Effect of Ni loading on SBA-15 synthesized from palm oil fuel ash waste for hydrogen production via CH₄ dry reforming


aFaculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
bCentre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
cSchool of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
dCentre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

ABSTRACT

The successful synthesis of SBA-15 using silica source extracted from palm oil fuel ash (POFA) was proven with the presence of mesostructure characteristics as evidenced by low angle XRD, N₂ adsorption-desorption isotherms and TEM. Different amounts of Ni were loaded on the synthesized SBA-15(POFA) using the impregnation method at 80 °C. The influence of Ni loading over the Ni/SBA-15(POFA) physiochemical properties and CO₂ reforming of CH₄ (CRM) were investigated in a stainless steel fixed-bed reactor at 800 °C and atmospheric pressure with 1:1 CO₂:CH₄ volumetric feed composition. An increment in Ni loading on SBA-15(POFA) from 1 to 5 wt% decreased the BET surface area and crystallinity of catalyst as proven by N₂ adsorption–desorption and XRD analysis. The catalytic performance of CRM followed the sequence of 3 wt% > 5 wt% > 2 wt% > 1 wt% -Ni/SBA-15(POFA). This result was owing to the even distribution of Ni and good Ni–O–Si interaction of 3 wt% Ni/SBA-15(POFA) as proved by TEM, FTIR and XPS. Lowest H₂/CO ratio and catalyst activity and stability of 1 wt% Ni/SBA-15(POFA) were due to the weaker Ni–O–Si interaction and small amount of basic sites that favor the reverse water gas shift (RWGS) reaction and carbon formation. The recent finding indicates that a quantity as small as 3 wt% Ni loaded onto SBA-15(POFA) could elicit outstanding catalytic performance in CRM, which was comparable with 10 wt% Ni loading catalysts reported in literature.

KEYWORDS

POFA; CO₂ reforming; Ni/SBA-15; Silica source; Ni support interaction
ACKNOWLEDGEMENTS

The authors show deep appreciation for the financial assistance from Research Acculturation Grant Scheme (RDU151414) and UMP Research Grant Scheme (RDU170330 & RDU1803184).