
 

 

 

SECURITY IN ROBOT OPERATING 

SYSTEM (ROS) BY USING ADVANCED 

ENCRYPTION STANDARD (AES) 

 

 

 

 

NOR ALIA SYUHADA BINTI SHAHARUDIN 

 

 

 

 

 

 

Bachelor of Computer Science (Computer 

Systems & Networking) 

 

UNIVERSITI MALAYSIA PAHANG 

 



 

UNIVERSITI MALAYSIA PAHANG 

 
NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter. 

 

DECLARATION OF THESIS AND COPYRIGHT 

 

Author’s Full Name  : NOR ALIA SYUHADA BINTI SHAHARUDIN 

 

Date of Birth   : 04 DECEMBER 1996 

 

Title    : SECURITY IN ROBOT OPERATING SYSTEM (ROS) BY  

 

     USING ADVANCED ENCRYPTION STANDARD (AES) 

 

Academic Session  : SEM I 2018/2019 

 

 

I declare that this thesis is classified as: 

 

 CONFIDENTIAL (Contains confidential information under the Official 

Secret Act 1997)* 

 RESTRICTED (Contains restricted information as specified by the 

organization where research was done)* 

 OPEN ACCESS I agree that my thesis to be published as online open access 

(Full Text)  

 

 

I acknowledge that Universiti Malaysia Pahang reserves the following rights: 

 

1.  The Thesis is the Property of Universiti Malaysia Pahang 

2.  The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for 

the purpose of research only. 

3.  The Library has the right to make copies of the thesis for academic exchange. 

 

Certified by: 

 

 
_____________________ 

    (Student’s Signature) 

 

 

____961204-145192_____ 

New IC/Passport Number 

Date: 24 DECEMBER 2018 

 

 

 

 

 
     

 

__DR. LUHUR BAYUAJI____ 

Name of Supervisor                           

Date: 24 DECEMBER 2018  

 

  

 



 

SUPERVISOR’S DECLARATION 

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate 

in terms of scope and quality for the award of the degree in Bachelor of Computer Science 

(Computer Systems & Networking) 

 

 

 

Full Name  : DR LUHUR BAYUAJI 

Position  : SENIOR LECTURER 

Date   : 24 DECEMBER 2018 

 

 

 



 

STUDENT’S DECLARATION 

I hereby declare that the work in this thesis is based on my original work except for 

quotations and citations which have been duly acknowledged. I also declare that it has 

not been previously or concurrently submitted for any other degree at Universiti Malaysia 

Pahang or any other institutions.  

 

 

_______________________________ 

 (Student’s Signature) 

Full Name : NOR ALIA SYUHADA BINTI SHAHARUDIN  

ID Number : CA15073 

Date  : 24 DECEMBER 2018 

 



 

 

 

SECURITY IN ROBOT OPERATING SYSTEM (ROS) BY USING ADVANCED 

ENCRYPTION STANDARD (AES) 

 

 

 

 

 

NOR ALIA SYUHADA BINTI SHAHARUDIN 

 

 

Thesis submitted in fulfillment of the requirements 

for the award of the degree of 

Bachelor of Computer Science (Computer Systems & Networking) 

 

 

 

 

Faculty of Computer Systems & Sofware Engineering 

UNIVERSITI MALAYSIA PAHANG 

 

DECEMBER 2018 

 

 



ii 

ACKNOWLEDGEMENTS 

I would like to express my appreciation to my supervisor, Dr. Luhur Bayuaji for his 

guidance during this research is conducted. Without his valuable assistance, this thesis 

would not have been completed.  

In addition, I also would like to thank to all the people around me who involve directly 

or indirect in completing this research. I also appreciate all the moral support and courage 

that has been given to me from my family members and friends who always be there to 

help me finishing this research as well as to those who sacrifice their time to help me 

improve and complete this research.  

Finally, I would like to thanks to the staff of the Faculty of Computer Systems & Software 

Engineering for their valuable assistance during the development of this thesis.  

 

 



iii 

ABSTRAK 

Oleh kerana system robotik semakin tersebar, siber sekuriti muncul sebagai tumpuan 

utama. Pada masa kini, kebanyakan sistem autonomi dibina menggunakan rangka ROS 

yang merupakan rangka yang paling popular untuk membangunkan aplikasi robotik 

bersama dengan perisian komersil yang lain. ROS adalah rangka kerja yang diedarkan di 

mana nod menerbitkan maklumat yang digunakan oleh nod lain. Model ini memudahkan 

komunikasi data tetapi menimbulkan ancaman utama kerana proses yang berniat jahat 

boleh mengganggu komunikasi dengan mudah, membaca mesej peribadi, atau 

mengambil alih pergerakan robot. Kajian ini menyiasat prestasi robot apabila 

memecahkan mesej yang ditukar antara nod ROS di bawah paradigma 

menerbitkan/melanggan. Khususnya, kajian ini memberi tumpuan kepada penggunaan 

algoritma penyulitan iaitu AES. Algoritma penyulitan akan dinilai berdasarkan prestasi 

sistem, baik dari sudut pengkomputeran dan juga komunikasi. 



iv 

ABSTRACT 

As robotic systems spread, cybersecurity emerges as major concern. Currently, most 

research autonomous systems are built using the ROS framework which has become the 

most popular framework for developing robotic applications along with other commercial 

software. ROS is a distributed framework where nodes publish information that other 

nodes consume. This model simplifies data communication but poses a major threat 

because a malicious process could easily interfere the communications, read private 

messages, or even take over the robots movement. The study investigates a robot’s 

performance when ciphering the messages interchanged between ROS nodes under the 

publish/subscribe paradigm. In particular, this research focuses on using encryption 

algorithm which is AES. The encryption algorithm will be evaluated according to the 

performance of the system, both from computing and communications point of view.  

 

 



v 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES viii 

LIST OF FIGURES ix 

CHAPTER 1 INTRODUCTION 1 

1.1 Background of Study 1 

1.2 Problem Statement 2 

1.3 Objective 3 

1.4 Scope 3 

1.5 Thesis Organization 3 

CHAPTER 2 LITERATURE REVIEW 4 

2.1 Introduction 4 

2.2 Background on Robots 4 

2.3 Robot Operating System (ROS) 5 

2.4 Security Issues in Robot Operating System (ROS) 7 

2.4.1 Unauthorized Publishing (Injections) 7 

2.4.2 Unauthorized Data Access 7 

2.4.3 Denial of Service (DoS) attack 8 



vi 

2.5 Cryptography 8 

2.5.1 Basic Terminology Used in Cryptography 9 

2.6 Overview of Various Algorithms 11 

2.6.1 3DES (Triple Data Encryption Standard) 11 

2.6.2 AES (Advanced Encryption Standard) 12 

2.6.3 Blowfish 14 

2.7 Comparison Between Various Algorithms 16 

2.8 Related Work 16 

CHAPTER 3 METHODOLOGY 18 

3.1 Introduction 18 

3.2 Research Methodology 18 

3.3 Research Planning and Literature Review 20 

3.4 Development of Research and Testbed 20 

3.4.1 Testbed Description 20 

3.4.2 Encrypting ROS messages 21 

3.4.3 AES Algorithm 23 

3.5 Implementation and Testing 29 

3.6 Hardware and Software Requirement 29 

3.6.1 Hardware Requirement 29 

3.6.2 Software Requirement 30 

3.7 Gantt Chart 30 

3.8 Summary 30 

CHAPTER 4 RESULT AND DISCUSSION 31 

4.1 Introduction 31 



vii 

4.2 Implementation 31 

4.2.1 Hardware/Software Set-up 31 

4.2.2 Connection of PC and Raspberry Pi 32 

4.2.3 Test : HelloWorld Talker-Listener Node 32 

4.3 Evaluation Parameters 35 

4.4 Result and Discussion 36 

CHAPTER 5 CONCLUSION 41 

5.1 Introduction 41 

5.2 Conclusion 41 

5.3 Limitation 42 

5.4 Future Work 42 

REFERENCES 43 

APPENDIX A GANTT CHART 45 

APPENDIX B EXPERIMENTAL RESULT 46 

 

 



viii 

LIST OF TABLES 

Table 3.1 Hardware requirement 29 

Table 3.2 Software requirement 30 

Table 4.1 IP address and Commands for PC and Raspberry Pi 32 

Table 4.2 Time in seconds of CPU spent and number of messages 39 

 



ix 

LIST OF FIGURES 

Figure 2.1 Conceptual model of ROS 6 

Figure 2.2 Encryption 9 

Figure 2.3 3DES Structure  11 

Figure 2.4 AES Algorithm 13 

Figure 2.5 AES Roundstep  13 

Figure 2.6 Blowfish Function F 15 

Figure 2.7 Blowfish Procedure  15 

Figure 3.1 Research Methodology 18 

Figure 3.2 Scheme of Scenario for ROS Communications 20 

Figure 3.3 The Stages Diagram of AES Encryption 22 

Figure 3.4 AES Encryption Process 24 

Figure 3.5 The Block Diagram of AES Decryption 25 

Figure 3.6 AES Decryption Process 27 

Figure 4.1 Source Code for talker.py 32 

Figure 4.2 Source Code for listener.py 33 

Figure 4.3 AES Encryption and Decryption Algorithm 34 

Figure 4.4 Output From Publisher/Talker and Subscriber/Listener Nodes Beore 

Encryption. 36 

Figure 4.5 Visual Representation Using Rqt_Graph for the Communication of 

the Talker and Listener Nodes 36 

Figure 4.6 Output From Publisher/talker and Subscriber/listener Nodes After 

Implementing AES-128 Algorithm. 37 

Figure 4.7 Total CPU Time for Encryption In Seconds 39 

Figure B.1 Results for Plaintext Version 45 

Figure B.2 Results for AES-128 46 

Figure B.3 Results for AES-192 47 

Figure B.4 Results for AES-256 48 

 

 

 

 



x 

LIST OF ABBREVIATIONS 

 

3DES 

AES  

Triple DES  

Advanced Encryption Standard 

CBC Cipher Block Chaining 

CFB Cipher Feedback 

CTR Counter 

DoS Denial of Service  

ECB Electronic Code Book 

OFB Output Feedback 

ROS  Robot Operating System  

  

  

  



1 

CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study 

In current world growing technology, robots become more sophisticated and it 

have a high demand in fields such as medical, construction, military as well as household 

robots. Robots are playing an important role for human that can affect our daily lives. 

National security and defense are now depend on drones. Amazon use robots to distribute 

their supply chain and goods. Surgical robots that is operated remotely by the surgeon 

will likely to be used in more scenarios such as emergency response and military. 

Automated vehicles are being developed by companies like Google and Tesla. An 

analysis of 280 companies that was carried out by Department of Commerce on 

Competitiveness showed an average rate growth of 62% in the healthcare and eldercare 

markets as well as 20% average growth rate for robotics use in manufacturing, service 

and medical fields (Dorsey, Martin, Howard, & Coovert, 2017). Based on this data, it 

proves that the use of the robots is increasing and will be likely to contribute more in the 

future.   

Robotics systems are growing not just in the virtual world, science-fiction movies, 

but also in our normal life. It is possible to find driverless cars in the streets, autonomous 

robotic guides at museums and the most common is autonomous vacuum cleaners in our 

homes. These robotic systems can suffer from different types of cyber-attack, hence some 

standard of cybersecurity is enforced.  

The widely known framework for developing robotic applications is ROS 

(Robotic Operating System) that controls the autonomous behaviour of the robots. ROS 

is an emerging standard for creating a new robots application in the future, but it is not 



2 

immune to cyber-attack or hacking. Therefore, it is important for the ROS framework to 

be more secured to avoid security problem. 

1.2 Problem Statement  

Generally, robots are created to provide service to people, hence the human robot 

interaction is important. It can obtain user’s information in a blink of eye with the 

advancement of technology in the last few decades. Service robots may one day also 

collect data and information about the health and wellbeing of the person that it serves. 

The data that non-authorized and suspicious entitiy gained will let them to misuse it for 

their own benefit. The robots also can be controlled if outsider able to enter the system 

of the robots.   

ROS is a distributed framework where nodes publish information that other nodes 

consume. The message-passing distribution between the nodes in ROS was implemented 

in plain text. It simplifies data communication but poses major threat because malicious 

process could easily interfere the communications and read private messages. Therefore, 

cryptography technique such as Advanced Encryption Standard (AES) must be 

implemented in publisher and subscriber nodes to protect the confidentiality, integrity 

and availability of the data.  

In addition, cryptography is an important technology that able to protect 

information against the outsider such as suspicious users and adversaries. The 

fundamental issue in plotting and designing an encryption algorithm must be the security 

of the algorithm against undesirable attack. AES have three different length of keys which 

is 128, 192 and 256 bits. The differences in key length will present different performance. 

Hence, AES with different key length is analysed in order to choose which algorithm is 

better for ROS framework. 

 

 



3 

1.3 Objective 

Based on the problems statement, the objectives of this research are: 

i. To identify the possible cyber security attack that can occur in Robot 

Operating System (ROS). 

ii. To implement the AES algorithm with different key length in the 

communication of ROS.  

iii. To evaluate the performance of AES algorithm based on the system 

parameter in ROS. 

1.4 Scope 

The study focus on comparison between different length of keys in AES algorithm 

in the security of robots based on ROS. The purpose of the algorithm is to improve the 

security of the communication in ROS. The scope also includes the user such as 

researchers and organizations. The main software that is used in this research is ROS 

Indigo.  

1.5 Thesis Organization 

The thesis consists of five chapters. The organization and flow of the thesis is as 

follows. Chapter 1 shall discuss on introduction to the research. In the second chapter, 

literature review of the research is discussed. In Chapter 3, the methodology used is 

interpreted. Chapter 4 are literally about the implementation and result discussion. Lastly, 

Chapter 5 contains the conclusion of the research findings. 

 

 

 

 

 



4 

CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

In Chapter 1, the research introduction have been discussed which consist of the 

problem statement, objective and scope. In this chapter, the relevant literature review will 

be discussed to understand about Robot Operating System (ROS), cryptography method 

and how it works. Hence, comparison between the method will be further elaborated to 

justify the current work.  

2.2 Background on Robots 

A robot is a machine that is programmable by a computer that capable of carrying 

out a complex series of actions automatically. Robots can be defined as a combination of 

mechanical structures, sensors, actuators, and computer software that manages and 

controls these devices (Morante, Victores, & Balaguer, 2015). Robots might be 

established to take on a human form but most robots are machines that are intended to 

perform a task with no regard on how they look. 

Robots are already showing up in thousands of homes and business. All signs as 

toys for children, companions for the elderly, customer assistants at stores and healthcare 

attendants. Robots will fill varying roles of service, as home and business assistants, 

physical companions, manufacturing workers, security and law enforcement and more. 

As many of these smart machines are self-propelled and able to move without the 

help of human. It is important that they are secure, well protected, and not easy to hack. 

If not, instead of being a helpful resources to human, they could quickly become 



5 

dangerous tools that are capable to cause havoc and causing substantive harm to their 

surroundings that they are designed to serve. 

2.3 Robot Operating System (ROS) 

(Quigley et al., 2009) The Robot Operating System (ROS) is a popular distributed 

framework for creating robotic applications. It began as a research project for framework, 

but currently most of the manufacturers use ROS for building robotic applications. It is 

mostly used in industrial applications such as automotive, healthcare and manufacturing. 

For instance, object-manipulation robots like Baxter (by Rethink robotics) and service 

robots which is RB1 (by Robotnik) are both using ROS as a platform. ROS provides a 

communication layer remotely above a host operating system to construct a 

heterogeneous complete cluster for robots. It was developed to interpret and simply the 

code reuse among the robots that have wildly varying hardware and to support large-scale 

software integration efforts as the systems grow even more complex.  

ROS are similar to any other operating system services that are equipped with a 

set of libraries for robotics which consists of hardware abstraction for sensors and 

actuators, low-level device control and inter-process communication that are functioning 

to control the robots  (“ROS_Introduction - ROS Wiki,” n.d.). Nodes, messages, topics 

and services are the essential and basic concepts of the ROS implementation. 

Computation takes place in ROS processes named nodes. ROS framework is basically a 

message-passing distributed system in which the nodes can send and receive messages. 

The architecture of this framework is based on publishing messages to topics processes. 

(Rodr, Casado, Fern, & Mart, 2016) For example, a process (node) can governing sensor 

accessed, perform the processing and publishing information as an information structure 

on the topic. Other process can subscribe to this topic to read the information. The process 

can decide and make a selection on the activity and the movement of the robot. Then, the 

nodes broadcast the commands in another topic to send them to the motors.  

Common ROS configuration is consist by at least one ROS Master and some 

clients. ROS Master is the important root in the ROS system. Registration information 

about all of the topics and services used by ROS nodes can be managed by ROS Master. 

To register its information, nodes communicate with the Master and it gets the 

information of other registered nodes to ensure that it can authorize new connections with 



6 

their topics accordingly. Inbound connections are received via a network communication 

protocol; TCP Server Socket along with a header containing information about the 

messages such as data type, routing information, the name of the sending data node, the 

name of the Topic where the subscriber is connecting to and others. Figure 2.1 presents 

the model illustrated by ROS Technical Overview.  

ROS binary packages is available for public to be downloaded. However, since it 

is developer-friendly software ecosystem, it is possible for the system to be the aim for 

cyber attacks later on due to the expanding level of connectivity and availability to outside 

services and site. The transmission of messages between the publishers and subscribers 

was implemented in plain text, which make it easy for the third party to access and gain 

data or modify the robot behavior just by connecting the same network. Therefore, the 

major security problems can easily be identified in ROS. The vulnerabilities includes 

plain-text communication, unprotected TCP ports, unencrypted data storage and XML-

RPC legacy issues. 

 

Figure 2.1 Conceptual model of ROS  

 



7 

2.4 Security Issues in Robot Operating System (ROS)  

 (Rodr et al., 2016) There are three basic types of security issues that may threaten 

the robotics system which are integrity (data modification), availability (data 

interruption) and confidentiality (data interception). These concept can make the robot to 

perform undesired behaviours or offer all information available in the scenario to the 

attacker. An example of integerity attack is the attacker manipulate the data and traffic 

between the user and the robot. User is teleoperating a robot and wants the robot to turn 

left, but an attacker intercept the command and forces the robot to move to the right 

instead. In this case, there would be an issue where the robots could cause a physical 

damage including falls or collission. 

Robot Operating System (ROS) is one of the most popular open source 

frameworks and libraries that is used in industrial application. Since ROS is an open 

source, it may suffer from many known cybersecurity problems, such as clear text 

communication, authentication issues, and weak authorization schemes.  All of these 

issues make robots insecure. Below are the some possible attack vectors that can occur 

in ROS: 

2.4.1 Unauthorized Publishing (Injections) 

A node in ROS may broadcast and distribute data for a random topic without the 

approval from the owner of the system. This issue can caused the attacker to inject the 

data or commands into the application purposely in order to interrupt the operation. For 

instance, fake movement commands might be injected into the robotic system leading to 

random motion that may hurt nearby persons or damage equipment. Another example is 

false sensor data might be injected to fake a normal system after a manipulation of the 

system or to take control the activity of the robot. 

2.4.2 Unauthorized Data Access 

Each node in ROS can subscribe to every topic in the system implementation. 

Then, it will accept any data that is published for the certain topic. This data can consist 

of private information such as business-critical information or details about the 



8 

communication process of the robots. This kind of attack is difficult to identify and detect 

since the node itself has no outgoing ROS communication. 

2.4.3 Denial of Service (DoS) attack 

Denial of Service is a cyber attack in which the attacker attempt to make the robots 

or network resource unavailable for the users by breaching the services of a host 

connected to the Internet. In this case, huge amount of fake data can easily be executed 

in ROS. Therefore, it leads to a high processing load on all nodes and will likely make 

the robots unable to perform meaningful process. Every node in the network is used to 

publish data for a topic in a subscribed targeted node since there is no control over which 

node may publish what kind of data. Hence, the node can be used for the DoS to launch 

its attack.  

2.5 Cryptography  

Cryptography is the process of converting or translating data to a format that is 

unreadable without the help of a tool or additional information. Cryptography is the 

science of designing the methods that allow data to be sent in a protected form and it is 

an important technology that can protect private information from third parties such as 

malicious users and attacker. The immensely use of networking leads to the data 

exchange over the network while communicating to different system. It is important to 

encrypt the message to ensure that intruder is unable to view and interpret the message. 

Various type of encryption algorithms are now widely used in information security to 

secure the data and information in the system (Hwang & Liu, 2005). In fundamental, 

cryptography is a way of hiding information by encrypting the message. The conversion 

of protecting information (encryption) into an unreadable format (encrypted text) known 

as cipher text. Only those who knows a secret key can decrypt the message into plain 

text. Figure 2.2 shows how encryption process works.  

 



9 

 

Figure 2.2 Encryption  

 

As the Internet and different types of electronic communication become more 

established and powerful, the security is becoming increasingly important. The major 

function of any cryptographic algorithm is to establish maximal stability of the crypto-

ciphered information includes robotic middleware which is Robot Operating System 

(ROS). In this research, cryptographic algorithms that will be discussed are 3DES (Triple 

Data Encryption Standard), AES (Advanced Encryption Standard) and Blowfish. 

2.5.1 Basic Terminology Used in Cryptography 

(Bhanot & Hans, 2015) There are a few terms that we need to understand in the 

encryption process due to in every algorithm description, these common terms are going 

to be discussed: 

 Cipher Text 

The plain text is encrypted in unreadable message. This unreadable message is 

called as Cipher Text. Example: “Hello” message is converted into “@#$*^”. 

 Encryption  

Encryption is the process converting Plain text into Cipher text. This message 

cannot be read, hence it can secure the communication over the network. Encryption 

algorithm is applied into the process. 

 Decryption 

This process is the contradiction or opposite process of the encryption. Specific 

algorithm is used to convert the cipher text into plain text. 



10 

 Key  

It can be categorized into two type of keys which are Symmetric (private) and 

Asymmetric (public) keys. In Symmetric keys encryption, one key is used to encrypt and 

decrypt the message. Meanwhile in Asymmetric keys, two keys are used which includes 

private and public keys.  

In a public-key encryption scheme, the public key is developed by some servers 

as an encryption key. Any individual that have the public key can use the key to encrypt 

the messages and form the cipher-text. Private key act as a decryption key and it is used 

by anyone who knows it to retrieve the original message from any cipher-text generated 

using the matching public key. The stealth of encrypted message is secured against 

attacker who knows and have the encryption key. 

 Key Size  

Key size is the measurement of length of key in bits, used in any algorithm. 

 Block Size  

Key cipher works on fixed length string of bits. This fix length of string in bits is 

called Block size. The block size depends on the algorithm. 

 Plain Text or Normal Text   

The original text or message used in the communication is known as plain text. 

Example: Alex sends “Hello” to John. “Hello” is the plain text. 

 Round  

Round of encryption means that how long the time is needed for the encryption 

algorithm to execute in complete encryption process until it produce cipher text as output. 

 



11 

2.6 Overview of Various Algorithms  

2.6.1 3DES (Triple Data Encryption Standard) 

3DES (Triple DES) is an encryption algorithm that is similar to DES. It is 

replacement for DES because of the advancement in key searching. It was standardized 

in ANSI X9.17 & ISO 8732 and in PEM for key management. The encryption method is 

identical with DES but it applied three times to every data block to increase the encryption 

level and the average safe time. It uses the simple DES encryption algorithm thrice to 

improve the security of encrypted text. 

Based on Figure 2.3, same data is encrypted twice using DES. Therefore, it makes 

the encryption more secure and hard to break. This encryption algorithm is essentially a 

Block Cipher that use 48 rounds (three times DES) in its computation, and the key length 

is 168 bits. Each block contains 64 bits of data.  

3DES is supposed to be protected up to at least 2112 security, however, in terms 

of performance, some research stated that 3DES is slower than other methods, especially 

in software computations (Stallings, n.d.). 3DES also supply sufficient security. That is 

the reason users needed the successor of 3DES.  

 

Figure 2.3 3DES Structure  

 



12 

The advantages of 3DES is that it is three times secure because as stated before, 

it is combination of three DES encryption algorithms with various keys at each level. 

This algorithm is chosen over simple DES encryption algorithm. Even though it brings 

the sufficient security to the data, but it is not perfect because it use a lot of time as well 

as the speed is also slower than DES encryption algorithm. 

There are several modes: 

 DES-EDE3 

Encrypt, Decrypt and Encrypt with three unique keys as mentioned in Figure 2 

(Key 1, Key 2, Key 3). 

 DES-EEE3 

A block of data in encrypted twice with a different key and encrypted again with 

another key, with using three unique keys. 

 DES-EDE2 and DES-EEE2 

Use two keys only, where first and last encryption is done using the same key. 

2.6.2 AES (Advanced Encryption Standard) 

In 1997, the National Institute of Standards and Technology (NIST) announced 

to choose a replacement to DES. Advanced Encryption Standard (AES) that is developed 

by Vincent Rijmen, Joan Daeman in 2001 was selected to be the successor to DES. AES 

is a symmetric block cipher that contains variable key length of 128, 192 or 256 bits. 

Each cipher is capable to encrypt and decrypt data blocks of 128 bits in 10,12 and 14 

rounds depends on the size of the key. There are 10 rounds for 128-bit keys, 12 rounds 

for 192-bit keys, and 14-rounds for 256-bit keys (Shirabadagi & Nadagoud, 2017). Figure 

2.4 shows the AES algorithm. 



13 

 

Figure 2.4 AES algorithm 

Except for the last round, all of the other rounds are the same. Each round in the 

encryption process follow some steps to complete the process until it reach (n). Each 

round have four steps which are Substitute Bytes, Shift Rows, Mix Column and Add 

Round Key as shown in Figure 2.5. Table 2.1 explain the details of the four steps in AES 

algorithm. 

 

Figure 2.5  AES Round Steps  

 

 



14 

Table 2.1 AES Steps 

Steps Description 

Substitution Round  Sub-Bytes are byte-by-byte substitution 

during the encryption process. 

Shift Rows Shift the rows of the state array during the 

forward process (S-Box process). 

Mix Column  During the forward process, mix up the bytes 

in each column separately. 

Add Round Key Round key is added to the output of the 

previous step during the forward process. 

This step is quite different from others 

because of the difference in key size. 

 

In this encryption algorithm process, it uses different round keys. The keys are 

utilized with mathematical operations on an array of data. The data is shown in blocks of 

specific size. The array is called as state array. This encryption process includes following 

process: 

i. Obtain the different round keys from cipher key. 

ii. Initialize the state array with block data or plaintext. 

iii. Add round key to start with initial state array. 

iv. Perform the process of state manipulation in nine rounds.  

v. After tenth round of manipulation, resulting the final output as cipher 

text. 

 

AES encryption algorithm is used by the U.S. government to protect confidential 

information. Due to AES flexibility, this encryption algorithm is applicable for hardware 

and software implementation throughout the world for sensitive data encryption. 

2.6.3 Blowfish  

Blowfish is a symmetric-key block cipher that was developed by Bruce Schneier 

in 1993. He designed the Blowfish algorithm and made it accessible for the public to use 

(Schneier,1993). It was his intent to create new algorithm to serve the world with a new 

encryption standard. Blowfish encryption algorithm have variable key length from 32 bits 

to 448 bits. Blowfish encryption algorithm operates on 64 bits block size and it have 16-

round Feistel cipher that uses large key dependent S-Boxes. Each S-Box have 32 bits of 

data. 



15 

 

Figure 2.6 Blowfish Function F.  

Figure 2.6 shows the Blowfish’s F- function that splits the 32 bit input into four 

8-bit quarters, and uses the quarters as input to S-boxes. The outputs are added (Mod) 

modulo 2^32 and XORed to produce the final 32-bit output which are the encrypted data. 

As for decryption, it occur at another end and the same process takes place, but in reverse 

and opposite order. Figure 2.7 shows the procedure of Blowfish.  

 

Figure 2.7  Blowfish Procedure 



16 

Blowfish algorithm was first introduced in 1993, but until now it has not been 

cracked yet and no attack has been successfully launched against Blowfish encryption 

algorithm. This algorithm can be applied in hardware applications, and like most other 

ciphers, it is also used in software applications because this algorithm implement a good 

encryption rate in software. It is faster than any other cipher algorithm. In most encryption 

research, Blowfish encryption algorithm is acknowledge as the best encryption algorithm 

because the level of security that it offers and the encryption speed, which is better than 

the most of the encryption algorithm. 

2.7 Comparison Between Various Algorithms  

The comparison between the three algorithms which are 3DES, AES and 

Blowfish are summarized as shown in Table 2.2. 

Table 2.2  Comparison of Various Algorithms on the basis of Different Parameters 

Parameter   3DES  AES Blowfish 

Development In 1978 by IBM. In 2001 by Vincent 

Rijmen and Joan 

Daeman. 

In 1993 by Bruce 

Schneier. 

Key Length (Bits)  168, 112 128, 192, 256 Variable key length 

i.e. 32 - 448 

Rounds  48 10, 12, 14 16 

Block Size (Bits)  64 18 64 

Attacks Found Related Key attack. Key recovery 

attack and Side 

channel attack. 

No attack is found. 

Level of Security Adequate security Excellent security Highly secure 

Encryption Speed Very slow Faster Very fast 

    

 

2.8 Related Work 

The security issues in robot operating systems is an active and popular topic for 

some time. In their work (Bonaci, Yan, Kohno, & Chizeck, 2015) analysed vulnerabilities 

in the Raven II Surgical Robot. Raven II is a tele-operated robotic system designed to 

support research in advanced techniques of robot-assisted surgery. It uses open standards 

software including Linux and ROS. It is a remotely controlled robot. Operators can be 

nearby or at a completely separate location. 

It was found out that there was no authentication and encryption in the 

communication link. Therefore, authors were able to successfully perform man-in-the-



17 

middle attacks and consequently execute the following intent modification attacks. They 

were also able to perform hijacking attack. With no authentication in place, the only 

required attribute in order to take the control of the robot was the sequence number of the 

packet. After the moderate time of eavesdropping on the network, they were able to find 

out the current packet sequence number and take full control of the robot by sending any 

desired command. Obviously all of the performed attacks are unacceptable for a surgical 

robot and could lead to horrible consequences during the real surgery. 

(Denning, Matuszek, Koscher, Smith, & Kohno, 2009) investigated the security 

of 3 consumer level household robots. Multiple vulnerabilities were discovered. For 

instance, all communications in some robots were unencrypted and consequently leaked 

robots authentication credentials and recorded audio/video stream to everyone on the 

same wireless network. They were also able to control one of the robots with a separately 

bought off-the-shelf remote control. Authors also expressed a concern regarding robots 

which have extensive sensing capabilities (audio and video) and the privacy risk they are 

creating for the environments they are used in. The other concern was regarding robots 

mobility and ability to grasp objects with actuators and move them or just push objects 

around in order to deal physical damage. 

Based on the related works, we can conclude that ROS communication is not 

secure because it is implemented in plaintext. The robots are vulnerable to the outsider 

since they can hack the system easily. Therefore, in this research, cryptography technique 

which is Advanced Encryption Standard (AES) is used to protect the message-passing 

distribution between the nodes in the ROS. The message that is passed from the publisher 

will be encrypted and it will form unmeaning-less text. In order for the subscriber to 

understand the message, it must have the key to decrypt the message.  

 

 

 

 

 



18 

 

CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In this chapter, methodology that is chosen for this research will be briefly 

discussed. Methodologies is a technique that are designated to finalized and multi-step 

ways to system development that will drive the work and influence the quality of the final 

product of the research project. For better understanding, a process model is used to 

interpret the progress of the research project.  

The hardware and software specification that is used in this research will be 

outline. The list of hardware and software stated act as an important role to ensure that 

the research project run very well.  

Lastly, a Gantt chart which establish the timeline for the research is covered in 

this chapter. Gantt chart will remind the researcher throughout the research. Therefore, it 

can ensure that all the output is delivered within the time limit. 

3.2 Research Methodology  

Figure 3.1 shows the research methodology. A research project begins with 

planning, where the details of the project is explained. Scope of the project is defined and 

method to complete and finish the project is developed in planning phase. The time span 

for completing the research project according to the distinct number of tasks is discuss in 

this phase.  

 



19 

Figure 3.1 Research Methodology  

 

Literature review includes in the first stage where it will provide the clarification 

about the research project and in what way it was initialized. This stage tends to give an 

overview of the research study and ensure that the problem is evaluate to accurately 

develop the models and find the solution that is use in the research project. 

Second phase is development of research and testbed where it is the most 

important stage in the research project. This phase generally involve technical design 

requirements, such as programming language, data layers, services and more. A design 

specification will typically be created that outlines how exactly the problem solution that 

is covered in analysis will be technically implemented.  

Third phase is the implementation and experiment stage. Installation and 

procurement of hardware and software takes place in this stage and both of it must be 

operational before development of the project begins. Testing is also included in this 

phase where test run need to be done in the system to remove any bugs. It is crucial phase 

after implementing the whole project to ensure that the output match the expected results.  

Last phase is analysis and conclusion stage where the result is analysed and 

conclude with a better outcome.  

Research Planning 
and Literature Review  

Development of 
Research and Testbed 

Implementation and 
Testing

Analysis and 
Conclusion



20 

3.3 Research Planning and Literature Review   

This phase plays a large role in developing an outstanding and a complete system 

because it can determine actions that need to be taken and solve the arising problem. It is 

essential in interpreting the problem and the objective of the research. The objective need 

to solve the problem statement of project. It is important to ensure that the objective are 

achieve and the problem is solved.  

The thesis is started by analysing the problem, the objective need to be 

accomplish, limitation, scope as well as the proper platform for development. A schedule 

is arranged as a manual throughout the project development to keep track the progress 

and to ensure it can complete within the due date. Gantt chart is used in this phase to plot 

activity that is involved in the development process. Gantt chart act as a reminder to make 

sure the process of completing the project followed the timeline. 

3.4 Development of Research and Testbed   

After analysing the problem of the research, the framework of the design phase is 

very important in the whole development cycle process. The way of how the algorithm 

process should be implemented in the system have to be applied in this phase including 

the tools used in developing the system. The specifications from the first phase are 

discussed and the system design is prepared for each of the algorithm.  

3.4.1 Testbed Description 

To classify and evaluate the performance of the encrypted version of ROS 

communications environment, the following scenario are designed. Figure 3.2 shows a 

graphical representation of the scenario created.  

First, ROS Indigo is installed in the desktop computer to implement the selected 

algorithm. ROS master is launched in this platform. This enables the nodes to 

communicate and exchange messages. This platform will act as a talker and have two 

nodes which are one node publishes the data into /chatter/message topic and one node 

connected to this topic that performs data encryption and publishes them into a 

/chatter/encrypt/message topic.  



21 

Secondly, Raspberry Pi 3B+ is used as “Known Client”. It is installed with ROS 

Indigo as well and is connected by using Ethernet cable to the network. This client can 

communicate with the master since it knows the master ROS IP. Decryption node is run 

in this platform and it will registers to master and subscribes to the topic 

/chatter/encrypt/messages. This node decrypts the data that are publish by the talker and 

display the output.  

ROS Master node will keep and store the cryptographic key for encryption and 

decryption process and it is known by the selected clients only which in this case is the 

Raspberry Pi.  This mechanism can be implemented as public-private key schema as RSA 

to share the key between the nodes safely. 

 

Figure 3.2  Scheme of Scenario for ROS Communications.  

3.4.2 Encrypting ROS messages 

Recent study (Santos, Pereira, & Couceiro, n.d.) has stated that communication 

that using cryptography in ROS gives minimal overhead of CPU performance and 

communication load for systems. The study involve in encrypting data that are conducted 

in ROS processes using 3DES algorithm as the worse environment to evaluate its 

behaviour in real environment with ROS. Both encryption and decryption nodes was 

added in the ROS communication without changing the original message structures for 



22 

data sending. The authors use PyCrypto package and evaluated the performance of the 

system from the computing and communication point of view. 

Inspired by the recent study, this research is developed using the similar approach 

for evaluation. Both of the encryption and decryption nodes is still coded by using Python 

but AES algorithm is chosen to be implemented in the system. AES is known to be faster 

than 3DES and it is a symmetric block cipher. 

It was stated that symmetric encryption provides better CPU performance rather 

than asymmetric. Encryption’s mode of operation need to be selected to guarantee 

privacy and authenticity of the message. There are two different modes of operation for 

cryptography. First mode is represented by the Electronic Code Book mode (ECB) which 

is a straightforward encryption. Second mode is the modes that use encryption scheme 

based on Key IV is represented by Cipher Block Chaining (CBC), Cipher Feedback 

(CFB), Output Feedback (OFB), XEX-based tweaked-codebook mode with cipher-text 

stealing XTS, and Counter (CTR) modes.  These modes are applied to ensure the 

confidentiality but not message integrity.  

In this research, the CBC mode is used because it is easy and require simpler 

implementation as well as its high level of adoption. CBC mode works by combining 

plaintext blocks with the previous cipher-text block to encrypt the message. CTR mode 

is used as alternative which is also widely used. As mentioned by (Krovetz & Rogaway, 

2011), both of CBC and CTR modes is identical in terms of encryption and decryption 

performances when using small blocks, as well as using bigger blocks for decryption 

process due to its parallelization features. 

 

 

 

 



23 

3.4.3 AES Algorithm  

In this research, there are two architectures designed separately and the design 

mostly followed from a study by (Abdulazeez & Tahir, 2015). 

1. The first architecture is designed for AES Encryption Algorithm.  

2. The second architecture is designed for AES Decryption Algorithm. 

3.4.3.1 Design of AES Encryption Algorithm  

The algorithm is design to produce and generate encrypted data (cipher-text) from 

the plaintext. ‘SubShiftbyte’ component use one 255-bits Roms named Sbox and also is 

used by KeyExpanisin component to produce a new key. Rom is functioning to store 

constant values that cannot be changed. Figure 3.3 shows the stages diagram of AES 

Encryption. 

 

Figure 3.3 The Stages Diagram of AES Encryption 

 

Below are the stages in AES encryption. Assume that 128-bit data and key is used.  

1. First Stage  

In the first stage, 128-bit data is read and enter in an array called state array. State 

array represents the plaintext that is processed to produce cipher-text. 128-bit key is also 



24 

going through the same process and get into the key array. Both of these arrays have 128 

rows and each rows contains of 1-bit. 

2. Second Stage  

128-bit key array is received from the first stage and is processed to produce keys 

that will be used in the AES encryption rounds. New key is produced by performing three 

operations on the key array. Some of the entries in the key array is replaced by other 

entries that is placed in the ROM memory names Sbox.  

During development of new key, new variable named Constant Round will be 

added. Constant Round’s value will keep changing from one round to another. Then, 

some entries from the key will be XOR-ed with the new entries and Constant Round will 

produce new key that is specifically for AES encryption round. 

3. Third Stage  

State array from the first stage is received along with the key array in the previous 

stage. The state array have some changes since it is going through several components in 

this stage. Finally, the processed state array from Encryption component is send to the 

final stage. 

As mention before, state array contains changes when going through several 

components. There are four components, which are Reg_128, SubShiftByte, 

MixColumn, and AddRoundKey component. All of these components are iterated in 10 

rounds except round 10 because MixColumn is not activated.  

4. Fourth Stage  

New array named output array will receives state array from the previous stage. 

The content of output array is the same as state array that consists of 128 rows and each 

rows consist of 1-bit. Cipher-text is represented by output array and the output represents 

the processed data. Finally, 128-bit cipher-text is produce from 128-bit plaintext. Figure 

3.4 shows the graphical representation of AES encryption process.  



25 

 

Figure 3.4 AES Encryption Process  

 

 



26 

3.4.3.2 Design of AES Decryption 

The process of decryption is to convert the original data (plaintext) from cipher-

text.  This process is just the same as encryption algorithm as discussed in section 3.5.3.1 

except that the process is reverse. Two (2) 255-bit ROMs is used in AES Decryption 

algorithm. First ROM is called as Sbox that is used by KeyExpanisin component to 

generate new key while the second ROM is called as InvSbox is used by InvSubShiftbyte 

component. Both of the ROMs is functioning to store a constant and fixed value, therefore 

the value cannot be changed. The block diagram of AES Decryption is shown in Figure 

3.5. 

 

Figure 3.5  The Block Diagram of AES Decryption 

 

Below are the stages in AES decryption. Assume that 128-bit data and key is used. 

1. First Stage 

128-bit data is read and enter in the state array and 128-bit key is going through 

the same process and it entering the key array. Both of these arrays contains 128 rows 

and each rows contains 1-bit. The state array represents the cipher-text that will be 

processed and converted to get the original data.  

2. Second Stage  

This stage is the same stage in AES Encryption Diagram, so it is explained in (Sec 

3.5.3.1). 

 



27 

3. Third Stage  

The third stage receives the state array from the first stage and the key array from 

the second stage. In this stage, the state array will have changes when going through 

several components. The state array that already being process from the encryption 

component is send to the next stage.  

As mention before, state array contains changes when going through several 

components. The components involved are Reg, InvSubShiftByte, InvAddRoundKey 

and InvMixColumn component. These four (4) components are iterated in 10 rounds 

except round 10 because InvMixColumn is not activated. 

The first component is Register (Reg) which has an input signal ‘Reset’ for 

initialization of this register to the value 0x00. InvSubShiftByte component is form by 

the combination of InvSubByte and InvShiftRow components. InvSubShiftByte 

component receives state array from Reg component, then it changes the state array 

elements with other elements that are stored in InvSbox array. Positions of the state array 

entries is change at the same time to get the correct positions. 

A ROM memory is created to store the InvSbox values when the entire state array 

is changed. InvSbox values are fix and cannot be change. Therefore, InvSubShiftByte 

component sends the state array which will be the index of the ROM and the ROM returns 

the values from InvSbox table depends on the index stated. 

InvAddRoundKey component will XOR the state array with key array and the 

result will be stored in the state array. InvMixColumn component functioning to divide 

the state array into four columns and each of the column is multiplied with the specific 

row of the array to get a value that is consisting of mixing value from the four elements 

in the column. The InvMixColumn is active for all rounds in decryption process except 

the last round which will not be activated. 

4. Fourth Stage  

The fourth stage receives the state array from the previous stage and enter the new 

array named output. Figure 3.6 shows the graphical representation of AES decryption 

process. 



28 

 

 

Figure 3.6  AES Decryption Process  

 



29 

3.5 Implementation and Testing  

An implementation of the system is made after the design is fully completed. ROS 

Indigo is used as the framework to complete this research. Results presented in this thesis 

will show the differences of the performances in message-passing communication 

between two machines using encryption algorithm. The details about this phase will be 

discussed in Chapter 4. 

The experiment implemented will be tested as all the components are combined. 

The testing and evaluation is carried out to solve the problem statement and to determine 

whether the limitation of the existing journals are avoided. The main purpose of this 

testing is to prove the proposed authentication scheme with real time process in ensuring 

the accuracy of the result and claims that are made in this research. Moreover, the testing 

stage allows errors and limitations of the research experiment to be identified so that 

further improvements can be made to obtain the desire result. 

 

3.6 Hardware and Software Requirement 

This section will briefly explain requirements needed in conducting this  research 

on security in Robot Operating System (ROS). It includes software requirements and 

hardware requirements.  

3.6.1 Hardware Requirement  

The list of hardware requirement for this research are listed as shown in Table 

3.1. 

Table 3.1 Hardware requirement 

Hardware Purpose 

PC Act as a talker or publisher for the 

communication in ROS. 

Raspberry Pi 3b+ Act as a listener or subscriber for the 

communication in ROS. 

Ethernet RJ45 Cable To connect the Raspberry Pi 3b+ to the PC. 

ASUS A450L Notebook To prepare the documentation. 

External Hard Disk/Pendrive A data storage to store the data required for 

this research. 

 



30 

3.6.2 Software Requirement 

Table 3.2 shows software that is used to complete the research. The software is 

used during documentation and the development of this system. 

Table 3.2 Software requirement 

Software Purpose 

Microsoft Windows 8 Operating System As a platform to complete the research. 

Microsoft Word 2017 To prepare the documentation. 

Gantt Project To create the Gantt Chart. 

Ubuntu 14.04 LTS As a platform to install ROS Indigo. 

ROS Indigo To implement and test the selected algorithm. 

Raspbian Stretch  Software that is required for Raspberry Pi 

3b+. 

 

3.7 Gantt Chart 

Gantt Chart is important for planning and scheduling the time taken for the 

research project. It help to assess how long a project should take, determine the sources 

needed and plan the order of which task should be done first. Refer Appendix A.  

3.8 Summary  

As a conclusion, this chapter explain about the methodology used to develop the 

Security of Robot Operating System (ROS) by using Advanced Encryption Standard 

(AES). Waterfall has been chosen for the methodology because it is the most suitable 

method that can be used for this research. The design for each algorithm which is 3DES, 

AES and Blowfish are discussed in this chapter. The software and hardware also has been 

analysed. The chosen software and hardware is important so that the process of 

completing this research project can run smoothly. 

 

 

 

 



31 

 

CHAPTER 4 

 

 

RESULT AND DISCUSSION 

4.1 Introduction 

The purpose of this chapter is to discuss in details on how the process of 

encryption algorithm which is AES is implemented in ROS. To relate to the methodology 

used, this process occurs during the designing phases. All of the implementation of 

algorithm and coding will be applied in order to achieve the main goal and objective of 

this research. The comparison between communication of the ROS nodes before and after 

encryption algorithm is analysed. At the end of this chapter, the overall findings are 

summarized. 

4.2 Implementation  

Implementation is the most essential phase in order to achieve the objective 

during developing this research. In this section, the security initiatives that is described 

in previous chapter is tested which is by using Advanced Encryption Standard (AES).  

4.2.1 Hardware/Software Set-up  

For this research, Intel Core i5 CPU with 7.8 GB of RAM Memory and running 

Ubuntu 14.04 LTS Operating System is used. There is more than one ROS distribution 

supported at a time. In this research, ROS Indigo Igloo is used since it is primarily 

targeted at the Ubuntu 14.04 LTS release. The latest product of Raspberry Pi 3 Model B+ 

with 1.4GHz 64-bit quad-core processor is used as the subscriber where the messages 

will be send from the publisher. ROS Indigo is also installed in the Raspberry Pi. 

Raspbian Stretch is the official operating system for Raspberry Pi and it comes with 



32 

plenty of software for education, programming and general use. Raspberry Pi is 

connected to the PC using RJ45 cable.  

4.2.2 Connection of PC and Raspberry Pi 

To access the command line of the Raspberry Pi remotely from the PC, Secure 

Shell (SSH) can be use. Before getting started, make sure the PC and Raspberry Pi is 

properly set up and connected. In this research, RJ45 cable is used. The first step is to 

identify IP address of the Raspberry Pi in order to connect to it later. ‘ifconfig’ command 

will display the current network status including the IP address. In this case, the IP 

address for the Raspberry Pi is fe80::6b7b:271b:d58d:fb4. Therefore, command ‘ssh -6 

pi@ fe80::6b7b:271b:d58d:fb4%eth0’ is used to display the command line for Raspberry 

Pi.  

As mention before, the PC will act as a talker while the Raspberry Pi will act as a 

listener. ROS Master is run in the PC using different terminal and all nodes must be able 

to configured using the same master via ROS_MASTER_URI. Each machine must 

advertise itself by a name that all other machines can resolve. In this case, IP address of 

the both machine is used to ensure that they recognize each other. Table 4.1 shows the IP 

address and commands that will be used to connect the two machines.  

Table 4.1 IP address and Commands for PC and Raspberry Pi 

 PC Raspberry Pi 

IP 10.42.0.1 10.42.0.97 

Command  $ roscore 

$ export ROS_IP = 10.42.0.1 

$ export ROS_MASTER_URI = 

http://10.42.0.1:11311 

$ export ROS_IP = 10.42.0.97 

 

4.2.3 Test : HelloWorld Talker-Listener Node  

Noted that in this research, programming language Python is used instead of C++. 

This is because Python is much simpler, which leads to faster development and great for 

rapid testing and exploration. In this test, the talker/listener tutorial that are proposed by 

ROS  is used (“ROS_Tutorials_WritingPublisherSubscriber(python) - ROS Wiki,” n.d.). 

This example is already installed in ROS.  



33 

This package distributed by ROS as a demo, presents a simple ROS package that 

create two rospy nodes which is talker and listener. Talker node will publish a Hello 

World with Timestamp message on “chatter” topic while listener node will subscribes 

and print the message that is received from the talker node. Both of the nodes can be 

found in rospy_tutorial package. Talker.py and listener.py script are downloaded from 

the tutorials. Figure 4.1 shows the source code for talker.py. Refer to the line number 7, 

it declaring the node to publish the message to ‘chatter’ topic using message type ‘String’. 

The ‘queue_size’ limits the amount of queued messages is the listener did not receive any 

of the messages fast enough. The next line is very crucial where it tells the rospy the name 

of the node which is talker. The ‘rate’ code is to ensure that the message go through the 

loop 10 times per second.  

 

Figure 4.1 Source Code for talker.py 

Figure 4.2 shows the source code for listener.py. The source code for listener.py 

is similar to talker.py except that it apply a new callback-based mechanism to subscribe 

the messages.  



34 

 

Figure 4.2 Source Code for listener.py 

 

After the communication between the talker and listener is successfully done, 

AES algorithm is applied in the source code.  In this research, PyCrypto package is used. 

It is an extended python Cryptography Toolkit that can simplify the method to encrypt 

and decrypt the data. Encryption will take place in talker nodes while Decryption will 

take place in listener node. Figure 4.3 shows the AES encryption and decryption 

algorithm.  

The counter string value with length of 16 bytes and 16 bytes length for the key 

size is used. Note that AES keys may have 128 bits (16 bytes), 192 bits (24 bytes) or 256 

bits (32 bytes) long. Encryption object is created by passing the key, AES mode and the 

counter value. Counter is required to be sent as a callable object hence ‘lambda’ is used 

as an anonymous function where the function in not bound to a name. The decryption 

algorithm is almost similar to the encryption algorithm. 

This research were recorded using rosbags, which is a file format in ROS that is 

functioning to store ROS message data. It is typically created by running ‘rosbag record 

–a’ command tool when the nodes is subscribing to the topics and it will store the 

information regarding the message passing distribution that happened in ROS 



35 

automatically. The rosbag can display the information includes duration, size of the 

message, number of message that was send or receive, topics and nodes that are involved 

in the communication by running ‘rosbag info’ command line.  

 

Figure 4.3 AES Encryption and Decryption Algorithm 

 

4.3 Evaluation Parameters  

Each of the encryption technique has its own strong and weak characteristics. In 

this research, AES with different key length, which are 128 bits, 192 bits and 256 bits, 

will be evaluated based on several features. Analysis of the algorithm is done by using 

the following metrics and parameters: 

 Encryption Time  

The encryption time is the time taken to convert plain text to cipher-text. It 

depends on the key size, block size and also the mode used for the encryption algorithm. 

In this research, the encryption time is measured in seconds. Encryption time can affect 

the performance of the communication in the system.  

 Decryption Time  

Decryption time refer to the time needed for the system to get back the original 

text or plain text. Decryption time is almost the same with encryption time to ensure that 

the algorithm is fast and responsive. Decryption time can give impacts to the system and 

it is measured in seconds.  



36 

 Real Time 

It is a wall clock time where the time is taken from start to finish of the call. The 

running publisher/talker and subscriber/listener node is performed between 40 to 45 

seconds time lapse.   

 Time user  

Amount of CPU time spent in user mode code that is outside the operating system 

within the process. This is actual CPU time used in executing the process. Other process 

and time the process spends blocked is not counted in this parameter. In a simplest way 

to understand, time user is the time that the program took to execute the process. 

 Time Sys 

Amount of CPU time spent in the operating system within the process. The 

executed CPU time spent in the system calls within the operating system, as opposed to 

library code, which is still running in user-space. Similar to user, this is only CPU time 

used by the process.  

 Number of Messages  

Number of messages that is executed by publisher and message that can be 

subscribes by the subscribers is analysed by using plaintext version, encrypted and 

decrypted version.  

4.4 Result and Discussion  

This section describes the results when the nodes is running and encryption 

algorithm is applied. The time lapse is taken manually within 40 to 45 seconds and both 

of listener and talker nodes are terminate by pressing Ctrl-C. By using the Unix command 

time, the result of the launching ROS nodes which are talker and listener can be analysed.   

Figure 4.4 present the output from talker and listener nodes without using any 

encryption algorithm. Publisher/talker node (top window) publish stream of “Hello 

World” with timestamp messages 10 times per second and sending them to any nodes 

that are listening. In this case, Subscriber/listener node (bottom window) is run and print 

out the “Hello World” message that is subscribed from the “chatter” topic.  



37 

 

 

Figure 4.4  Output From Publisher/Talker and Subscriber/Listener Nodes Before 

Encryption. 

 

While leaving the three of the terminal (roscore, talker and listener) open and 

running, new terminal is open to be able to view the scenario for the experimental setup. 

Command ‘rqt_graph’ represent the current status and state of the system. Figure 4.5 

shows the ROS setup running in each iteration.  

 

 

Figure 4.5  Visual Representation Using Rqt_Graph for the Communication of the 

Talker and Listener Nodes  

 



38 

After implementing AES algorithm in the ROS communication, the message sent 

will different from the plaintext since it is encrypted and form cipher text. Figure 4.6 

shows a screenshot of applying AES-128 algorithm in both of the nodes. The top window 

is talker nodes terminal where encryption algorithm is applied and it form un-meaningful 

text instead of “Hello World” that is shown in Figure 4.4. The below window represent 

the listener node where decryption algorithm is inserted for the subscriber to decipher the 

message and “Hello World” is shown.  

 

Figure 4.6 Output From Publisher/talker and Subscriber/listener Nodes After 

Implementing AES-128 algorithm. 

 

Table 4.2 presents the CPU time used when both of the nodes running in different 

machines. As mention before, Unix command time is used to determine the time of CPU 

needed to execute the ROS nodes. The parameter is evaluated by using plaintext and three 

different key length of AES, which are AES-128 (16 bytes), AES-192 (24 bytes), and 

AES-256 (32 bytes).  



39 

Firstly, the test for plaintext publisher/talker is performed for a time lapse within 

40 seconds, CPU time is found to be 1.116 seconds. It was a user time of 1.016 seconds 

and a sys time 0.100 seconds. As for the subscriber/talker, the total of CPU time is 2.779 

seconds. The user time is 2.619 seconds and a sys time of 0.160 seconds. 

Table 4.2 Time in seconds of CPU spent and number of messages 

 Plain AES-128 AES-192 AES-256 

 Talker Listener Talker  Listener Talker  Listener Talker  Listener 

Time 

Running 

40.610 40.424 40.514 39.151 41.024 40.468 41.606 42.320 

Time 

User  

1.016 2.619 0.780 2.220 1.032 2.673 1.192 2.481 

Time Sys 0.100 0.160 0.352 0.425 0.196 0.069 0.088 0.290 

Total 

CPU  

1.116 2.779 1.132 2.645 1.228 2.742 1.280 2.771 

Messages  1958 1180 1950 1175 1963 1179 2019 1217 

 

When AES algorithm is applied, it is possible to see that encryption process 

consumes more CPU than the plaintext version process. For example, AES-128 algorithm 

is running for 40.514 seconds and a total time for CPU is 1.132 seconds. This shows that 

the total CPU time is increases to 0.016 seconds. The percentage differences is even 

higher in encryption of AES-192 and AES-256. It is proven that the encryption and 

decryption method consumes more CPU than plain text as shown in Figure 4.7. The result 

demonstrate that AES with 128 bits key length takes less time to encrypt and decrypt the 

message because it only have 10 rounds. AES-192 and AES-256 takes more time to 

process the algorithm in the system because they have more rounds compared to AES-

128 which are 12 rounds and 14 rounds respectively. 

In addition, number of messages that are executed also can be seen in rosbags 

during the launching of the nodes. AES-256 shows that it have the highest number of 

messages encrypted which is 1973 messages and AES-128 have the smallest number of 

messages encrypted compared to AES-192.   

 



40 

 

Figure 4.7 Total CPU Time for Encryption In Seconds  

 

In the end, the overall result of encryption algorithms are presented based on 

different evaluation parameters. All cryptographic algorithm depends on their own 

characteristics includes block size, length of the key and number of rounds. As for AES, 

the number of rounds is depends on the length of the key. 128 bits, 192 bits and 256 bits 

of key length will have 10, 12 and 14 rounds in the algorithm. In order to apply the correct 

algorithm according to the applications, the strength, weakness and performance must be 

evaluated based on different parameters.  

Although the plaintext version is faster than encryption algorithm, it is not secure 

in the ROS system communication since the third party or outsider can easily read and 

manipulate the data that is send from publisher to subscriber. From the above result, we 

can see that the larger the length of the key size, the more rounds is needed and more time 

it took to encrypt and decrypt the data. Therefore, it may be more difficult to analyse, 

require more constants and code where can be more complex. Hence, it may be good for 

the security of the message-passing distribution in ROS communication.  

 

 

1

1.05

1.1

1.15

1.2

1.25

1.3

Plain AES-128 AES-192 AES-256

Total CPU Time for Encryption (Seconds)

Encryption Time Linear (Encryption Time )



41 

 

CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction  

In the early stage of this research, the project scopes with problem statements are 

identified. The objective of this research will be deliberate whether it is achieve or not. 

The overall discussion will be concluded in this chapter.  

5.2 Conclusion  

In this research, three objectives is used as a reference to solve the problem 

statement. The first objective is to identify the possible security attack that happen in the 

robot operating system (ROS). Unauthorized publishing, unauthorized data access and 

Denial of Service (DoS) attack are the examples of security attack that can be carried out 

by the attacker to disturb the communication between the launching nodes in ROS.  

The second objective is to implement cryptography technique which is Advanced 

Encryption Standard (AES). AES is symmetric block cipher that have variable key length 

of 128, 192 and 256 bits. Each cipher able to encrypt and decrypt messages in 10, 12 and 

14 rounds depends on the key size. Encryption algorithm is implemented in 

Publisher/Talker node where it will publish messages to Subscriber/Listener node. 

Subscriber/Listener node must have decryption algorithm for the node to be able to read 

the original message.  

The third objective is to evaluate the performance of AES algorithm based on the 

system parameter in ROS. The time of encryption and decryption of the AES algorithm 

is identified by using the CPU total time. The number of messages that was able to 



42 

execute by both of the nodes is also presented by using rosbags. From the results, it shows 

that the longer the length of the key, more rounds are required. Therefore, longer time is 

taken to complete the process of encryption and decryption.   

5.3 Limitation  

The limitations of the research is observe during evaluating and the whole process 

of completing the research project. This research used the latest version of Raspberry Pi 

which is model 3b+ and it requires its own operating system which is Raspbian Stretch. 

It takes time to install ROS Indigo in Raspberry Pi since the installation command in the 

manual provided is not compatible with the latest version of the software.  

5.4 Future Work  

There are few enhancements that can be done to improve the research study of 

the ROS communication between publisher and subscriber. In this research, the time 40 

seconds is set manually. Therefore, the time can be set by using python time code in the 

future work to get a more accurate results. A proposed direction for the future work could 

be to analyse the performance or security in greater depth. For instance, the algorithm 

can be analysed and test using variation file size to identify the time CPU needed to 

execute the encrypted message.  

AES algorithm also can be further explore by using different modes such as CBC, 

CFB and OFB. Each mode of the operation has its own parameters which are important 

to provide the necessary security in the Robot Operating System (ROS). This algorithm 

also could be implement to any other machine such as Arduino where the encryption and 

decryption performance between those two machines can be compare. 

 

 

 



43 

REFERENCES 

Abdulazeez, A. M., & Tahir, A. S. (2015). Design and Implementation of Advanced Encryption 

Standard Security Algorithm using FPGA, (September 2013). 

Adenowo, A. A. A., & Adenowo, B. A. (2013). Software Engineering Methodologies: A 

Review of the Waterfall Model and Object-Oriented Approach. International Journal of 

Scientific & Engineering Research, 4(7), 427–434. Retrieved from 

http://www.ijser.org/researchpaper%5CSoftware-Engineering-Methodologies-A-Review-

of-the-Waterfall-Model-and-ObjectOriented-Approach.pdf 

Bhanot, R., & Hans, R. (2015). A Review and Comparative Analysis of Various Encryption 

Algorithms, 9(4), 289–306. 

Bonaci, T., Yan, J., Kohno, T., & Chizeck, H. J. (2015). To Make a Robot Secure: An 

Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots, 

(April). 

Denning, T., Matuszek, C., Koscher, K., Smith, J. R., & Kohno, T. (2009). A Spotlight on 

Security and Privacy Risks with Future Household Robots : Attacks and Lessons, (October 

2014). https://doi.org/10.1145/1620545.1620564 

Dorsey, D. W., Martin, J., Howard, D. J., & Coovert, M. D. (2017). Cybersecurity issues in 

selection. Handbook of Employee Selection, Second Edition, 913–929. 

https://doi.org/10.4324/9781315690193 

Hwang, M., & Liu, C. (2005). Authenticated Encryption Schemes : Current Status and Key 

Issues, 1(2), 61–73. 

Krovetz, T., & Rogaway, P. (2011). The Software Performance of Authenticated-Encryption 

Modes, 2011(Fse), 1–24. 

Morante, S., Victores, J. G., & Balaguer, C. (2015). Cryptobotics : why robots need cyber 

safety, 2(September), 23–26. https://doi.org/10.3389/frobt.2015.00023 

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., … Mg, A. (2009). ROS: an 

open-source Robot Operating System. Icra, 3(Figure 1), 5. 

https://doi.org/http://www.willowgarage.com/papers/ros-open-source-robot-operating-

system 

Rodr, F. J., Casado, F., Fern, C., & Mart, F. (2016). Cybersecurity in Autonomous Systems : 

Evaluating the performance of hardening ROS, (June), 47–53. 



44 

ROS_Introduction - ROS Wiki. (n.d.). 

ROS_Tutorials_WritingPublisherSubscriber(python) - ROS Wiki. (n.d.). 

Santos, M. A., Pereira, S., & Couceiro, M. S. (n.d.). On the Security of Robotic Applications 

Using ROS, 273–289. 

Shirabadagi, S. S., & Nadagoud, S. (2017). A new encryption methodology of aes algorithm 

using high speed s-box, 4(7), 37–42. 

Stallings, W. (n.d.). D ATA AND C OMPUTER. 

  

 

 

 

 

 

 

 

 



45 

APPENDIX A 

GANTT CHART 

 

Figure A.1 Gantt Chart 



46 

APPENDIX B 

EXPERIMENTAL RESULT 

 

Figure B.1 Results for Plaintext Version 

 



47 

 

Figure B.2 Result for AES-128  

 

 



48 

  

Figure B.3 Results for AES-192 

 

 



49 

 

Figure B.4 Results for AES-256 

 


