammonium sulphate precipitation, dialysis&chromatography (for preparing reagent grade phycocyanin)	Reversed phase HPLC Infra-red spectroscopy Enzymatic assay.		Ultrafiltration Gel filtration	Microencapsulated for fat powder performance
men formante mannen	Temperature A	Temperature not specified • in mentioning.	• <i>preheat temperatures</i> : • 75°Cx15 s; 97.5°C x 15 s; • and 120°C x 2 min	• inlet air temperatures: 170°, 187.5° and 205°C	 Air-dried, at 78 or 88 °C 	 Not specified (more emphasize on free fat content in ranging from 2
	Protein Type	Spirulina biomass	Whey proteins in skim milk powder		 Pure Proteins Bovine Serum albumin (BSA) β-lactoglobulin 	Milk protein hydrolysates
	Author	Herrera et al. (1989)	Kelly et al. (1998)		Brent et al. (1999)	Keogh et al. (2000)

.

Table 2-1: Published Journal of Denaturation protein by using Spray –drying and their finding (Cont'd)

Author	Ductois T.	Ē		
Maa Y-F et 1. (2000)	Protein/Peptide- based drug formulations	Lemperature Not specified (more emphasize on summarize of methods available for protein powder preparation)	 Analytical Methods Lyophilization, spray drying, pulverization, and precipitation (common methods) Supercritical fluid precipitation, spray-freeze drying, fluidized-bed spray coating and emulsion precipitation 	Remarks To evaluate each method from a more practical sense in terms of process versatility and scalability To examining the individual process effect on protein stability that is always the focus of formulation scientists
conrad et al. 2000)	β-lactoglobulin (β-lg)	More focus on characterization of physicochemical properties instead of temperature.	 Electrophoresis Fast protein liquid chromatography (FPLC) 	• The isolated β -lg retained a high degree of purity and native properties
emondetto t al. (2001)	Soybean proteins	 65°C 80°C 95°C 	 Isoelectric precipitation SADH 205 model Westfalia centrifuge (Westfalia, Oelde, Germany) Basket Type Centrifuge 	The hydration properties of soybean isolates obtained at pilot plant scale and different processing variables showed good correlation between one another and also with the degree of denaturation.
nna et al. 001)	whey protein isolate (WPC-80)	 No pre-heating 60 °C - 90 °C 	ESCASEM	The heat-treatments of WPC affect the functional properties of the spray dried powders
emondetto al. (2002)	Protein from Soy	Temperature range of 6775° C	Surface Response Methodology	Existence of a critical temperature above which the rupture of disulphide bonds would increase the molecular flexibility

Table 2-1: Published Journal of Denaturation protein by using Spray –drying and their finding (Cont'd)

ble 2-1: Published Journal of Denaturation protein by using Spray –drying and their finding (Cont'd)	r Protein Type Temperature Analytical Methods Remarks	 et al. Soy protein Optimized conditions of Soy protein fractionation Optimized conditions yielded more β-conglycinin with higher isoflavone and saponin concentrations , but fraction purity purity 20 °C. Previous conditions of Reversed phase HPLC was diminished by glycinin contamination 	et al. Darbepoetin alfa Comparison of product • Size-Exclusion Spray drying, conducted at pilot scale with commercial (NESP, yielding between spray Chromatography equipment, is comparable to spray-freeze drying for drying instead of thermal properties.	 Indra Obtaining protein Ultra filtration with 40 °C (Initial Process) White lupin seed Ultra filtration at cold Analysis. Analysis. Protein I.DPI-F, which may be useful when foam production and stabilization are required. Protein I.DPI-F, which may be useful when foam production and stabilization are required. The effort dedicated to the careful selection of the process parameters, especially during spraydrying, permitted thermal damage to be limited to levels, which is comparable to other food ingredients to be production. 	 d et β-lactoglobulin A, o) Preheating temperatures o) P-lactoglobulin B, (70 °c - 120 °c for 52 s) o) P-lactoglobulin B, (70 °c - 120 °c for 52 s) o) P-lactoglobulin B, (70 °c - 120 °c for 52 s) (1993a) o) the denaturation of whey protein o) the denaturation o) the denaturation o) the denaturation of whey protein o) the denaturation o) the dena
Table 2	Author	David et a (2004)	Paul et a (2004)	Alessandra et al. (2005)	Oldfield e al. (2005)

	Remarks The addition of trehalose (high glass transition temperature)similarly protects the IgG during spray-drying	 The addition of lactose into the complexes would yield higher recovery of vitamins from spray drying. Both lights and acidity lead to the quick degradation of vitamin A in the beverage. 	• UF-retentate showed highest thermal stability under acidic conditions followed by freeze dried WPC and spray dried WPC.	 Whey buttermilk showed stable levels of protein solubility, emulsifying capacity, and viscosity. Sweet or cultured buttermilks, rich in casein, had lower solubility and emulsifying capacity, and a higher viscosity at acidic pH (pH < 5). 	 Solution of WP-P₁₃₈ spray-dried powder, obtained using the highest air temperature conditions, has higher foaming properties than WP-P₈₅ and WP-L solutions. WP-P₁₃₈ powder exhibited lower moisture and free lactose contents, a higher particle internal porosity, and a thinner particle wall thickness than the WP-P₈₅ powder. 	Particle recovery depended on the inlet temperature of the drying air, whereas the particle size was affected by the feed rate and the alginate concentration of the feed solutions.
In and and an and and an	nalytical Methods Fourier Transformation Infra-Red Spectroscopy	HPLC analyses. (Determination of content of vitamins in the powder complexes)	Ultrafiltration UF-retentate	Kjeldahl method Mojonnier Ether Extraction Method HPLC	Tryptophan Emission Wavelength Column Foam Air Injection Video-Foam Images	 Confocal Laser Scanning Microscope Bradford Modified Method(Coomassie Kit, Pierce, Fisher, Canada)
	Temperature A Inlet (130°C) & outlet air • temperatures (190 °C) •	Incubated at 40 °C for 2 hr.	pH behaviour is in • investigating with pH 3.5 • (max) & pH 4.5(min) instead of thermal behavior.	pH is specified in this • research (4 -6) instead of • temperature for whey protein.	Two inlet/outlet air temperatures as below : i.) 170/85 °C ii.) 260/138 °C	• T_{inlet} from 125 ° C to • 175 °C • T_{outlet} from 63 °C - 81 • °C
E	Frotein Type Immunoglobulin G (IgG)	 β-Lactoglobulin- Vitamin A β-Lactoglobulin- Vitamin D 	 Whey protein 	whey buttermilk	Whey proteins: i.) WP-P ₈₅ ii.) WP-P ₁₃₈ iii.)WP-L	Alginate/protein solutions
A	Autnor Michael et al. (2005)	Rong Reynolds (2005)	Ashish et al. (2006)	Sodini et al. (2006)	Perla et al. (2007)	Burak (2007)

Table 2-1: Published Journal of Denaturation protein by using Spray –drying and their finding (Cont'd)