PET FEEDER WITH NODEMCU USING MOBILE APPLICATION

MUHAMMAD SODIQ AMIN BIN MOHAMD ISA

BACHELOR OF COMPUTER SCIENCE (COMPUTER SYSTEMS AND NETWORKING)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT			
Author's Full Name :	: MUHAMMAD SODQ AMIN BIN MOHAMD ISA		
Date of Birth :	29 APRIL 1994		
Title :	PET FEEDER WITH NODEMCU USING MOBILE		
	APPLICATION		
	2018/2019		
I declare that this thesis is	s classified as:		
□ CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1997)*		
□ RESTRICTED	(Contains restricted information as specified by the		
☑ OPEN ACCESS	organization where research was done)* I agree that my thesis to be published as online open access (Full Text)		
I acknowledge that Unive	ersiti Malaysia Pahang reserves the following rights:		
 The Thesis is the Property of Universiti Malaysia Pahang The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange. 			
Certified by:			
(Stylent's Constant	a) (Sumarriaan's Signatura)		
(Student's Signatur	e) (Supervisor's Signature)		
940429-05-5371 Date: 12 DEC 2018	DR. WAN ISNI SOFIAH Date: 12 DEC 2018		
NOTE : * If the thesis is CON	FIDENTIAL or RESTRICTED, please attach a thesis declaration letter.		

THESIS DECLARATION LETTER (OPTIONAL)

Librarian, *Perpustakaan Universiti Malaysia Pahang*, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three (3) years from the date of this letter. The reasons for this classification are as listed below.

Author's NameMUHAMMAD SODIQ AMIN BIN MOHAMD ISAThesis TitlePET FEEDER WITH NODEMCU USING MOBILE APPLICATION

Reasons (i)

(ii)

(iii)

Thank you.

Yours faithfully,

(Supervisor's Signature)

Date: 12 DEC 2018

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, *Perpustakaan Universiti Malaysia Pahang* with its copy attached to the thesis.

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project, and, in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer Science (Computer Systems & Networking).

(Supervisor's Signature)

Full Name: DR WAN ISNI SOFIAH BINTI WAN DINPosition: LECTURERDate: 12 DECEMBER 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature)

Full Name : MUHAMMAD SODIQ AMIN BIN MOHAMD ISA

ID Number : CA15052

Date : 12 DECEMBER 2018

PET FEEDER WITH NODEMCU USING MOBILE APPLICATION

MUHAMMAD SODIQ AMIN BIN MOHAMD ISA

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Computer Science (Computer Systems and Networking)

> Faculty of Computer Systems & Software Engineering UNIVERSITI MALAYSIA PAHANG

> > DECEMBER 2018

ACKNOWLEDGEMENTS

"In the Name of ALLAH, Most Gracious, Most Merciful and big Gratitude to Prophet Muhammad SAW"

Alhamdulillah, praises and thanks to Allah because of His Almighty and His utmost blessings, I was able to finish this project within the time duration. Firstly, my special thanks to my supervisor, Dr Wan Isni Sofiah binti Wan Din for the ideas, patience, motivated advices, constructive criticism, spending times, morale support and guiding me throughout every process in completion of this project.

Special appreciation also goes to my beloved parents and whole family especially my mother, Rosmawati binti Abdul Rashid for her understanding and always prays for my success to reach this path of study.

Last but not least, I would like to give my gratitude to all my lecturers and my entire classmate friends that involve in discussion, sharing idea and knowledge, brainstorming together and also help and support me to complete my every task on this project.

May Allah S.W.T bless all of you. Thank You.

ABSTRAK

Pada masa kini, haiwan peliharaan dianggap sebagai teman hidup. Walau bagaimanapun, mengurus haiwan peliharaan kadangkala adalah tugas yang berat untuk pemiliknya terutama apabila tiada seorang pun di rumah. Kebanyakan pemilik haiwan kesayangan tidak boleh tinggal di rumah setiap kali untuk memberi makan haiwan mereka dengan kerap, namun haiwan kesayangan mereka perlu diberi makan sepanjang hari. Oleh itu, dengan pembangunan Pemberi Makanan Haiwan menggunakan NodeMCU dan Aplikasi Mudah Alih akan mengatasi masalah ini. Sistem ini akan membantu dan membenarkan pemilik dari jauh memberi makan haiwan mereka pada masa tertentu tanpa perlu hadir di lokasi pemakanan. Bagi membangunkan system ini, kaedah yang digunakan ialah Air Terjun Iteratif. Kaedah ini dibahagikan kepada empat fasa bermula dari Analisis Keperluan, Reka Bentuk, Pelaksanaan dan Pengujian. Metodologi Air Terjun Iteratif akan menghasilkan perisian yang berfungsi dengan cepat dan awal dalam perisian kitaran hayat Seterusnya, haiwan kesayangan dapat menikmati makanan mereka tanpa kehadiran pemilik sementara pemilik dapat menikmati kerja dan perjalanan tanpa perlu khuatir tentang memberi makan haiwan peliharaan mereka. Projek ini berjaya di bangunkan yang membolehkan pemilik memberi makanan haiwan mereka jauh dari rumah dan haiwan peliharaan dapat menikmati makanan pada waktu yang tepat.

ABSTRACT

Nowadays, pets are considered as a life companion. However, managing pets sometimes is such a nuisance task for the owner especially when no one is at home. Most pet owners cannot stay at home every time to feed their pet regularly, yet their pets need to be fed throughout the day. Therefore, with a development of Pet Feeder with NodeMCU using Mobile Application will overcome this problem, this system will assist and allow owner to remotely feed their pets at a specific time without having to present at the feeding location. Iterative Waterfall method has been used to develop this system. This method is divided into four phases starting from Requirement Analysis, Design, Implementation and Testing. Iterative waterfall methodology will produce software that works quickly and early in the life cycle software. Next, pets can have their food without the present of owners while owners can enjoy works and travelling without having worries about feeding their pets. This project has been successfully developed which enable owners to feed their pets remotely away from home and pets gets food at the right time.

TABLE OF CONTENT

DEC	LARAT	TION	
TITI	LE PAG	Ε	
ACK	NOWL	EDGEMENTS	ii
ABS	TRAK		iii
ABS	TRACT		iv
TAB	LE OF	CONTENT	v
LIST	T OF TA	BLES	viii
LIST	T OF FIG	GURES	ix
LIST	OF AB	BREVIATIONS	x
СНА	PTER 1	I INTRODUCTION	1
1.1	INTR	ODUCTION	1
1.2	PROB	BLEM STATEMENT	2
1.3	OBJE	CTIVE	2
1.4	SCOP	Έ	3
1.5	REPO	ORT ORGANIZATION	3
CHA	PTER 2	2 LITERATURE REVIEW	5
2.1	INTR	ODUCTION	5
2.2	EXIS	TING SYSTEMS	5
	2.2.1	Smart Dog Feeder Design Using Wireless Communication, MQTT and Android Client	5
	2.2.2	GEMPET PF-103 SmartFeeder	7
	2.2.3	Automatic Fish Feeder System Using PIC Microcontroller	8

2.3	COMPARING THE EXISTING SYSTEM	
2.4	CONCLUSION	
CHA	PTER 3 METHODOLOGY	11
3.1	INTRODUCTION	11
3.2	PROJECT METHODOLOGY FRAMEWORK	11
3.3	OVERVIEW OF METHODOLOGY	13
3.4	REQUIREMENT GATHERING AND ANALYSIS	14
	3.4.1 Feasibility Study	14
	3.4.2 Hardware and Software Comparison	15
3.5	DESIGN	18
	3.5.1 Context Diagram	19
	3.5.2 Data Flow Diagram	20
	3.5.3 Hardware and Software Specification	21
	3.5.4 General Process Flow Diagram	26
3.6	IMPLEMENTATION	27
	3.6.1 Project Timeline	28
3.7	PROTOTYPE	28
3.8	TESTING	28
3.9	SUMMARY	29
CHA	PTER 4 RESULTS AND DISCUSSION	30
4.1	INTRODUCTION	30
4.2	IMPLEMENTATION REQUIREMENTS	30
	4.2.1 Implementation of Database	31
	4.2.2 Implementation of Hardware	32

APPE	APPENDIX B Coding	
APPE	NDIX A Gantt Chart	45
REFE	RENCES	43
5.4	CONCLUSION	42
5.3	RECOMMENDATION	41
5.2	LIMITATION OF THE PROJECT	41
5.1	INTRODUCTION	41
CHAI	TER 5 CONCLUSION AND RECOMMENDATIONS	41
4.5	SUMMARY	40
4.4	CONCLUSION	40
	4.3.1 Development of Mobile Application	36
4.3	PROJECT TESTING	36

LIST OF TABLES

Table 2.1	Comparisons between Existing Systems	9
Table 3.1	Project Methodology Description	13
Table 3.2	Comparison of Servo Motor	15
Table 3.3	Comparison of Power Supply	16
Table 3.4	Comparison of Device.	16
Table 3.5	Comparison of Sensor.	17
Table 3.6	Comparison of Mobile Platform.	17
Table 3.7	Comparison of Code Implementation.	18
Table 3.8	Hardware Requirement Description	21
Table 3.9	Software had been used	25

LIST OF FIGURES

Figure 2.1	Diagram of Smart Dog Feeder.	6
Figure 2.2	GEMPET SmartFeeder.	7
Figure 2.3	Mechanical Design of the system.	8
Figure 3.1	Iterative Waterfall Methodology.	12
Figure 3.2	Context Diagram for Pet Feeder	19
Figure 3.3	Data Flow Diagram (DFD) for Pet Feeder	20
Figure 3.4	NodeMCU ESP8266 Wi-Fi Controller Board ESP-12.	22
Figure 3.5	NodeMCU GPIO pin.	23
Figure 3.6	Servo Motor MG995.	23
Figure 3.7	Servo Motor rotation calculation.	24
Figure 3.8	Battery 6V Holder.	24
Figure 3.9	Ultrasonic Sensor HC-SR04.	25
Figure 3.10	Pet Feeder data flow diagram.	27
Figure 3.11	Project timeline.	28
Figure 4.1	Firebase Get Started Web Page.	31
Figure 4.2	Firebase Authentication Data.	32
Figure 4.3	Pet Feeder connected circuit.	33
Figure 4.4	Arduino IDE Windows Application	34
Figure 4.5	Void setup program code.	35
Figure 4.6	Void food_qty_state() functions.	35
Figure 4.7	Homepage.java code in Android Studio.	36
Figure 4.8	First page for Mobile Application.	37
Figure 4.9	Homepage for Mobile Application.	38
Figure 4.10	Add Pet info page.	39
Figure 4.11	Feeding timer for pet.	39

LIST OF ABBREVIATIONS

PWM	Pulse Width Modulation	
GPIO	General-Purpose Input Output	
RM	Ringgit Malaysia	
DC	Duty Cycle	
MQTT	Message Queuing Telemetry Transport	
RFID	Radio-frequency Identification	
JSON	JavaScript Object Notation	
SSL/TLS	Secure Sockets Layer / Transport Layer Security	
IOS	iPhone OS	
CPU	Central Processing Unit	
PIC	Peripheral Interface Controller	
V	Voltage	
GPRS	General Packet Radio Service	
GSM	Global System for Mobile communications	
QFN	Quad-Flat No-Leads	
OS	Operating System	
RAM	Random-Access Memory	
ТВ	Terabyte	
HDD	Hard Disk Drive	
IDE	Integrated Development Environment	
DFD	Data Flow Diagram	

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Cats are the most popular pets (Hodgson & Barton, 2015) among other animal where people having them as a companion in daily life. There are many types of cats in this world, such as British Short Hair, American Short Hair, Bengal cat, Persian cat and many more. Number of cats that being pet are increase from day by day especially in Malaysia.

Many commitments are requested to keep pets while there are families do not always have the right knowledge to manage them (Russo, Vergnano, Bergero, & Prola, 2017). Part of it are concern, keeping them company, and the important one is feeding pets in the right way and on the time. However, taking care of pet's diet can be hard and time consuming because not everyone is a pet expert. One of the top health concerns of pets are overeating and obesity. Just as in humans, excessive fat in pets increases the risk of often-preventable health conditions (Increase et al., 2015). Especially at younger age, they are usually satisfied with whatever much is given to them.

Pet Feeder with NodeMCU using Mobile Application is the system that can help the pet's owner to feed their pet either using mobile application or manual feeding. This system also has function that can feed pet, schedule feed, save pets name and check the quantity of food left on the container.

1.2 PROBLEM STATEMENT

In this globalization era, people are tending to spend most of their plenty time outside their house. A companion like a pet are seem needed in our daily life as a stress takes a toll on our life. Such an irony, a pet can company their owner and fulfil their need, but the owners themselves are not able to prepare their pets' priority such as food and water. Pet owners had been facing with the problem due to how they can feed their pet properly when they are not at home.

Pet owners are being warned that having a pet means they have contributed extra commitment to give the best support and care to them. Based on industry revenue, there are increasing demand in Asian markets for quality pet food (Balzer, 2015). Unfortunately, there are certain pet owners did not have much energy or time to fulfil their pets' food because owners might not always be at home regularly. Their personal plan is like travelling and working, will cause them dilemma. The dilemma deal by the pet owners can tend to unforeseen animal abuse due to lack of feeding. Other than that, pet owners may find themselves making troubling their families and friends to babysit their pet while they are away, which manage be unsuited after some haunt requests.

The Pet Feeder with NodeMCU using Mobile Application will be able to help both owners and their pets happy. It is designed to make sure the problem that all pet owners are facing will be ended. It may provide awareness to pet owners of its advantages and feasibility in the future, with the opportunity that similar Pet Feeder with NodeMCU using Mobile Application are not common in Malaysia.

1.3 OBJECTIVE

Goals that are intended to be achieved on this project is to develop a Pet Feeder with NodeMCU using Mobile Application. The main objective are the specific actions that need to be achieved on this research which deeply focus on aspect as below:

- (i) To investigate the existing product of pet feeding.
- (ii) To design Pet Feeder with NodeMCU using Mobile Application.

(iii) To evaluate the performance of the Pet Feeder with NodeMCU using Mobile Application.

1.4 SCOPE

Scope is a principal element to make sure this project achieves their objective. Moreover, scope of this project has been agreed upon discussion. The agreed scope of this projects is:

(i) User Scope:

For the user scope, it was limited for the cat only. It is because Pet Feeder with NodeMCU using Mobile Application must be tested on the pet, and the only pet that available to be testes are cat only.

- (ii) Function available:
 - a. Manual feeding

Pet owner can feed their pet manually when they are in the home with only pressing the button on Pet Feeder.

b. Automatic feeding.

Pet owner can feed their pet automatically when they are not in the home using mobile application.

c. Schedule feeding.

Pet owners can feed their pet schedulable when there are in or not in the home to prevent from forget to feed them.

1.5 REPORT ORGANIZATION

This project consists of five chapters. Chapter 1 consist of introduction about this project and continue with the problem statement which identified where it leads to the development of the solution system discusses on the project. Then, it will follow with the objective of this project. Lastly is the scope and thesis organization about this project.

Chapter 2 discusses on the literature of the project. Literature review will be explained in more details about this system that includes the introduction, method and techniques or technologies which are suitable to be used into this project.

Chapter 3 is about the project methodology that will be used to develop to this research. Furthermore, this chapter will discuss the software or hardware that will be used to implement to this project. It also discussed how to analysis and design of this project.

Chapter 4 discusses on the implementation, testing and result discussion. This chapter explains on how the system been implemented according to the requirements. This chapter then discusses the test cases done for this system to ensure that the systems requirement is verified and validated so that it is free from any bug. The test results then are stated here.

Chapter 5 discusses on the conclusion of the project. This chapter includes the introduction which concludes the project that have been done, research constraints which includes the clarification on the constraints throughout the project and the future work of this prototype system.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter is about literature review which is focusing on technology consideration and related works. Literature review is about any article or papers which involve the exploration topic in an effective technique. This chapter has cover on the Pet Feeder background information. The development of a pet feeder has been described and discussed in detail to assist readers in their understanding of the project. Moreover, discussion about pet feeder has been described further on. Some related works have also been presented to the readers to share some past and recent progress made. After reviewing many articles and journal, many of researches and papers are collected as references.

2.2 EXISTING SYSTEMS

Existing systems refers to another project developed by others. It can be any commercialized products that related to this project regardless of its technology. It is used to make comparison between the existing product and the product that will develop later. The comparison is being viewed by the advantage and disadvantage of the product.

2.2.1 Smart Dog Feeder Design Using Wireless Communication, MQTT and Android Client

Smart Dog Feeder provides general feeding process without troublesome the owner. Owners can control the process of feeding using Android smartphones remotely. In Figure 2.1, Smart Dog Feeder can authenticate pet using RFID technology, monitor the time of feeding and portion. Android smartphone is the platforms where the owner can set the feeding time, portion, waiting time and stock that require least requirement of Android's latest operating systems, along with the other application installed. MQTT

protocol is used by this feeder that has info about data stock, timetable, time, name of the owner from server.

Figure 2.1 Diagram of Smart Dog Feeder. Source: Vania, Karyono & Nugroho (2017)

The data will be directed in the form of JSON and controlled by this feeder, server and Android. This feeder interconnects with server through ESP8266 Wi-Fi module circuit boards, NodeMCU, along with MQTT protocol over SSL/TLS. This feeder also will record the timetable and trigger an alert that can intercept when feeding time is due. Validation method is done by the RFID tag who done the checking that attached on dog's collar.

Strengths of Smart Dog Feeder are;

1) Allow owner to remotely feed the dog without having to present at the feeding location using Android smartphone.

2) The system has the function of RFID to authenticate dog, set feeding time and portion which ease owner in feeding process.

However, this Smart Dog Feeder system only supports Android smartphone lower version. Therefore, it is clearly defined that this product does not compatible with the Android newest version. Thus, owner who does not have latest Android version smartphone cannot use of this Smart Dog Feeder system.

2.2.2 GEMPET PF-103 SmartFeeder

Refer to Figure 2.2, GEMPET SmartFeeder allows user to program and control the automatic feeder anytime from anywhere with user's smartphone. First, users must download the free SmartFeeder App which is compatible with Apple IOS, Androids and tablets. GEMPET SmartFeeder works even if it is disconnected from Wi-Fi, it will automatically change the setting to "Offline Feeding Model" to serve the food according to the programmed schedule.

Figure 2.2 GEMPET SmartFeeder. Source: Jempet (2018)

The unit dispenses at least of 30 grams and up to 100 grams. The application allows user to monitor the quantity of food dispensed each time. The feeder features a real-time camera, so user can lookout and communicate with their pet anytime from everywhere. The 1-megapixel camera archives your pet's movement at any time. The feeder is appropriate for users who currently using smartphone with iOS 7.0 and above or Android 4.0 and above. It is recommended for owner who is feeding a single cat which is not too obsessed with food and only operates with sized rounded kibble which is the disadvantage of this feeder.

However, this feeder does not work well with big shaped kibble indicate that this feeder is only applicable for small size of pet. This is due to chute may get blocked if the owner feed a big meal, it because of kibble's size is too big.

2.2.3 Automatic Fish Feeder System Using PIC Microcontroller

This device developed combines mechanical and electrical system in controlling fish feeding activity as shown in Figure 2.3. The pellets controlled by DC motor which located under the pellet storage. A control system was then attached to this device allowing the fish to be fed at the right cycle time as required or predefined by user or entrepreneur. Timer was employed in this device to control the motor rotation attached to sphere former, which dispense the pellets into the water. The pellets dispensed into the marking area of the pond based solely on the rotation speed of the motor itself. The controller came with a keypad giving user more option in determining the suitable speed for the motor depends on their cattle.

Figure 2.3 Mechanical Design of the system. Source: Noor, Hussian, Saaid, Ali, & Zolkapli (2012)

The design of this system comprised four main part namely main controller, pellet storage, stand and spreader. The controller of this system, a 4x4 Keypad functional as input device which provided the user abilities to set timer and motor speed to spread the pellet into the water. Apart from that, LCG display played a significant role in illustrating the data entered by the user before DC motor start to operate. PIC 16F886 controller was employed as main controller output of DC motor. L293D motor driver which work with PWM (Pulse Width Modulation) technique are to control the speed rotation of DC motor. All appropriate components used in hardware design stage were assembled to set up the feeding device. This system was simple in construction and operation, also relatively inexpensive.

The advantages of this device are it is effective because easy to feed the fish at the right cycle time. These devices also reduce the owner to hire more workers and reduce the time needed.

2.3 COMPARING THE EXISTING SYSTEM

The comparisons between Smart Dog Feeder Design Using Wireless Communication, GEMPET PF-103 SmartFeeder and Automatic Fish Feeder System Using PIC Microcontroller are shown in Table 2.1.

No.	Project Title	Similarities	Differences
1	Smart Dog Feeder	Allows owner to	Existing project: This system
	Design Using	remotely feed the pet	only supports Android
	Wireless	without having to	smartphone lower version.
	Communication	present at the	Proposed project: Supports
		feeding location	lower and newest Android
			operating system on
			smartphone.
2	GEMPET PF-103	Allows user to	Existing project: Does work
	SmartFeeder	control the automatic	well with big shaped kibble,
		feeder from	only applicable for small size
		anywhere by using a	of pet.
		smartphone	Proposed project: Compatible
		application	to all type of pet
3	Automatic Fish	Allow user to set	Existing product: Does not
	Feeder System	timer to	have mobile application to
	Using PIC	automatically feed	control the timer.
	Microcontroller	the fish	Proposed project: Build the
			mobile application to easier
			owner set timer.

Table 2.1Comparisons between Existing Systems

2.4 CONCLUSION

In conclusion, this chapter shows the existing technology that is related to Pet Feeder development. Based on the research conducted, vital problem faced by the owner such as owner cannot feed their pet remotely. The advantage of this research is many webpages provide adequate functions as many owners need. Based on the analysis on related works, this pet feeder has been widely developed but improvements can be done by using different method, hardware and software. Study on existing hardware and software indicates that it is suitable for daily use and user friendly.

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter cover the methodology used to achieve the objective of proposed project which is to develop a Pet Feeder with NodeMCU using Mobile Application. Iterative waterfall model was chosen as this project methodology approach which consist of requirement analysis, design, implementation and testing phase. Apart from discussing about the method used, this chapter also discuss about how the research is going to be conducted hence the flow and the progress of the project.

3.2 PROJECT METHODOLOGY FRAMEWORK

The project methodology framework used for this project is Iterative Waterfall Model. It is divided into four phases starting from Requirement Analysis, Design, Implementation and Testing. Winston W. Royce first described the Systems Development Lifecycle based on the Waterfall Model in 1970 (Kramer, 2018). This model provided practical guidelines for developing software product and became popular. Its name is derived from structural specification. Every phase comes after a phase is completed and tasks can be divided according to phases. The output of one phase becomes input of next phase but have the option to revisit phases in the next cycle (Trivedi & Sharma, 2013).

Figure 3.1 Iterative Waterfall Methodology. Source: Tony. (2018, April 14)

Iterative waterfall methodology was chosen of this project methodology process. This methodology preferred in this project is because it is appropriate and suitable since it allows a turn back to previous phase when it detects error or needs some troubleshooting. By referring to Figure 3.1, it consists of repeating the four phases which are Requirement Analysis, Design, Implementation and Testing.

The advantage of using this iterative waterfall model is its flexibility since it does not require much cost to change scope and requirements. Moreover, each of the iteration is easy managed milestone. Other than that, by using this iterative waterfall methodology as the methodology method, when preparing or developing the project, it is easy in terms of testing, troubleshoot during a smaller phase. For the risk, it is easy to handle. Lastly, iterative waterfall methodology will produce software that works quickly and early in the life cycle software (Kumar, 2015).

3.3 OVERVIEW OF METHODOLOGY

Table 3.1 shows the description for each phase of Iterative Waterfall Model methodology and its deliverables.

Table 5.1 Pro	Ject Methodology Description	
Phase	Tasks	Deliverables
Require ment Gathering and Analysis	 Gathering essential information and analyse it regarding on the proposed project. Do the feasibility test to make sure that the requirement is testable. 	 Project background Problem statements Objectives Scope of project Techniques to be used in the project List of appropriate software and hardware to be used
Design	 Capture appropriate software and hardware to be used in this project. The flow of the project including the project flow chart and use-case diagram. 	Flow chartUse-case diagram
Implem entation	• Implement the program with code with the selected software and	• Designing tasks up to this point that integrate the code and

Table 3.1Project Methodology Description

	hardware.	implement into the project.
Testing	• Testing the project to identify if there are errors or issues that need to be fix	• The project is finish and ready to be used by the user.

3.4 REQUIREMENT GATHERING AND ANALYSIS

This is the process of identifying the necessary and related components for the proposed project. This phase is about the understanding of the whole project and gathering the information as much as possible that might support on developing this project such as articles and journals. The objective is to collect all related work and information and find the suitable hardware, software thus making the system more efficient. This phase can determine the best method, tools and techniques to use in developing this project. This phase also can be a guideline while developing this project so that there will be no duplication of work happen. Various data and researches have been collected from articles, book and online journals to help in developing the proposed project including:

- 1. Collecting information regarding the components when developing the project, along with the software and hardware to be used.
- 2. Select and search the best development method for the proposed project.

3.4.1 Feasibility Study

Feasibility study is conducted to study and whether the proposed project can be developed or not. The proposed project is specifically to ease the owner in terms of feeding their pet. Owner often cannot remotely feed their pet when they are not at home thus it causes many problems to the owner and the pet itself. This project is implemented to allow owner to remotely feed their pet by using a mobile application from Android platform.

3.4.2 Hardware and Software Comparison

This section will compare the related hardware and software available in the market in terms of its model and features. Before starting to develop this project, the right hardware and software must first be selected as there are many options available. Owner's requirements and budgets must also be considered when selecting the appropriate hardware and software.

a) Hardware

i. Servo Motor

Table 3.2 show the comparison between the Servo Motor available.

Hardware	Features	Decision
Servo Motor SG90	Speed: 4.8v, 0.12sec/60 degree	Servo motor is used in
	Weight: 9 grams	this project to release
	Cost: RM 20	food from the food
Servo Motor MG99	Speed: 4.8v. 0.23sec/360 degree	container. Therefore, it
	Weight: 37 grams	requires a power and
	Cost: RM 22.50	strong and full rotation to
		release the food. Thus,
		Servo Motor MG995 is
		selected.

Table 3.2Comparison of Servo Motor

ii. Power Supply

Table 3.3 shows the comparison between power supplies available.

Table 3.3Comparison of Power Supply

Hardware	Features	Decision
Power Supply 12V DC	Power: 12V	Because of this project is
adapter	Requires plug.	indoor, low power supply
	Cost: RM 19	which battery is suitable
Battery 6V Holder	Power: 1.5V x 4	because its low cost.
	Requires battery slot.	
	Cost: RM 10	

iii. Device

Table 3.4 show the comparison between the device available.

Table 3.4Comparison of Device.

Hardware	Features	Decision		
SIM900 GPRS/GSM	Work on GSM network	Because of this project is		
Board for Arduino	GPRS multi-slot class 10/8	outdoor and indoor,		
	Cost: RM 30	NodeMCU ESP8266 Wi-Fi		
NodeMCU ESP8266 Wi-	32-pin QFN package	Controller Board ESP-12 is		
Fi Controller Board ESP-	On-chip low-dropout	suitable because it requires		
12	Cost: RM 20	Wi-Fi to connect with it.		

iv. Sensor

Table 3.5 show the comparison between the sensor available.

Hardware	Features	Decision		
Ultrasonic Sensor HC-SR04	Input Voltage: 5V. Current Draw: 20mA (Max) Digital Output: 5V. Cost: RM 17	Because of this project is requires low cost, Ultrasonic Sensor HC-		
Grove Ultrasonic Ranger	Input Voltage: 5V. Current Draw: 30mA (Max) Digital Output: 5V. Cost: RM 18	SR04 is suitable.		

b) Software

i. Mobile Platform

Table 3.6 show the comparison between the mobile platform available.

Software	Features	Decision
Android Platform	Have open source.	Because used Windows
	Example: Android Studio.	OS version to do this
	Easy to implement.	project, rather than use
iOS Platform	Must buy the platform first.	iOS platform, it was
	Example: XCode.	clearly Android platform
	Difficult to implement.	that suitable to build this
		project.

Table 3.6Comparison of Mobile Platform.

ii. Code Implementation

Table 3.7 show the comparison between the code implementation available.

Table 3.7	Com	parison	of	Code	Imp	lementation.

Code Implementation	Features	Decision	
Arduino IDE	Multi-Platform Application. Have	Because using	
	user GUI if run in Windows.	Windows OS version	
	Easy to implement.	to do this project, it	
Python	Multi-Platform Application.	was clearly Arduino	
	Must run in cmd if run in	IDE platform that	
	Windows.	suitable to build this	
	Difficult to implement.	project.	

3.5 DESIGN

In this phase, the requirement of specifications from the requirement analysis phase is studied thus the project design is prepared. There are two main parts that act as the integrity of the project which are data recording and data analysis. Data recording consists contain of function to record all the data and information whereas data analysis is the process where data has been invoked from the storage and restored directly from the manual. The project design is important in order to specify the suitable hardware and software needed and help in defining the whole project architecture. The project design includes context diagram and data flow diagram. This system design plays a significant role as a guideline to get better understanding about the whole project.

3.5.1 Context Diagram

A context diagram is a diagram that defines the boundary between the system, or part of a system, and its environment, showing the entities that interact with it. This diagram is a high-level view of a system. Figure 3.2 shows context diagram for this project:

Figure 3.2 Context Diagram for Pet Feeder

3.5.2 Data Flow Diagram

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an information system, modelling its process aspects. A DFD is often used as a preliminary step to create an overview of the system without going into detail, which can later be elaborated. DFDs can also be used for the visualization of data processing (structured design). Figure 3.3 shows DFD for this project:

Figure 3.3 Data Flow Diagram (DFD) for Pet Feeder

3.5.3 Hardware and Software Specification

This section explains briefly the hardware and software selected in 3.3.1.2 with its price and specification. The most important requirements for this project are hardware and software. Hardware can be a memory, processor while the output devices can be a hard disk that needs to store a program or a monitor that display on screen. But hardware cannot work on its own, without software attached to it. Hence, in order to develop this project, both hardware and software are required.

Hardware requirement is important to carry out tools and developing application effectively and successfully. This project is currently using the latest hardware to make sure it is efficient. Table 3.8 shows the lists of hardware used in terms of price and its specification.

Hardware	Price (RM)	Function/Specification
Laptop	RM 2400 * 1 unit	1. Intel Core i5 7 th Gen
		2. 12GB RAM
		3. 1TB of HDD
		4. Windows OS
Servo Motor	RM 22.50 * 2 unit	1. Model: MG995
		• Used to release the
		food from container
		and open lid.
Device	RM 20 * 2 unit	1. Model: NodeMCU
		• Use to communicate
		with the mobile
		device to function
		the servo motor.
Sensor	RM 17 * 2 unit	1. Model: HC-SR04
		• Use to measure
		distance between

Table 3.8Hardware Requirement Description
food left in the container, thus user can know when to refill the container.

A. Hardware Requirement

a) NodeMCU ESP8266 Wi-Fi Controller Board ESP-12

In this project, NodeMCU ESP8266 Wi-Fi Controller Board ESP-12 is used as the main system that acts as a microcontroller, it is shown on Figure 3.4. It used to allow other sensors to communicate with each other by its General-Purpose Input Output (GPIO) as shown in Figure 3.5 using jumper wires and breadboard.

Figure 3.4 NodeMCU ESP8266 Wi-Fi Controller Board ESP-12. Source: IoT LoLin NodeMCU ESP8266 (2018, April 17)

Figure 3.5 NodeMCU GPIO pin. Source: GPIO pins & Network Access (2018, April 17)

b) Servo Motor

A servo acts like a motor that can rotate up to 180 degrees clockwise or anticlockwise depending on what type of servo motor used. It has 3 pins which are Ground, Power and Signal coloured brown, red, and orange respectively. Is shown in Figure 3.6.

Figure 3.6 Servo Motor MG995. Source: Componentes101 (2018, April 17)

There are four servos that will be used. Servos are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM) through the

control wire. The functions of a servo motor in this project are to release food from the container and to open or close the lid for the pet to eat. To control the rotation, user must first calculate its duty cycle (DC). Refer to Figure 3.7 shows how calculation is made.

$${
m dc} = rac{0.5}{20} imes 100 = 2.5\%$$
 ${
m dc} = rac{
m length}{
m period} \qquad {
m dc} = rac{1.5}{20} imes 100 = 7.5\%$
 ${
m dc} = rac{2.5}{20} imes 100 = 12.5\%$

Figure 3.7 Servo Motor rotation calculation. Source: RPI Labs (2018, April 17)

c) Power Supply

Power supply is used specifically for NodeMCU ESP8266 Wi-Fi Controller Board ESP-12. It is used to make sure NodeMCU can be function because NodeMCU need power supply to be used as shown in Figure 3.8.

Figure 3.8 Battery 6V Holder. Source: 2018 Holder 6v Battery (2018, April 17)

d) Distance Sensor

Distance sensor is used to specific measure the remaining pet food in the container as shown in Figure 3.9. Therefore, user can know whether to refill their pet's food or not. Sensor will send detected distance to user's mobile application.

Figure 3.9 Ultrasonic Sensor HC-SR04.

B. Software Requirement

The software that have been used in developing this project is essential to make sure the Pet Feeder is functioning well along with the input and output correctly programmed. Table 3.9 shows the software that has been used.

Table 3.9	Software had been	used
-----------	-------------------	------

Software	Function / Specification
Android Studio	Android Studio is Android's official IDE. It is purpose built for Android to accelerate your
	development and help you build the highest-quality
	apps for every Android device. It offers tools custom-tailored for Android developers, including

rich code editing, debugging, testing, and profiling tools

C++ Programming Language	C++ is a general-purpose programming language.
	It has imperative, object-oriented and generic
	programming features, while also providing
	facilities for low-level memory manipulation.

3.5.4 General Process Flow Diagram

The flow chart diagram is the simplest way to show the flow about Pet Feeder using NodeMCU project along with its components and functions. Figure 3.10 shows Pet Feeder data flow diagram. Firstly, the Mobile Application will send request to NodeMCU. After that, it will check whether the NodeMCU is ready or not which mean NodeMCU have successfully connected to Wi-Fi or not. If NodeMCU does not ready, then it will wait and keep send request to NodeMCU until successful. The NodeMCU will go to next process which is feed pet. There are two type of feeding pet through Mobile Application. It will check either it is schedule feed or not. If there are schedule feed, then NodeMCU will checking the schedule of the feeding pet. If it is valid schedule, server motor will serve food for pet. If the schedule is not valid, the servo motor does not respond. Besides, if it is not schedule feed which is automatic feeding, servo motor will serve pet food when user push button on Mobile Application.

Figure 3.10 Pet Feeder data flow diagram.

3.6 IMPLEMENTATION

This phase is where the development started. In this phase, the proposed project has been developed to meet the project objectives. From the proposed project design that was prepared, the developer started to code and develops the project based on the design a guideline. With the complete tasks in previous phase, the implementation phase can be done smoothly.

3.6.1 Project Timeline

This project timeline consists of task name, start date, finish date and duration of a project. It is an important milestone the developer must follow. Figure 3.11 shows the project timeline.

ask Name	 Duration 	▼ Start	 Finish 	Predecesso	rs 🔻	Resource	3 Dec '17	7 Jan '18	11 Feb '18	18 Mar '18	22 Apr '1	8 27 May	'18 1 Jul '	18 5 A	ug '18
Requirement analysis	11 days	Mon 22/1/18	Mon 5/2/18												
Writing Chapter 1	10 days	Mon 5/2	/18 Fri 16/2/18						1						
Submit Chapter 1	5 days	Fri 16/2/	18 Thu 22/2/18	3											
Research for literature review	12 days	Thu 22/2	2/18 Fri 9/3/18												
Writing Chapter 2	7 days	Fri 9/3/1	8 Mon 19/3/1	8					0.	1					
Research for methodology related	10 days	Mon 19/3/18	Fri 30/3/18												
Writing Chapter 3	10 days	Fri 30/3/	18 Thu 12/4/18	3											
Checking the errors before submit the proposal	3 days	Thu 12/4	16/4/18 Mon				•								
ask Name 🔹 🔻	Duration 💌	Start 🔻	Finish 🔻 Pred	ecessors 🔻	Resourc	e 11 Feb '1	8 11 Mar '1	8 8 Apr '18	6 May '18	3 Jun '18	1 Jul '18	29 Jul '18	26 Aug '18	23 Sep '18	21 00
Submit Chapter 3	2 days	Mon 16/4/18	Tue 17/4/18												
Design project	10 days	Tue 17/4/18	Mon 30/4/18					1	1						
Developing project	15 days	Tue 5/6/18	Mon 25/6/18							r1					
Implementation	15 days	Mon 25/6/18	Fri 13/7/18							1	1				
Testing	25 days	Fri 13/7/18	Thu 16/8/18								0	1			
Writing Chapter 4	10 days	Thu 16/8/18	Wed 29/8/18									K			
Conclusion of project	15 days	Wed 29/8/18	Tue 18/9/18										r <u> </u>		
Writing Chapter 5	20 days	Tue 18/9/18	Mon 15/10/1										R.		i i
Final presentation	15 days	Mon 15/10/1	5-12/11/10												-

Figure 3.11 Project timeline.

3.7 PROTOTYPE

A prototype is an early sample, model, or release of a product built to test a concept or process or to act as a thing to be replicated or learned from. It is a term used in a variety of contexts, including semantics, design, electronics, and software programming. A prototype is generally used to evaluate a new design to enhance precision by system analysts and users. For Pet Feeder with NODEMCU using Mobile Application, the prototype has been made to see the result of this project.

(See Appendix C)

3.8 TESTING

Testing phase is the last phase in the methodology. Testing is needed after the project has been developed for the purpose to test all the function to ensure it works perfectly as planned. Moreover, while performing all the testing activities including functional and non-functional, to make sure the system meets the requirements and

objectives. This phase is important to verify if there is any error or bugs in the system. If there are any, the process must reverse back to the system design phase to fix the error. The testing phase is done to all components involved in the system. If it is error-free, the project is ready for users. Here is a test that is carried out to test the functionality of the project:

i. Testing the functionality of Pet Feeder with NodeMCU.

ii. Testing the functionality of NodeMCU including its components.

iii. Testing the ultrasonic sensor whether is it working properly or not.

iv. Testing the functionality of mobile application that will control the servo motor.

v. Testing the functionality of servo motor.

vi. For the testing target, it is tested to two trained pets.

3.9 SUMMARY

This chapter has explained about the research methodology selected in this project which is Iterative Waterfall Model which involves Requirement and Analysis, Design, Implementation and Testing phases. Each phase has its own function and duty and acts as a guideline by the developer in order to develop this project.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 INTRODUCTION

In this chapter, it discusses the functionality of the whole system that has been developed. The result and findings of the system are gained after all the functionality testing is conducted. This chapter analyses the results obtained from the testing phase of the pet feeder system along with the Mobile Application and Arduino; which include Servo Motor MG995, Battery 6V Holder, NodeMCU ESP8266 Wi-Fi Controller Board ESP-12, Ultrasonic Sensor HC-SR04, LM7805 Voltage Regulator, and Resistor that been used. This discussion also includes the results and finding that had been documented during the development and testing phase.

Moreover, it also will discuss about NodeMCU ESP8266 Wi-Fi Controller Board ESP-12 where it will send the sensor data by using Wi-Fi. This will make sure the NodeMCU ESP8266 Wi-Fi Controller Board ESP-12 will stay connected with the Firebase server. Then, Mobile Application that been developed will attire all the database from Firebase server and display all its data in Mobile Application. Therefore, user can get in touch to know the amount left in the container for feeding the pet and can directly remote or scheduling to feeding their pet.

4.2 IMPLEMENTATION REQUIREMENTS

In this phase, there are several stages that need to be complete before this project will be successful. It is including to setup the database to store the information of user where there will be sign up and login using this database. It will acknowledge the existing user or else user must sign up to use Mobile Application. In the nutshell, if user forgot their password, there will be interaction between Mobile Application and Firebase database for user to get their account back. Furthermore, developing this project requires proper software and hardware installation where configuration also must be correct to ensure project can run without any problem.

First step is to setup the Firebase server by creating database. After that, setup hardware part for Servo Motor MG995, Battery 6V Holder, NodeMCU ESP8266 Wi-Fi Controller Board ESP-12, Ultrasonic Sensor HC-SR04, LM7805 Voltage Regulator, and Resistor before the programming take place for the first time. The pin should be connected properly to Analogue output, digital analogue, ground and voltage for every component to ensure this hardware part can be run smoothly. Finally, is developing Mobile Application for Pet Feeder with NodeMCU using Mobile Application by using the Android Studio.

4.2.1 Implementation of Database

For the beginning to start the development of Mobile Application, database is needed as important to store all the user data. For this project, Firebase database had been chosen as web server. Firebase is well known free webhosting because it can easily connect with the Android Studio.

Firebase must be registered in order to use its database. Figure 4.1 show the Firebase Get Started web page. If the button "Get Started" clicked, it will redirect to Google email for its user to sign up. As for system database, Firebase database is used as the database server of the system in order to store the data from the system.

Figure 4.1 Firebase Get Started Web Page.

Figure 4.2 shows the Firebase Authentication Data which include the username and password of the user who had been sign up. This authentication data was used to enable user to use the Mobile Application or not. If the username and password does not match, user cannot go through to use the contain of the Mobile Application. Therefore, user must remember what username and password that they used for this project to be authenticated.

🎽 Firebase		PSM2 👻							Go to docs 🏻 🛕	6
A Project Overview	\$	Authenticat	ion						Web setup	(
Develop		Users Sign-in met	thod Templates Usage	2						
Authentication										
Database			Q Search by email addr	ess, phone number c	r user UID		Add user C	:		
Storage								•		
S Hosting			Identifier	Providers	Created	Signed In	User UID ↑			
) Functions			abc@gmail.com	\mathbf{Y}	26 Nov 2018	8 Dec 2018	aUUQzzDhAle3yeHySUBMUHNe0			
1/L MLKit			abd@gmail.com	M	26 Nov 2018	26 Nov 2018	clZfnm1NTiciAeN48pZXkdizGc53			
			amienisa29@gmail.com	>	27 Nov 2018	5 Dec 2018	vaqGY757wdRiehF1BHMekbp2uW			
Quality Trashlytics, Performance, Test L	ab									

Figure 4.2 Firebase Authentication Data.

4.2.2 Implementation of Hardware

This project required several hardware to be done. It is Servo Motor MG995, Battery 6V Holder, NodeMCU ESP8266 Wi-Fi Controller Board ESP-12, Ultrasonic Sensor HC-SR04, LM7805 Voltage Regulator, and Resistor. First step is attached the NodeMCU ESP8266 Wi-Fi Controller Board ESP-12 to the Breadboard. Servo Motor MG995 was connect to the NodeMCU at the D05 pin. As the Servo Motor MG995 require 6V power to be working, it VCC pin were connect directly to the Battery 6V Holder which will give Servo Motor MG995 full 6V power to work. While the Ultrasonic Sensor HC-SR04 requires 5V to be operated, it requires LM7805 Voltage Regulator to be run smoothly. LM7805 Voltage Regulator will connect to the Battery 6V Holder where it will get 6V power, then it will regulate 5V power to whom needed. In this project, there are 2 hardware need to be regulated; which are Push Button and Ultrasonic Sensor HC-SR04. Ultrasonic Sensor HC-SR04 trigger D01 and echo D02 are attached to NodeMCU pin. Resistor is used to limit the amount of current going to Push Button to prevent from Push Button get over current. Figure 4.3 shows the connection between all the hardware component used in the Pet Feeder with NodeMCU using Mobile Application. It is using Arduino IDE (Integrated Development Environment) compiler to program the NodeMCU ESP8266 Wi-Fi Controller Board ESP-12 and Firebase database via Wi-Fi.

Figure 4.3 Pet Feeder connected circuit.

On the previous chapter, it was clearly stated the platform to build the program is NodeMCU where it used Arduino IDE. Basically, to get starting programming using this IDE, the main board should connect to the computer by plugging the board to the USB cable and then, connect that cable to computer. Besides, the computer also gives power to the board to make it interact with Arduino IDE. Figure 4.4 shows Arduino IDE Windows Application.

Figure 4.4 Arduino IDE Windows Application

This Arduino IDE application is based using C programming language, which is easy to understand and implement. Before starting program NodeMCU ESP8266 Wi-Fi Controller Board ESP-12, it is important to know what libraries to use in this system. In this project, libraries used is ESP8266, FirebaseArduino and NodeMCU-MQTT-ESP. After that, coding and programming can be started. Arduino IDE always have void setup and void looping which means in void setup all things need to be setup once should be program in this section such as setup for Wi-Fi as the component need to connect once. Then in void looping, it is for looping program such moisture sensor which is needing to be display by different value for every time it loops.

Figure 4.5 shows coding located in the void setup(). It also shows that the ssid and password for the Wi-Fi must be stated for NodeMCU to get connect with Wi-Fi. The initializePin() function will call the sensor which located on that function.

```
主 📩 Verify
 Pet_Feed §
#include <ESP8266WiFi.h>
#include <ESP8266WebServer.h>
#include <Servo.h>
#define TRIGGER 5
#define ECHO
                4
Servo servo;
//Our Wi-Fi ssdid and password
char* ssid = "Amien iPhone";
char* password = "aminkacak";
String feed_1 = "0";
String feed_2 = "0";
String feed_3 = "0";
String food_qty = "0";
ESP8266WebServer server; //server variable
void setup() {
 initializePin(); //call function
 //Making Connection With netword
 WiFi.begin(ssid, password);
 Serial.begin(115200);
 Serial.print("Searching Connection");
 while (WiFi.status() != WL CONNECTED) {
   Serial.print(".");
   delay(500);
 3
```

Figure 4.5 Void setup program code.

Figure 4.6 show example on of code for the looping section which is food_qty_state() functions. This function reacts as the measurement of the quantity balance for food in the container and will send it through the Mobile Application. User can get to know the level in the container with this function by simplify checking in the Mobile Application.

```
Pet_Feed §
void food_qty_state(){
 if(food_qty == "0") {
  food_qty = "1";
   long duration, distance;
   digitalWrite(TRIGGER, LOW);
   delayMicroseconds(2);
   digitalWrite(TRIGGER, HIGH);
   delayMicroseconds(10);
   digitalWrite(TRIGGER, LOW);
   duration = pulseIn(ECHO, HIGH);
   distance = (duration/2) / 29.1;
   Serial.print("Centimeter:");
   Serial.println(distance);
   delay(1000);
   server.send(200, "text/html", food_qty);
   }else{
   food qty = "0";
   digitalWrite(D8, LOW);
   server.send(200, "text/html", food_qty);
 }
}
```


4.3 **PROJECT TESTING**

This section explains the development of the Mobile Application and testing phase with the hardware and database that been implemented starting from scratch until the end of the development process. It also discusses about the coding along with its programming language and error occurs during the development process.

4.3.1 Development of Mobile Application

The last stage for Pet Feeder with NodeMCU using Mobile Application is development of Mobile Application. It was develop using Android Studio by using Java language. This Android Studio have their own user interface to make mobile application more beautiful and responsive. Figure 4.7 show example of Java class which is HomePage.java. In this class, it needs to declare and call the element in the layout so that the element can interact with the class. The result of this class when it be compiled, will be shown below.

Figure 4.7 Homepage.java code in Android Studio.

Figure 4.8 shows the first page of Mobile Application. In this page, user need to key in their username and unique password. Their username and password must be tallying to log into the system. However, if there are new user that use this Mobile Application, they must sign up to insert new data to database. Furthermore, there are button forgot password if the existing user forgot their created password. They can reset their password and get back with their account.

Figure 4.8 First page for Mobile Application.

Homepage is the home menu for user of Mobile Application as shown in Figure 4.9. In this page, there are button for feeding pets. User can choose up to 3 feeding values. The values are standard size for feeding pet. User can follow these guidelines (Animal Wised, 2018):

- a) 2 kg pet, between 30 and 40 grams
- b) 4 kg, between 60 and 80 grams
- c) 6 kg, between 90 and 120 grams

Figure 4.9 Homepage for Mobile Application.

Moreover, if user wanted to know the remaining food in the container, user can just click at the Food Quantity button. As for option, user can add pet info on the button "ADD PET". The page for Add Pet is as Figure 4.10. This page is optional for the user. User can add their pet info if they wanted. This page is just like a dictionary for the user. User does not have to write down their pet info on the paper, just add it here and it will remain on the database. View pet button will show the information of the pet that user have added to database.

Figure 4.10 Add Pet info page.

Figure 4.11 shows feeding timer for Mobile Application during Mobile Application development. This page will control timer of Mobile Application system, which user can adjust the date, time, and repetition requested as repeat per minute, hour, weeks, or month. User also can delete or edit existing timer.

Figure 4.11 Feeding timer for pet.

4.4 CONCLUSION

After all the testing phase of related sensors has been successfully delivered, there is a crucial part of this phase which is final testing phase where it needs to be tested on real environment. It is necessary to train pets as it is part of the main requirement of this project. Therefore, owner must take his/her responsibility to train the pets to get familiar or adapt with the system. There are few challenges for owners in order to train his/her pets to get along with this system such as pet cannot recognize its food because it is in close food container for the purpose to protect the food's quality. It requires owner's intention to check the balance food in container via Mobile Application. It is mandatory for owners to understand pet's behaviour in order for them to use the system effectively.

4.5 SUMMARY

This chapter has discussed about the project development from the scratch until the end including the problem and error occurs while developing the project. Hardware and software needed to make this project succeeds also has been discussed. This chapter also explains in detail on how to operate each hardware and software involved.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 INTRODUCTION

This project has developed to grant pet owners' need by allowing them to remotely feed their pet without having to present during the feeding. From Chapter 1 to Chapter 4, all has been discussed including the methodology of the project, project architecture, experience, development and lastly testing phase. This chapter will be discussing about conclusion, limitation and recommendation for the proposed project.

5.2 LIMITATION OF THE PROJECT

The limitations of this project are:

- This project only allows dry food to be served to the pets. Wet food is not allowed because it cannot be rotated by servo motor.
- II. For the testing part, it is hard to get a well-trained pet or to train pet to adapt the current project for experiment purpose.

5.3 **RECOMMENDATION**

In the process of developing this project, objectives have been achieved according to pet owners' need. But somehow it opens another opportunity for other developers out there to improve the current project to make it better and be able to compete with another product in the market. Future enhancement of the project could be implementing in the project such as:

- I. Build a full pet application for pet that involve taking care of pets' food, health and waste
 - a) Add a temperature sensor that will sense pets' current temperature. From that sensor, it can tell whether the pet is healthy or not.
 - b) A product that allows any types of pets' food.
 - c) A product that takes care of pets' waste without any human intervention needed.
- II. Build a pet controller that can cater a large population of pets
 - a) Create a database and a system that stores pets' information especially current health status, food preferences, type and weight.

5.4 CONCLUSION

As a conclusion, this project was successfully developed and had met its aim and objectives for making the prototype of smart pet feeder. The objective of this project is to design and develop a project that allows the owner to serve food to their pets without having to present at the feeding location. Through the development of this prototype, all the objectives have been achieved. Based on Chapter 3, the process of analysis, design, development, testing have provided a lot of data and information that will lead to the success of this project knowing that this project is worth rather than investing on complex and expensive system. From this project development, the developer has gained a whole new knowledge about Arduino NodeMCU technology and Android Studio that are suitable for daily life used. In developing the project, the sensors and its circuit has opened the doors to new opportunities in the future as making an innovative project is currently in demand in the industry.

REFERENCES

- 1. Balzer, M. (2015). Australian Veterinary Journal, 93(11).
- Hodgson, K., & Barton, L. (2015). Pets' Impact on Your Patients' Health: Leveraging Benefits and Mitigating Risk, 28(4), 526–534.
- Increase, S., Data, O. R., Prevention, P. O., Shortens, O., Just, L., Conditions, M. C. O. Additionally, S. Pet Obesity Epidemic Fact Sheet Financial Costs of Pet Obesity (2015).
- Russo, N., Vergnano, D., Bergero, D., & Prola, L. (2017). veterinary sciences Small Pilot Survey on Parents' Perception of the Relationship between Children and Pets, 1–5.
- Jempet. (2018, March 14). JemPet SmartFeeder, Automatic Pet Feeder controlled With Your Iphone, Andriod or other smart devices. Retrieved from <u>https://jem.pet/products/gempet-smartfeeder-automatic-pet-feeder-controlled-</u> <u>with-your-iphone-andriod-or-other-smart-devices</u>
- Noor, M. Z. H., Hussian, A. K., Saaid, M. F., Ali, M. S. A. M., & Zolkapli, M. (2012). The design and development of automatic fish feeder system using PIC microcontroller. Proceedings 2012 IEEE Control and System Graduate Research Colloquium, ICSGRC 2012, (Icsgrc), 343–347.
- Vania, Karyono, K., & Nugroho, I. H. T. (2017). Smart dog feeder design using wireless communication, MQTT and Android client. Proceeding - 2016 International Conference on Computer, Control, Informatics and Its Applications: Recent Progress in Computer, Control, and Informatics for Data Science, IC3INA 2016, 191–196.
- Kramer, M. (2018). Lifecycle: An Analyses Based On The Waterfall Model, 9(1), 77–84.
- Trivedi, P., & Sharma, A. (2013). A Comparative Study between Iterative Waterfall and Incremental Software Development Life Cycle Model for Optimizing the Resources Using Computer Simulation.
- 10. Tony. (2018, April 14). Educational flaws: Programming with the Waterfall Model. Retrieved from <u>http://compsci.ca/blog/educational-flaws-programming-</u><u>with-the-waterfall-model/</u>

- 11. Kumar, D. (2015). Advantages and Disadvantages of Watefall Model. Retrieved from <u>http://istqbexamcertification.com/what-is-waterfall-model-advantagesdisadvantages-and-when-to-use-it/</u>
- IoT LoLin NodeMCU ESP8266 Wifi Controller Board ESP-12: Best Price in Malaysia. (n.d.). Retrieved from <u>https://www.lelong.com.my/iot-lolin-nodemcu-esp8266-wifi-controller-board-esp-12-arelectronics-F528319-2007-01-Sale-I.htm</u>
- 13. NODEMCU–Getting Started with Arduino Core 1. GPIO pins & Network Access. (2017, October 21). Retrieved from https://alselectro.wordpress.com/2017/10/21/nodemcu-getting-started-witharduino-core-1-gpio-pins-network-access
- 14. Components101 (2018, April 17). Servo Motor SG-90. Retrieved from https://components101.com/servo-motor-basics-pinout-datasheet
- 15. RPI Labs (2018, April 17). How is a Servo Controlled? Retrieved from http://rpi.science.uoit.ca/lab/servo/
- 16. 2018 Holder 6v Battery. (n.d.). Retrieved from https://www.dhgate.com/product/battery-storage-case-box-holder-4-aa-1-5v/401926616.html
- 17. How Much Food Should I Feed My Cat? (n.d.). Retrieved from https://www.animalwised.com/how-much-food-should-i-feed-my-cat-2016.html

APPENDIX A GANTT CHART

Fask Name	Duration	 Start 	 Finish 	•	Predecessors	•	Resource	3 Dec '17	7 Jan '18	11 Feb '18	18 Mar '18	22 Apr '18	27 May '18	1 Jul '18	5 Aug '18
Requirement analysis	11 days	Mon 22/1/18	Mon 5,	/2/18					F	1					
Writing Chapter 1	10 days	Mon 5/2	/18 Fri 16/2	2/18											
Submit Chapter 1	5 days	Fri 16/2/	18 Thu 22	/2/18											
Research for literature review	12 days	Thu 22/2	2/18 Fri 9/3,	/18											
Writing Chapter 2	7 days	Fri 9/3/1	8 Mon 19	9/3/18						D					
Research for methodology related	10 days	Mon 19/3/18	Fri 30/	3/18											
Writing Chapter 3	10 days	Fri 30/3/	18 Thu 12	/4/18											
Checking the errors before submit the proposal	3 days	Thu 12/4	4/18 Mon 16/4/1	8											
Task Name 🔻	Duration 💌				cessors 🔻 R	esour	e 11 Feb "	18 11 Mar '1	18 8 Apr '18	6 May '18	3 Jun '18	1 Jul '18	29 Jul 18 26	Aug '18 23	Sep '18 21 0
Submit Chapter 3	2 days	Mon 16/4/18	Tue 17/4/18						III.						
Design project	10 days	Tue 17/4/18	Mon 30/4/18						1	1					
Developing project	15 days	Tue 5/6/18	Mon 25/6/18								K1				
Implementation	15 days	Mon 25/6/18	Fri 13/7/18								1	1			
Testing	25 days	Fri 13/7/18	Thu 16/8/18									0	1		
Writing Chapter 4	10 days	Thu 16/8/18	Wed 29/8/18										1 I		
Conclusion of project	15 days	Wed 29/8/18	Tue 18/9/18										Ľ.	1	
Writing Chapter 5	20 days	Tue 18/9/18	Mon 15/10/1											r	1
Final presentation	15 days	Mon 15/10/1	Fri 2/11/18												r

Figure 1 Gantt Chart.

APPENDIX B CODING

This coding is in MainActivity.Java located on Android Studio.

package dev.edmt.firebaseauthentication;

import android.content.Intent; import android.support.annotation.NonNull; import android.support.design.widget.Snackbar; import android.support.v7.app.AppCompatActivity; import android.os.Bundle; import android.view.View; import android.widget.Button; import android.widget.EditText; import android.widget.RelativeLayout; import android.widget.TextView;

import com.google.android.gms.tasks.OnCompleteListener; import com.google.android.gms.tasks.Task; import com.google.firebase.auth.AuthResult; import com.google.firebase.auth.FirebaseAuth;

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

Button btnLogin; EditText input_email,input_password; TextView btnSignup,btnForgotPass;

RelativeLayout activity_main;

private FirebaseAuth auth;

@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_login);

//View

btnLogin = (Button)findViewById(R.id.login_btn_login); input_email = (EditText)findViewById(R.id.login_email); input_password = (EditText)findViewById(R.id.login_password); btnSignup = (TextView)findViewById(R.id.login_btn_signup); btnForgotPass = (TextView)findViewById(R.id.login_btn_forgot_password); activity_main = (RelativeLayout)findViewById(R.id.activity_main);

btnSignup.setOnClickListener(this); btnForgotPass.setOnClickListener(this); btnLogin.setOnClickListener(this);

//Init Firebase Auth
auth = FirebaseAuth.getInstance();

```
//Check already session, if ok-> DashBoard
    if(auth.getCurrentUser() != null)
       startActivity(new Intent(MainActivity.this,HomePage.class));
  }
  @Override
  public void onClick(View view) {
    if(view.getId() == R.id.login_btn_forgot_password)
    ł
       startActivity(new Intent(MainActivity.this,ForgotPassword.class));
       finish();
    }
    else if(view.getId() == R.id.login_btn_signup)
       startActivity(new Intent(MainActivity.this,SignUp.class));
       finish();
    }
    else if(view.getId() == R.id.login_btn_login)
    {
       loginUser(input_email.getText().toString(),input_password.getText().toString());
     }
  }
  private void loginUser(String email, final String password) {
    auth.signInWithEmailAndPassword(email,password)
         .addOnCompleteListener(this, new OnCompleteListener<AuthResult>() {
            @Override
           public void onComplete(@NonNull Task<AuthResult> task) {
              if(!task.isSuccessful())
              {
                if(password.length() < 6)
                   Snackbar snackBar = Snackbar.make(activity_main,"Password length must
be over 6", Snackbar.LENGTH_SHORT);
                   snackBar.show();
                 }
              }
              else{
                startActivity(new Intent(MainActivity.this,HomePage.class));
              }
            }
         });
  }
```

This coding is in AlarmMain.Java located on Android Studio.

package dev.edmt.firebaseauthentication;

}

import android.app.ProgressDialog; import android.content.ContentUris; import android.content.ContentValues; import android.content.DialogInterface; import android.content.Intent;

import android.database.Cursor; import android.net.Uri; import android.support.design.widget.FloatingActionButton; import android.support.v4.app.LoaderManager; import android.support.v4.content.CursorLoader; import android.support.v4.content.Loader; import android.support.v7.app.AlertDialog; import android.support.v7.app.AppCompatActivity; import android.os.Bundle; import android.support.v7.widget.Toolbar; import android.text.InputType; import android.view.View; import android.widget.AdapterView; import android.widget.EditText; import android.widget.ListView; import android.widget.TextView; import android.widget.Toast;

public class AlarmMain extends AppCompatActivity implements
LoaderManager.LoaderCallbacks<Cursor> {

private FloatingActionButton mAddReminderButton; private Toolbar mToolbar; AlarmCursorAdapter mCursorAdapter; AlarmReminderDbHelper alarmReminderDbHelper = new AlarmReminderDbHelper(this); ListView reminderListView; ProgressDialog prgDialog; TextView reminderText;

private String alarmTitle = "";

private static final int VEHICLE_LOADER = 0;

@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_alarm_main);

```
mToolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(mToolbar);
mToolbar.setTitle(R.string.app_name);
```

reminderListView = (ListView) findViewById(R.id.list); reminderText = (TextView) findViewById(R.id.reminderText);

View emptyView = findViewById(R.id.empty_view); reminderListView.setEmptyView(emptyView);

```
mCursorAdapter = new AlarmCursorAdapter(this, null);
    reminderListView.setAdapter(mCursorAdapter);
    reminderListView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
       @Override
      public void onItemClick(AdapterView<?> adapterView, View view, int position, long
id) {
         Intent intent = new Intent(AlarmMain.this, AddReminderActivity.class);
         Uri currentVehicleUri =
ContentUris.withAppendedId(AlarmReminderContract.AlarmReminderEntry.CONTENT_URI,
id);
         // Set the URI on the data field of the intent
         intent.setData(currentVehicleUri);
```

startActivity(intent);

} });

```
mAddReminderButton = (FloatingActionButton) findViewById(R.id.fab);
```

```
mAddReminderButton.setOnClickListener(new View.OnClickListener() {
  @Override
  public void onClick(View v) {
    //Intent intent = new Intent(v.getContext(), AddReminderActivity.class);
    //startActivity(intent);
    addReminderTitle();
  }
});
```

getSupportLoaderManager().initLoader(VEHICLE_LOADER, null, this);

}

```
@Override
```

```
public Loader<Cursor> onCreateLoader(int i, Bundle bundle) {
  String[] projection = {
      AlarmReminderContract.AlarmReminderEntry._ID,
      AlarmReminderContract.AlarmReminderEntry.KEY_TITLE,
      AlarmReminderContract.AlarmReminderEntry.KEY_DATE,
      AlarmReminderContract.AlarmReminderEntry.KEY TIME,
      AlarmReminderContract.AlarmReminderEntry.KEY_REPEAT,
      AlarmReminderContract.AlarmReminderEntry.KEY_REPEAT_NO,
      AlarmReminderContract.AlarmReminderEntry.KEY_REPEAT_TYPE,
      AlarmReminderContract.AlarmReminderEntry.KEY_ACTIVE
```

};

return new CursorLoader(this, // Parent activity context

```
AlarmReminderContract.AlarmReminderEntry.CONTENT_URI, // Provider content
URI to query
         projection,
                           // Columns to include in the resulting Cursor
         null.
                        // No selection clause
         null.
                        // No selection arguments
                        // Default sort order
         null);
  }
  @Override
  public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
    mCursorAdapter.swapCursor(cursor);
    if (cursor.getCount() > 0){
       reminderText.setVisibility(View.VISIBLE);
    }else{
      reminderText.setVisibility(View.VISIBLE);
    }
  }
  @Override
  public void onLoaderReset(Loader<Cursor> loader) {
    mCursorAdapter.swapCursor(null);
  }
  public void addReminderTitle(){
    AlertDialog.Builder builder = new AlertDialog.Builder(this);
    builder.setTitle("Set Reminder Title");
    final EditText input = new EditText(this);
    input.setInputType(InputType.TYPE_CLASS_TEXT);
    builder.setView(input);
    builder.setPositiveButton("OK", new DialogInterface.OnClickListener() {
       @Override
      public void onClick(DialogInterface dialog, int which) {
         if (input.getText().toString().isEmpty()){
           return;
         }
         alarmTitle = input.getText().toString();
         ContentValues values = new ContentValues();
         values.put(AlarmReminderContract.AlarmReminderEntry.KEY_TITLE, alarmTitle);
         Uri newUri =
getContentResolver().insert(AlarmReminderContract.AlarmReminderEntry.CONTENT_URI,
values);
         restartLoader();
```

if (newUri == null) {

```
Toast.makeText(getApplicationContext(), "Setting Reminder Title failed",
Toast.LENGTH_SHORT).show();
         } else {
            Toast.makeText(getApplicationContext(), "Title set successfully",
Toast.LENGTH SHORT).show();
         }
       }
    });
    builder.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
       @Override
       public void onClick(DialogInterface dialog, int which) {
         dialog.cancel();
       }
    });
    builder.show();
  }
  public void restartLoader(){
    getSupportLoaderManager().restartLoader(VEHICLE_LOADER, null, this);
  }
}
```

This coding is in SignUp.Java located on Android Studio.

package dev.edmt.firebaseauthentication;

import android.content.Intent; import android.support.annotation.NonNull; import android.support.design.widget.Snackbar; import android.support.v7.app.AppCompatActivity; import android.os.Bundle; import android.view.View; import android.widget.Button; import android.widget.EditText; import android.widget.RelativeLayout; import android.widget.TextView;

```
import com.google.android.gms.tasks.OnCompleteListener;
import com.google.android.gms.tasks.Task;
import com.google.firebase.auth.AuthResult;
import com.google.firebase.auth.FirebaseAuth;
```

public class SignUp extends AppCompatActivity implements View.OnClickListener {

Button btnSignup; TextView btnLogin,btnForgotPass; EditText input_email,input_pass; RelativeLayout activity_sign_up;

private FirebaseAuth auth; Snackbar snackbar;

@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_sign_up);

//View

```
btnSignup = (Button)findViewById(R.id.signup_btn_register);
btnLogin = (TextView)findViewById(R.id.signup_btn_login);
btnForgotPass = (TextView)findViewById(R.id.signup_btn_forgot_pass);
input_email = (EditText)findViewById(R.id.signup_email);
input_pass = (EditText)findViewById(R.id.signup_password);
activity_sign_up = (RelativeLayout)findViewById(R.id.activity_sign_up);
```

btnSignup.setOnClickListener(this); btnLogin.setOnClickListener(this); btnForgotPass.setOnClickListener(this);

```
//Init Firebase
auth = FirebaseAuth.getInstance();
```

```
@Override
```

}

```
public void onClick(View view) {
    if(view.getId() == R.id.signup_btn_login){
        startActivity(new Intent(SignUp.this,MainActivity.class));
        finish();
    }
    else if(view.getId() == R.id.signup_btn_forgot_pass){
        startActivity(new Intent(SignUp.this,ForgotPassword.class));
        finish();
    }
    else if(view.getId() == R.id.signup_btn_register){
        signUpUser(input_email.getText().toString(),input_pass.getText().toString());
    }
}
private void signUpUser(String email, String password) {
    auth.createUserWithEmailAndPassword(email,password)
```

```
.addOnCompleteListener(this, new OnCompleteListener<AuthResult>() {
    @Override
    public void onComplete(@NonNull Task<AuthResult> task) {
```

```
if(!task.isSuccessful())
```

```
{
    snackbar = Snackbar.make(activity_sign_up,"Error:
    "+task.getException(),Snackbar.LENGTH_SHORT);
    snackbar.show();
    }
    else{
    snackbar = Snackbar.make(activity_sign_up,"Register success!
",Snackbar.LENGTH_SHORT);
    snackbar.show();
    }
    });
}
```

APPENDIX C PROTOTYPE PET FEEDER

Figure 1 Pet Feeder with Pet's food.

Figure 2 Pet's food is going through to its container.

Figure 3 Pet Feeder with pet's food in its container.