SMART GARBAGE MONITORING SYSTEM

AMALIA WITRA BINTI JAILANI

Bachelor of Computer Science

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the degree of *Doctor of Philosophy/ Master of Engineering/ Master of Science in

(Supervisor’s Signature)
Full Name :
Position :
Date :

(Co-supervisor’s Signature)
Full Name :
Position :
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : AMALIA WITRA BINTI JAILANI
ID Number : CA15083
Date : 3 JANUARY 2019
SMART GARBAGE MONITORING SYSTEM

AMALIA WITRA BINTI JAILANI

Thesis submitted in fulfillment of the requirements
for the award of the degree of
Bachelor of Computer Science (Computer Systems & Networking)

Faculty of Computer System and Software Engineering
UNIVERSITI MALAYSIA PAHANG

JANUARY 2019
ACKNOWLEDGEMENTS

I would like to express my appreciation and thanks to my supervisor, Dr. Ramdan Bin Razali, whose help for the ideas, give encouragement, advises, and correcting my mistake throughout completing this final year project. Special thanks to fellow students under same supervisor that give support for this project. I also lie to thanks to my parents that always support me in many ways.

I’m also wanted to give some gratitude to all lecturers in Faculty of Computer System and Software Engineering for helping me directly or indirectly. Other than that, I also want to thanks my friends for giving their support whenever I need it to complete this project.
ABSTRAK

Antara salah satu cabaran untuk berinovasi dan mencipta penyelesaian IOT membolehkan dalam pemantauan dan pengurusan alam sekitar. Pengumpulan produk sampah menggunakan Internet Thing (IoT) dengan teknologi sensor wayarles pintar yang akan dapat mengumpulkan data dari tong sampah. Ini salah satu cabaran kepada pihak berkuasa tempatan ialah bagaimana memantau karya pekerja yang berkesan dan cekap dalam pengurusan sisa. Dari hasil penyelidikan ini, dapat disimpulkan bahwa, di satu pihak, aplikasi ICT, melalui pengurusan mengumpulkan data dari sukarelawan oleh pihak yang berkepentingan, dapat meningkatkan visualisasi sistem manajemen sisa pintar cerdas. Dokumentasi ini akan memberi maksud kepada pihak berkuasa tempatan pelaksanaan pengurusan sisa pintar untuk meningkatkan dan meningkatkan pengurusan bandar, dan menyediakan perkhidmatan yang lebih baik kepada orang ramai ke arah aplikasi pintar bandar.
ABSTRACT

One of the challenges to transform and make an Internet of Things (IoT) is in monitoring and managing of the environment. One of the challenges to the local authority is how to monitor the works of employee effective and efficiency in waste management. Waste product collection utilizes the IoT with the technology of sensors that will able to collect the data from a garbage bin. From the finding of this investigation, it can be concluding that through management of collecting data from the volunteer by stakeholders can enhance the visualization of intelligent smart waste management system. This documentation will purpose to the local authority the implementation of smart waste management to provide better services to the public towards smart city applications and improve and increase the city management.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS

ABSTRAK

ABSTRACT

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

1.1 Project Background 9
1.2 Problem Statement 10
1.3 Goal / Aim & Objectives 10
 1.3.1 Goal / Aim 10
 1.3.2 Objectives 10
1.4 Scope 11
1.5 Significance 11
1.6 Report / Thesis Organisation 11

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 12
2.2 Material Outline 12
 2.2.1 Garbage Bin 12
 2.2.2 Arduino Uno 14
2.2.3 Ultrasonic Sensor 15
2.2.4 GSM Module 16
2.2.5 Breadboard and Jump Wires 17

2.3 Investigation Existing Systems 18
2.3.1 Smart Dustbin – An Efficient Garbage Monitoring System 18
2.3.2 IoT Based Waste Management for Smart City 19
2.3.3 A Novel approach to Garbage Management using Internet of Things for Smart Cities 19

2.4 Comparison between the Existing Systems 19
2.5 Conclusion 20

CHAPTER 3 METHODOLOGY 21
3.1 Introduction 21
3.2 Methodology 21
3.2.1 Requirement Phase 23
3.2.2 Analysis Phase 24
3.2.3 Design Phase 24
3.2.4 Implementation Phase 28
3.2.5 Testing Phase 29
3.3 Hardware and Software Requirement 30
3.4 Gantt Chart 30

CHAPTER 4 RESULTS AND DISCUSSION 32
4.1 Introduction 32
4.2 Implementation 32
4.2.1 Implementation of Hardware 32
4.2.2 Implementation of Arduino Uno 33
CHAPTER 5 CONCLUSION

5.1 Introduction

5.2 Research Constraint

5.3 Future Work

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Problem Statement of Smart garbage Monitoring System.</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Comparison between existing system</td>
<td>20</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Advantages and disadvantages of waterfall model</td>
<td>22</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Hardware requirement for SGMS</td>
<td>30</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Software requirement for SGMS</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1	Garbage bin	13
Figure 2.2	Dumpster	13
Figure 2.3	Skip	14
Figure 2.4	Motherboard of a Arduino UNO	15
Figure 2.5	Handled graphics of GPU	15
Figure 2.6	Ultrasonic sensor	16
Figure 2.7	Data packet	16
Figure 2.8	SIM900A GSM Module	17
Figure 2.9	A breadboard	18
Figure 2.10	Jump wires	18
Figure 3.1	Waterfall Model	22
Figure 3.2	Workflow of the proposed system of SGMS	23
Figure 3.3	Architecture Diagram of SGMS	24
Figure 3.4	Context Diagram for SGMS	25
Figure 3.5	Flowchart of SGMS	26
Figure 3.6	Flowchart of Transmitter section of SGMS	27
Figure 3.7	Flowchart of Receiver section of SGMS	28
Figure 3.8	The proposed physical construction of SGMS	29
Figure 3.9	Gantt Chart of the project.	31
Figure 4.1	Connection of hardware	33
Figure 4.2	Coding of Arduino UNO	34
Figure 4.3	Serial monitor shows the system is ready.	35
Figure 4.4	Serial monitor shows that message is sends to user	35
Figure 4.5	The message received telling that the garbage is full.	36
CHAPTER 1

INTRODUCTION

1.1 Project Background

In this era, we are living in an age where everything must be done in a short time but efficient. Tasks and systems are fusing together with the influence of Internet of Thing (IoT) to have a more fast and efficient system of working. IoT is the network of associated physical objects that can interconnect and interchange data among themselves without human intervention. IoT permits human to gather information and data from all kind of medium. IoT is unlike Internet as it aiding everyday objects to communicate with each other using the existing Internet technology.

One of the main concerns during this present era is solid waste management. Lack of monitoring and managing solid waste has affects the health and environment of our society. The manual way of monitoring the waste is an inefficient process and use more human effort, time and cost. This inefficient process can be avoided with present technologies.

The garbage truck use to go around the town to collect garbage every three days. This system was very inefficient as the garbage fills up really fast and spill out from the garbage bin in a crowded area or the garbage bin is not even half full after two days in a seclude area. It can lead to an unhealthy environment and smell pollution.

In this paper, the proposed system is the immediate collecting the garbage called Smart Garbage Monitoring System. This garbage monitoring system helps solve this problem as an ultrasonic device on top of a garbage bin will detecting and collect the data that the volume of the waste product has reached its maximum value from its threshold value and then, transmit the status to mobile phone via SMS. This system also can detect a garbage bin that half full but it is two or more days old. This is to prevent smell environment. Then, the data transmitted to the hand phone via SMS.
1.2 Problem Statement

The disadvantage of the existing system are that the environmental companies cannot assume the volume of solid waste in garbage bin daily so the employees have to check the garbage bins every day resulting in high cost. Because of that, the garbage bin is over spilled. It can attract pests and lead to unhealthy environment.

Another problem that needs to be solved is the age of the garbage. If supposing a particular garbage bin is not even full and then for a week, the garbage truck not collect the garbage, it will start rotting and leading to a smelly surrounding. Therefore, this proposed system will tackle the problem with our system’s tolerance level is set to two days so if the garbage bin is not full but it is two days old it then also need to be emptied.

Table 1.1 Problem Statement of Smart garbage Monitoring System.

<table>
<thead>
<tr>
<th>No.</th>
<th>Problem</th>
<th>Description</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume of solid waste</td>
<td>The environmental management company cannot assume the volume of solid waste in garbage bin in a day.</td>
<td>Over spilled of garbage bin can attract pests and it can lead to unhealthy environment</td>
</tr>
<tr>
<td>2</td>
<td>Time</td>
<td>The garbage is two or more days old as the garbage trucks not collect it because the bin is not even full.</td>
<td>It can lead to smell pollution and the society will live in an uncomfortable environment</td>
</tr>
</tbody>
</table>

1.3 Goal / Aim & Objectives

1.3.1 Goal / Aim

The goal for this project is to develop a real-time garbage monitoring system for UMP.

1.3.2 Objectives

The objectives of this project are:

i. To build a garbage monitoring system.

ii. To send the garbage volume status to mobile phone by sending SMS.
1.4 Scope

The scopes of the project are:

i. To focus on detection of volume and age of waste product in garbage bin and the data is transmitted to hand phone by sending SMS.

ii. To focus on the installation of Arduino UNO, ultrasonic sensor and GSM module.

iii. To focus on testing the system can detect the volume of garbage and transmit the data to user.

1.5 Significance

The significance of this project is:

i. Facilitate environmental management company in making a better environment of society.

ii. Improve the previous project by adding an additional feature.

1.6 Report / Thesis Organisation

This thesis for smart garbage monitoring system project comprises of five chapters. Chapter 1 discusses on introduction of project. Chapter 2 discusses about literature review, where we describe the existing systems. Chapter 3 discusses about methodology. Implementation, testing and results will be discussed on Chapter 4. Finally, in Chapter 5 will conclude the entire project of smart garbage management system.
REFERENCES

