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ABSTRACT The processes of retrieving useful information from a dataset are an important data mining 

technique that is commonly applied, known as Data Clustering. Recently, nature-inspired algorithms have 

been proposed and utilized for solving the optimization problems in general, and data clustering problem in 

particular. Black Hole (BH) optimization algorithm has been underlined as a solution for data clustering 

problems, in which it is a population-based metaheuristic that emulates the phenomenon of the black holes 

in the universe. In this instance, every solution in motion within the search space represents an individual 

star. The original BH has shown a superior performance when applied on a benchmark dataset, but it lacks 

exploration capabilities in some datasets. Addressing the exploration issue, this paper introduces the levy 

flight into BH algorithm to result in a novel data clustering method “Levy Flight Black Hole (LBH)”, which 

was then presented accordingly. In LBH, the movement of each star depends mainly on the step size generated 

by the Levy distribution. Therefore, the star explores an area far from the current black hole when the value 

step size is big, and vice versa.  The performance of LBH in terms of finding the best solutions, prevent 

getting stuck in local optimum, and the convergence rate has been evaluated based on several unimodal and 

multimodal numerical optimization problems. Additionally, LBH is then tested using six real datasets 

available from UCI machine learning laboratory. The experimental outcomes obtained indicated the designed 

algorithm’s suitability for data clustering, displaying effectiveness and robustness.   

INDEX TERMS Optimization, Data Clustering, Black Hole, Levy Flight, Metaheuristic, Computational 

Intelligence. 

I. INTRODUCTION 

Data clustering is a method that consists of placing similar 

objects together, where like items are placed in one and 

different items are grouped in different ones. It is an 

unsupervised learning technique characterized by the 

grouping of objects in unspecified predetermined clusters. The 

conceptualization contrasts with classification, which is a form 

of supervised learning that involves objects being allocated to 

predetermined classes (clusters) [1]. Data clustering is widely 

used in many areas including data mining, statistical data 

analysis, machine learning, pattern recognition, image 

analysis, information retrieval, and more. This is due to 

clustering methods that can be categorized into various 

methods, such as partitional, hierarchical, density-based, grid-

based, and model-based methods, accordingly[2].  

Per the above methods, partitional clustering methods are the 

type that is commonly used, in which the K-means algorithm 

is an example of partitional and center-based clustering 

algorithms. Due to cluster centers being initialized, the k-

means clustering algorithm is limited to the local optima[3]. 

Regardless, the past few decades have witnessed the 

development of many nature-inspired evolutionary algorithms 

in order to resolve engineering design optimization problems. 

They are known to emulate the behaviors of living things 

within nature, rendering them to be also described as Swarm 

Intelligence (SI) algorithms. SI algorithms typically search for 

global optima while being associated with speedy 

convergence[4]. 

Meanwhile, metaheuristic searching optimization is recently 

heavily discussed on in literature over wide-ranging 

engineering applications, such as power optimization 

mailto:sinanq.salih@duytan.edu.vn


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937021, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (April 2019) 

2   VOLUME XX, 2019 

control[5], robotic[6], communications and networking[7], 

engineering[8-12], information security[13, 14], and machine 

learning[15, 16]. Even though the approaches of the 

knowledge branch are characterizable by different concepts 

and inspirations, one fundamental attribute underlines their 

goal. All of the approaches make use of a selective searching 

process that is inspired by heuristic knowledge in the solution 

space to obtain a solution. The solution should optimize a 

given objective function or a set of objective functions in case 

of multi-optimization, provided that the set of constraints is 

maintained. These algorithms are highly attractive to 

researchers nowadays due to the fast enhancement of 

hardware speed and improved feasibility in solving many 

engineering problems. This is done by adhering to the 

heuristic searching conceptualization, with a simple design of 

objective function and constraints.  

Various natural phenomena have led to the formulation of 

natural-inspired searching optimization algorithms[17, 18] 

such as hunting behavior of grey wolves[19]; krill herds[20]; 

black holes[21]; egg-laying behavior of cuckoos[22]; hunting 

behavior of bats[23]; food-searching behavior of bees[24]; and 

improvisation process of jazz musicians[25].  

Recently, a meta-heuristic optimization called a “black hole” 

(BH) that mimics the black hole behavior of pulling in 

surrounding stars has been invented by[21]. BH optimization 

is particularly inspired by the nature or physics of BH, as well 

as its interaction with the surrounding stars. With the 

assumption that in a given iteration, a set of star is 

representative of the total number of solutions and each star is 

subjected to a pulling force towards the best solution 

representing BH. Then, a new set of solutions in the next 

iteration is generated by moving the stars toward the black 

hole, whereupon the star being within the predetermined 

distance to BH will render it swallowed and for alternative 

stars to be arbitrarily generated. This allows the algorithm to 

initiate an exploration in the searching space, rather than 

consuming the optimization time with an area fully discovered 

with solutions. In case of its implementation to solve a data 

clustering issue, it remains relevant despite performance 

evaluation showing that it is superior compared to other 

similar processes. Similarly, further enhancement for the 

approach will allow the discovery of powerful phenomenon in 

the solution space, while also making space for effectual 

clustering processing. In this perspective, the work of [21] can 

be developed from the objective function which does not 

assure the best possible accuracy, even when the cost is at the 

global optimum the original black hole algorithm suffers from 

weaknesses in exploration. Therefore, it requires too many 

reiterations to attain an optimum resolution. In recent years, 

the black hole algorithm and its modified versions have been 

used to solve engineering and optimization problems [26-37]. 

In this study, enhancing BH global search and resolving the 

issue of entrapment in the local minima have been undertaking 

by combining BH with levy flight. A Levy flight can be 

described as a type of arbitrary walk, namely generalized 

Brownian motion inclusive of non-Gaussian arbitrarily 

distributed step sizes for the distance moved. Different natural 

and man-made facts are explainable using Levy flight, which 

include fluid dynamics, earthquake analysis, fluorescent 

molecule diffusion, cooling behavior, noise, and more [38, 

39]. Pereyra and Hadj have also opted for it in case of 

Ultrasound in Skin Tissue[40], while Al-teemy utilized it in 

Ladar Scanning[41]. Its role is also momentous in various 

computer science fields[42], with it being employed by Terdik 

and Gyres in designing Internet Traffic Models[41], Chen’s 

Delay and Disruption Tolerant Network, Sutantyo et al.’s 

Multi-Robot Searching procedure[42], and Rhee’s human 

mobility utilization [43]. Meanwhile, Yang and Deb [44, 45] 

opted for Levy flight distribution to generate a novel cuckoo 

in Cuckoo Search, alongside Yang’s introduction of an 

updated model of Firefly Algorithm-FA. The Levy-flight 

Firefly algorithm (LFA)[46] incorporates Firefly to unite 

Levy-flight with the search strategy so as to attain improved 

FA randomization. Lee and Yao’s Evolution Algorithm also 

developed four dissimilar states of parameters of Levy flight 

and 4 prospective solutions; the state offering the best results 

would be used for mutation procedure. Additionally, it was 

also utilized as a diversification tool in optimizing an ant 

colony.  

In this paper, the long jumps have been undertaken via Levy 

distribution in order to ensure effectual use of the search space 

in comparison with BH. Previously investigated works have 

aimed to improve BH, whereby the current proposal calls for 

BH to perform random walks and global search. Thus, a Levy 

flight-based method combined with BH algorithm is proposed 

to resolve global optimization problems and data clustering 

problem. Levy flight, in particular, improves the global search 

capacity for the BH algorithm, preventing one to be stuck in 

local minima. Additionally, the proposed method enhances the 

global search ability of BH algorithm as per the new equation 

of star movements underlined. As BH algorithm is incapable 

of attaining the optimum results in a specific number of 

iterations, an efficient Levy-flight selection is imperative to 

avoid being stuck in local optimum as it results in improved 

global and local search capability concomitantly.  

The remaining sections for this work will be arranged in the 

following manner: Section 2 will discuss some of the 

previously proposed research on data clustering. Then, the BH 

algorithm and proposed modified levy black hole algorithm is 

presented in Sections 3 and 4, respectively, whereas Section 5 

outlines the experimental outcomes obtained. Finally, Section 

6 will conclude the work succinctly.  

 
II. OVERVIEW  
A. The Problem of Data Clustering 

Clustering can be described as an essential unsupervised 

classification approach characterized by the placement of a set 

of patterns or vectors (e.g. observations, data items, or feature 

vectors) into a multi-dimensional space in clusters or groups. 

This is achieved by utilizing similarity metrics between data 
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objects, whereby the similarity and dissimilarity of objects in 

the database are looked into using distance measurement [47]. 

The action is propelled by the idea of classifying a dataset 

provided using a specific number of clusters via distance 

minimization between objects of each cluster itself. Termed as 

cluster analysis, it is defined as the rearrangement of a body of 

patterns typically presented in two ways: 1) a vector of 

measurements, or 2) a point in a multi-dimensional space. This 

is done to obtain clusters that are characterized by the attribute 

of similarity [48, 49].  

Clusters are oftentimes utilized for various applications, such 

as image processing, data statistical analysis, and medical 

imaging analysis, as well as other research fields of the science 

and engineering branch. Moreover, it is synonymous with 

statistical data analysis and known as a primary task for 

exploratory data mining in a multitude of fields, such as 

machine learning, pattern recognition, image analysis, 

information retrieval, and bioinformatics. Figure 1 displays 

the difference between clusters that may be due to their shapes, 

sizes, and densities. 

 

 

FIGURE 1.  The difference between clusters a) Input data b) Fit 
Desired Clustering 

However, noise present in the data may render cluster 

detection challenging, in which the ideal cluster is generally 

described as a compact and solitary set of points. Despite 

human beings having known to be proficient in cluster seeking 

in two and probably three dimensions, high-dimensional data 

calls for automatic algorithms. This fact, coupled with the 

unspecified number of clusters yet for data set provided, has 

continuously generated thousands of clustering algorithms in 

publication. In the context of pattern recognition, the data 

analysis section is particularly correlated with predictive 

modeling, in which training data is provided and the unknown 

test data’s behavior is predicted. Such task is termed as 

learning. 

An evaluation of the similarity of data objects requires the use 

of distance measurement. The problem may be framed as 

follows: given 𝑁 records of data, each record is allocated to 

one of 𝐾 𝑡ℎ𝑒  clusters. Performing clustering has been carried 

out using different criteria that serve as an objective function 

for the process of optimization. One of the commonest 

attribute is minimizing the sum of squared Euclidean distance 

between each record and the center of the corresponding 

cluster as defined in [50] . This is displayed per equation (1) 

below. 

𝐹(𝑂. 𝑍) = ∑ ∑ 𝑊𝑖𝑗‖𝑂𝑖 − 𝑍𝑗‖
2𝐾

𝑗=1
𝑁
𝑖=1 , (1) 

Where 𝑁 and 𝐾 are the numbers of data records and the 

numbers of clusters, respectively. While ‖𝑂𝑖 − 𝑍𝑗‖ is the 

Euclidean distance between a data record 𝑂𝑖  and the cluster 

center 𝑍𝑗 which is calculated as follows:  

𝑍𝑗 =
1

|𝑁𝑗|
 ∑ 𝑊𝑖𝑗𝑂𝑖

𝑁
𝑖=1  (2) 

Where 𝑁𝑗 is the number of patterns in the ith cluster, 𝑊𝑖𝑗the 

association weight of pattern 𝑂𝑖  with cluster j. 𝑊𝑖𝑗 is 1 when 

𝑂𝑖  is allocated to cluster j, otherwise it is 0.  

B. RELATED WORKS 

The utilization of metaheuristic algorithms for the purpose of 

clustering problems has been discussed in various studies. 

This section is specifically driven to review metaheuristic-

based clustering algorithms that are restricted to techniques 

that are linked to the proposed algorithm.  

Van, D.M. and A.P. Engelbrecht. [51] had first proposed the 

data clustering approach using two means. The first is particle 

swarm optimization (PSO), whereby optimal centroids are 

found and utilized as a seed in the K-means algorithm. 

Meanwhile, the second approach entails the PSO usage in 

refining K-means formed clusters. Both have been tested and 

indicated their extensive potential.  

Next, the Ant Colony Optimization (ACO) method has been 

discussed by Shelokar et al.[52]. It is characterized by the use 

of distributed agents mimicking the manner in which ants 

locate the shortest distance to a food source from their nest and 

return. The resulting observation indicates that it may be 

viable as an effectual heuristic for near-optimal cluster 

representation.   
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Senthilnath, Das, Omkar and Mani [53] comparatively studied 

three nature-inspired algorithms, namely GA, PSO, and 

Cuckoo Search (CS) on clustering problem. During the 

analysis CS was used with levy flight and the heavy-tail 

property of levy flight was exploited. The performance of 

these algorithms was evaluated on three standard datasets and 

one real-time multi-spectral satellite dataset while the results 

were analysed using various analytical techniques. The 

authors concluded that based on the given set of parameters, 

CS works better for most of the dataset due to the important 

role played by levy flight. 

Singh and Sood [54] proposed a hybrid approach to show the 

swarm behaviour of clusters. They used a Krill herd algorithm 

to simulate the herding behaviour of each krill. The clusters 

were discovered using a density-based approach; it was also 

used to show the regions with sufficiently high-density krill 

clusters. The minimum distance from each krill to the food 

source and from high-density of herds were considered as the 

objective function of the krill movement. The movement of 

each krill is determined by the random diffusion and foraging 

movement. 

An approach based on the combination of Levy flight with 

modified Bat algorithm to improve the clustering result has 

been proposed [55]. The proposed approach was tested on ten 

datasets and the experimental results showed that the proposed 

algorithm clusters the data objects efficiently. It also illustrates 

that it escapes from local optima and explores the search space 

effectively. 

A new quantum chaotic cuckoo search algorithm (QCCS) was 

proposed by Boushaki, Kamel and Bendjeghaba [56] for data 

clustering. The superiority of CS over the conventional 

metaheuristics for clustering problems has been confirmed by 

various studies. However, all the cuckoos have a similar 

search pattern, and this may result to the premature 

convergence of the algorithm to local optima. Similarly, the 

convergence rate of the CS is sensitive to the randomly 

generated initial centroids seeds. Thus, the authors strived to 

extend the CS capabilities using nonhomogeneous update 

based on the quantum theory in a bid to tackle CS clustering 

problem in terms of the global search ability. They also 

replaced the randomness at the initialization step with a 

chaotic map to increase the efficiency of the search process 

and improve the convergence speed. An effective strategy was 

further developed for a proper management of the boundaries. 

The results of the experiments on six common real-life 

datasets show a significant superiority of the developed QCCS 

over eight recently developed algorithms, including, hybrid 

cuckoo search, genetic quantum cuckoo search, differential 

evolution, hybrid K-means, standard cuckoo search, improved 

cuckoo search, quantum particle swarm optimization, hybrid 

K-means chaotic PSO, differential evolution, and GA in terms 

of external and internal clustering quality. 

A new version of Artificial Bee Colony (ABC) algorithm 

called History-driven Artificial Bee Colony (Hd-ABC) was 

proposed by Zabihi and Nasiri [57] by applying a memory 

mechanism to improve the performance of ABC. The 

proposed Hd-ABC uses a binary space partitioning (BSP) tree 

to memorize useful information of evaluated solutions. By the 

application of this memory mechanism, the fitness landscape 

can be approximated before the actual fitness evaluation. 

Fitness evaluation is a time and cost inefficient process in 

clustering problem, but the use of a memory mechanism has 

significantly reduced the number of fitness evaluations and 

facilitated the optimization process via the estimation of the 

solutions’ fitness value instead of estimating the actual fitness 

values. The proposed data clustering algorithm was applied on 

9 UCI datasets and 2 artificial datasets and both the statistical 

and experimental outcomes showed the proposed algorithm to 

perform better than the original ABC, its variants, and the 

other recent clustering algorithms. 

III. METHODOLOGY 
A. BLACK HOLE (BH) ALGORITHM 

The design of the BH algorithm is rooted in the black hole 

occurrence and in the fundamental idea of a region of space 

hosting an extensive volume of mass concentrated within that 

no nearby object is capable of escaping from its gravitational 

pull. Upon falling into the phenomenon, one would be 

eliminated from the universe, light included.  

The algorithm consists of two components: 1) the star 

movement, and 2) the star re-initialization crossing into the D-

dimensional hypersphere around the black hole (i.e. termed as 

event horizon). It functions as follows: first, the 𝑁 + 1 stars, 

𝑥𝑖  ∈  𝑅𝐷 , 𝑖 =  1, . . . , 𝑁 +  1 (where 𝑁 is population size) are 

arbitrarily initialized in the search space. After their fitness 

evaluation, the best value is referred to as the black hole 𝑥𝐵𝐻 . 

Black hole is static; there is no movement until a better 

resolution is obtained by other stars. Thus, the number of 

individuals looking for the optimum value equals to 𝑁. Next, 

each generation has each star to move towards the black hole 

per the equation below: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥𝐵𝐻 − 𝑥𝑖(𝑡)) 

  𝑖 = 1.2. ⋯  𝑁, 
(3) 

Where rand is a random number within an interval [0,1].  

The BH algorithm also indicates that a star that founds itself 

too close the black hole beyond the event horizon will be 

eliminated. The radius of the event horizon (R) is described as 

follows: 

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

, (4) 

Where 𝑓𝑖 and 𝑓𝐵𝐻 are the fitness values of black hole and ith 

star. 𝑁 is the number of stars (candidate solutions).  

In case of a distance that is less than R between a candidate 

solution and the black hole (best candidate), the particular 

candidate collapses and consequently, a new candidate is 

generated and arbitrarily disseminated in the search space. BH 

is commonly associated with a simple structure and ease of 

implementation, as well as a parameter-free algorithm. Its 

convergence to the global optimum occurs in all runs, whereas 
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other heuristic algorithms may encounter entrapment in the 

local optimum solutions [21, 58]. 

Despite excellent outcomes obtained when BH is utilized as a 

clustering technique, it is flawed by its weak balancing 

between exploration and exploitation capacities. A star may 

alter its direction if one of them finds a better solution 

compared to the solution for the current black hole, thereby 

transforming into a new black hole. Furthermore, the 

conceptualization of the event horizon has been made as the 

stars may display a relatively speedy convergence for the 

search space to be occupied by the black hole, due to the lack 

of exploration capabilities. However, it disallows the 

intensification of exploration or accumulation of knowledge 

regarding previously visited solution; it is simply a restart 

method subjected to each star individually [59]. Therefore, this 

study presents a modified BH algorithm in combination with 

levy flight for efficient data clustering. 

B. Levy Flight BLACK HOLE (LBH) ALGORITHM 

The proposed work aims to cluster and group the data objects 

in an efficient and effective manner. The method is founded 

upon the Levy flight in combination with the black hole (BH) 

algorithm for the purpose of global optimization and data 

clustering problems. Levy flight, in particular, enhances the 

global search capacity of the BH algorithm to prevent being 

stuck in local minima. Thus, the method improves the global 

search ability using a new equation for star movements. As the 

algorithm is incapable of finding optimum in a certain amount 

of iterations, Levy flight-based search is more efficient as it 

improves the local and global search concomitantly.  

Some examples of Levy flight compared with the Brownian 

walk (random) have been displayed in Figure 2. After the first 

movements around a point, sudden jumps are encountered; it 

generates the simultaneous local and global search.   
 

FIGURE 2 The Levy flight and Brownian (random) walk 

Levy flight [60] can be defined as a type of arbitrary processes 

that is characterized by a jump size that adheres to the levy 

probability distribution function. Its name was derivative of a 

French mathematician named Paul Pierre Levy.  

As a random walk, the steps in the Levy Flight are defined 

with respect to the step lengths. The step lengths have a given 

distribution probability and are drawn from a Levy 

distribution which is represented in Eq (5):  

𝐿(𝑠)~|𝑠|−1−𝛽 , 𝑤ℎ𝑒𝑟𝑒 𝛽 (0 <  𝛽 ≤ 2)  (5) 

where 𝛽 and 𝑠 represents an index and the step length, 

respectively.  

This study utilized a Mantegna algorithm for a symmetric 

Levy stable distribution to generate the sizes of the random 

steps. The term ‘symmetric’ in this concept implies that the 

step size will assume either a positive or negative value. The 

step length s in the Mantegna’s algorithm can be calculated 

thus:  

𝑠 =
𝑢

|𝑣|1/𝛽
 (6) 

where 𝑢 and 𝑣 are drawn from normal distributions; i.e.,  

𝑢 ~ 𝑁(0, 𝜎𝑢
2),   𝑣 ~ 𝑁(0, 𝜎𝑢

2) (7) 

Where  

𝜎𝑢 =  
𝜏(1+ 𝛽) sin

𝜋𝛽

2

𝜏[(
1+ 𝛽 

2
)𝛽2

𝛽−1
2

     , 𝜎𝑣 = 1 (8) 

The distribution for 𝑠 follows the anticipated Levy 

distribution for |𝑠| ≥ |𝑠0|, where 𝑠0 represent the least step 

length and 𝜏(. ) represent the Gamma function which is 

estimated thus:  

 𝜏(1 + 𝛽) = ∫ 𝑡𝛽𝑒−1𝑑𝑡
∞

0
 (9) 

The Levy distribution is used to generate the step sizes in the 

proposed technique. This is aimed at exploiting the search 

area. The step sizes are calculated thus: 

𝑠𝑡𝑒𝑝(𝑡) = 0.01 ×  𝑠(𝑡)  ×  𝑟𝑎𝑛𝑑(0,1)  (10) 

where t represents an iteration counter, 𝑠(𝑡) is estimated as 

shown in Equation (6) using Levy distribution, while 

𝑟𝑎𝑛𝑑(0,1) is a random value ranging from [0,1].  

The step sizes in the Levy flights are too aggressive; this 

implies that they can often generate new solutions which are 

off the domain or on the boundary. Since the movement 

equation represented in the BH algorithm is a stochastic 

method search for new better positions within the search 

space, therefore, 0.01 multiplier is used in Equation (10) to 

reduce the step sizes when they get large. The positions of 

the stars are updated in the LBH as follows:  

𝑥𝑡(𝑡 + 1) = 𝑥𝑡(𝑡) + (𝑠𝑡𝑒𝑝(𝑡) × (𝑥𝐵𝐻 − 𝑥𝑡(𝑡))) (11) 

where 𝑥𝑡 is an individual star in iteration 𝑡 while 𝑠𝑡𝑒𝑝(𝑡) is 

the actual step sizes generated using Equation (10). 𝑥𝐵𝐻  

denotes the current best solution or the black hole.  

Levy flight is characterized by an important parameter of 𝛽, 

whereby each star is a solution and an arbitrary number is 

produced as 𝛽 between 0 and 2. Its different values may result 

in dissimilar outcomes. Therefore, larger values of 𝛽 pose a 

higher likelihood to result in jumps to unexplored areas (i.e. 

higher exploration) and avoidance of being trapped in local 

optimums. However, smaller values will provoke the new 

positions to be viewed as near the obtained solutions (i.e. 

higher exploitation). The BH algorithm is particularly well-

perceived for its excellent local search ability [59], but within 

the surround of the optimum point, it is characterized by a low 
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convergence rate. This is due to higher exploitation rate 

compared to the exploration rate.  

Hence, the suggested algorithm is designed in a manner that it 

allows the BH algorithm’s local search ability, which will 

improve the method’s efficiency in generating the optimal 

resolution and accelerating the convergence rate.  

The proposed algorithm is named as Levy Flight Black Hole 

(LBH) algorithm and utilized to solve optimization and data 

clustering problems effectively. The pseudocode of LBH in 

Figure 3. 

LBH Algorithm 

1.  Input: Dataset or Test Function, 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝑈𝑝𝑝𝑒𝑟, 𝐿𝑜𝑤𝑒𝑟 

2.  Output: Best Solution 𝑋𝐵𝐻 

3.  Procedure: 

4.       Define Objective Function 𝑓(𝑥𝑖) 

5.       Initialize all the stars 𝑥𝑖in the population via uniform distribution 

6.       Evaluate the fitness value of each star 𝑋 in the population via 𝑓 

7.       Set the best star in the population as Black Hole 𝑥𝐵𝐻 

8.       While 𝑖𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 

9.                For each star 𝑋𝑖 in the population 

10.                      Update the position of each star 𝑋𝑖 via 𝑒𝑞. 11 

11.                      Check the boundaries of each star 𝑋𝑖 

12.                      Evaluate the fitness value of the star 𝑋𝑖 

13.                      Set the best star in the population as Black Hole 𝑥𝐵𝐻 

14.                End For 

15.                Calculate the event horizon via 𝑒𝑞. 4 

16.                For each star 𝑋𝑖 in the population 

17.                       If 𝑋𝑖 crosses the event horizon (𝑅) Then  

18.                               Remove the star 𝑋𝑖 

19.                               Generate a new star via 𝑆𝑡𝑒𝑝 5 

20.                       End If 

21.                End For 

22.                Set the best star in the population as Black Hole 𝑋𝐵𝐻 

23.          Loop 

24.          Return 𝑋𝐵𝐻 

FIGURE 3. The pseudocode of LBH algorithm  

IV. EXPERIMENTS AND RESULTS 

The assessments were carried out on a personal computer 

(Core i7, 3.6 GHz, 16 GB of RAM, 64-bit Windows 10 

Operating System) using MATLAB 2017a.  

 
A. Evaluation of Benchmark Test Functions 

As stated previously, the main contribution of this paper is to 

enhance the exploration of BH algorithm via Levy Flight. In 

order to further verify that the proposed algorithm has a better 

exploration than the standard BH, it has been evaluated on a 

set of unimodal and multimodal type of benchmark test 

functions in a multi-dimensional space as defined in [61-63]. 

The functions with their main characteristics in terms of 

Name, Dimensions (D), Upper and Lower Boundaries (UB, 

LB) and the value of the optimal solution (Opt) are stated in 

Table 1.  

The comparison stage is done by benchmarking against nine 

well-known metaheuristics comprising of Big Bang–Big 

Crunch [64], Artificial Bees Colony (ABC)[65], Particle 

Swarm Optimization (PSO)[66], and Levy Firefly Algorithm 

[46](LFFA), Grey Wolf Optimizer (GWO)[19], Gravitational 

search algorithm (GSA) [67] , Bat algorithm (BA)[23], cat 

swarm algorithm (CSA)[68], and Black hole (BH)[21] 

respectively. The parameters settings for these algorithms are 

presented in Table 2. 

The experiments for LBH and the other algorithms were 

executed in 30 different runs. The best, mean, error rate, and 

standard deviation were recorded and presented accordingly in 

Table 3. Additionally, the convergence curve of the searching 

has been generated for the first benchmark function and 

compared with other algorithms including the original BH 

algorithm. LBH has shown faster convergence curves for the 

first 100 iterations than the other algorithms. The convergence 

of BH by Levy flight (LBH) had enhanced the exploration 

ability of the algorithm and guided the stars towards better 

positions rate. Which means that the stars avoid the possibility 

of trapping in local optima.  It can be seen that GWO and CSA 

algorithm have attained the second and the third place 

respectively, while the original BH attained the fourth place. 

Figure 4 shows the convergence and the 3D plot of sumsqaure 

(𝑓1). 

 

 
FIGURE 4. The 3d plot of sumsqaure (𝒇𝟏) a) The convergence analysis 

of LBH and other algorithms b) The 3D of 𝒇𝟏 
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TABLE 1: Benchmark Test Functions 

Fun Name Test D LB UB Opt 

𝒇𝟏 Sumsquare 𝑓1(𝑥) =  ∑ 𝑥𝑖
4 𝑁

𝑖=1   30 -10 10 0 

𝒇𝟐 Rastrigin 𝑓2(𝑥) = ∑ {𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10}𝑁

𝑖=1   30 -5.12 5.12 0 

𝒇𝟑 Quartic 𝑓3(𝑥) = ∑ 𝑖𝑥𝑖
4𝑛

𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)  30 -1.28 1.28 0 

𝒇𝟒 Ackley 𝑓4(𝑥) = −20𝑒
−0.02√𝐷−1 ∑ 𝑥1

2𝐷
𝑖=1 − 𝑒𝐷−1 ∑ cos(2𝜋𝑥𝑖)𝐷

𝑖=1 + 20 + 𝑒  30 -32 32 0 

𝒇𝟓 Alpine No.1 𝑓5(𝑥) =  ∑ |𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|𝐷
𝑖=1    30 -10 10 0 

𝒇𝟔 Griewank 𝑓6(𝑥) = ∑
𝑦𝑖

2

4000

𝐷𝑖𝑚
𝑖=1 − ∏ cos (

𝑦𝑖

√𝑖
)𝐷𝑖𝑚

𝑖=1 + 1  30 -600 600 0 

𝒇𝟕 Penalized 
𝑓7(𝑥) = ∑ (𝑦𝑖 − 1)2𝐷𝑖𝑚−1

𝑖=1 × (1 + 𝑠𝑖𝑛2)(3𝜋𝑦𝑖+1) + (𝑦𝐷𝑖𝑚 − 1)2(1 +

𝑠𝑖𝑛2(2𝜋𝑦𝐷𝑖𝑚)) + 𝑠𝑖𝑛2(3𝜋𝑦1)  
30 -50 50 0 

𝒇𝟖 Zakharov 𝑓8(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 + (
1

2
∑ 𝑖𝑥𝑖

𝑛
𝑖=1 )2 + (

1

2
∑ 𝑖𝑥𝑖

𝑛
𝑖=1 )4  30 -5 10 0 

𝒇𝟗 Sphere 𝑓9(𝑥) = ∑ 𝑥1
2𝑁

𝑖=1   30 -100 100 0 

 

TABLE 2: Parameter Setting 

Method Parameters Value 

General 

Swarm/Colony/Population Size 25 

Iterations 250 

Fitness function constant 𝜎 0.999 

No. of Runs 30 

LFFA 

𝛽0 1.0 

𝛾 1.0 

𝛼 0.2 

𝛿 0.96 

PSO 
𝜔 0.742 

𝑐1, 𝑐2 1.42 

GA 
Migration Fraction 0.2 

Crossover Fraction 0.8 

BA 

Pulse Rate (𝑟)  0.9 

Min Frequency ( 𝑓𝑚𝑖𝑛) 0 

Max Frequency (𝑓𝑚𝑎𝑥) 2 

Decrease Sound Loudness (𝑎) 0.9 

Weighting Value (δ) 0.9 

Weighting Value(Φ) 0.1 

ABC 
No. of Source  Size / 2 

Limit 50 

GWO 𝑎  (2 –> 0.1) 

CSA 

𝑐1, 𝑐2 2 

𝑀𝐷 0.1 

𝑆𝑀𝑃 5 

𝑆𝑅𝐷 0.4 

𝐶𝐷𝐶 0.8 

GSA 

Gravitational Constant 𝐺0 100 

𝛽 20 

𝜀 2.22e-16 
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TABLE 3: The results of the standards algorithms and Levy black hole algorithm. 

Fun Statistics  BB-BC ABC PSO LFFA GWO GSA BA CSA BH LBH 

𝒇𝟏 

Best 4.1458 2.79E-16 2.13485 0.00774 0.00000 0.00156 2.267E+06 4.97E-04 3.34E-04 0.00000 

Mean 5.9475 2.72E-16 4.98451 0.21006 0.00000 0.02943 2.318E+06 0.00105 0.00348 0.00000 

Std. Div 2.1354 8.51E-12 3.94512 0.34752 0.00000 0.08790 5.125E+04 4.41E-04 3.12E-03 0.00000 

𝒇𝟐 

Best 2.1049 1.40E-11 0.02448 4.94E-10 0.00000 0.90001 3.91E-09 0.00000 0.00845 0.00000 

Mean 3.3085 8.83E-13 2.15168 2.06E-07 0.00000 1.00043 4.24528 0.00000 0.08394 0.00000 

Std. Div 3.5478 2.76E-12 1.07664 5.18E-08 0.00000 0.90536 3.47563 0.00000 0.01945 0.00000 

𝒇𝟑 

Best 3.45892 0.11531 1.3389 0.00409 0.00284 0.06348 0.10786 0.01741 0.02348 1.43E-04 

Mean 5.48953 0.19593 6.9606 0.02542 0.00379 0.08815 0.15314 0.02845 0.03154 9.15E-04 

Std. Div 0.83211 0.05549 0.6477 0.02312 0.00134 0.04413 0.00984 0.00148 0.00284 5.38E-04 

𝒇𝟒 

Best 1.5829 0.02058 1.9877 0.0634 0.0692 2.86E-05 0.9900 1.2293 0.020580523 0.005829 

Mean 3.8331 0.15442 2.9439 1.9994 0.0366 0.0002763 0.9989 3.1853 0.069228159 0.038331 

Std. Div 1.0422 0.00000 0.037191 0.00013675 5.49E-10 0.556324 0.0497715 0.024199 0.019449 0.010422 

𝒇𝟓 

Best 0.00064 0.00042 0.00425 0.00024 0.00116 0.00493 1.02E-04 5.82E-05 0.00481 4.91E-05 

Mean 1.06309 0.28568 2.67570 0.00029 0.10797 0.02171 0.33693 2.48E-03 0.08741 2.48E-04 

Std. Div 1.79308 0.62473 12.3490 0.00037 0.25769 0.00928 0.04030 0.00048 0.03847 0.00031 

𝒇𝟔 

Best 0.00000 4.261E-06 0.15676 3.20E-07 0.00000 0.00000 3.33E-09 0.00019 0.001584 0.00000 

Mean 0.00000 0.0035 0.24208 1.51E-06 0.00000 0.00000 1.65E-05 0.00048 0.009612 0.00000 

Std. Div 0.00000 0.0067 0.09374 1.88E-06 0.00000 0.00000 1.99E-05 0.00082 0.084123 0.00000 

𝒇𝟕 

Best 0.89765 0.47989 5.523E+08 0.00000 0.13732 15.3769 0.81675 0.14548 0.12245 0.00000 

Mean 0.56432 0.44998 7.899E+08 0.00000 0.23752 32366.20 1.34211 1.16473 0.26640 0.00000 

Std. Div 0.00318 0.00478 1.439E+08 0.00000 0.05676 59623.51 0.00671 0.40721 0.05789 0.00000 

𝒇𝟖 

Best 4112.205 7726.247 3.55412 4021.309 1337.803 4214.467 3.55676 0.00000 13234.241 0.00000 

Mean 267.3249 8094.705 4.77746 277.7689 2035.742 345.7899 4.78767 0.00000 4.409E+16 0.00000 

Std. Div 189.7456 246.1136 0.85447 171.7327 3506.202 189.7867 0.89787 0.00000 1.5E+16 0.00000 

𝒇𝟗 

Best 2.12461 0.00432 1.2945 0.00128 0.00000 0.04871 0.57843 0.00094 0.01745 0.00000 

Mean 3.98452 0.00645 2.7707 0.00300 0.00000 0.06643 0.76741 0.00845 0.04478 0.00000 

Std. Div 2.64871 0.03184 1.0831 0.00105 0.00000 0.00384 0.68817 0.05491 0.00648 0.00000 
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B. Evaluation based on Benchmark Datasets 

The performance of the proposed algorithm for data clustering 

was evaluated using six datasets, namely: Iris, Wine, Glass, 

Cancer, Contraceptive Method Choice (CMC), and Vowel. 

Their respective characteristics are shown in Table 4. All data 

sets were sourced from the UCI machine learning laboratory. 

• Iris dataset 

The dataset consisted of 150 arbitrary samples of flowers 

having four features from the iris. They were differentiated 

into 3 groups of 50 instances, whereby each group represented 

a form of iris plant (Setosa, Versicolor and Virginica). 

• Wine dataset 

The dataset elucidated the quality of wine using the 

physicochemical properties, in which they were grown in the 

identical region in Italy but sourced from three cultivars, 

respectively. Each of the three types of wine was linked to 178 

instances, with 13 numeric attributes representing the 

quantities of 13 components elicited in them. 

• CMC dataset 

The dataset was generated by TjenSien Lim, which is a subset 

of Indonesia’s 1987 National Contraceptive Prevalence 

Survey. The sample size consisted of married women who 

were either not pregnant or not in the know of their pregnancy 

during the interview period. It featured the issue of predicting 

the recent contraceptive method choice (i.e. no use, long-term 

method, or short-term methods) according to a woman’s 

demographic and socioeconomic attributes. 

• Cancer dataset 

The dataset was a representation of the Wisconsin breast 

cancer database, consisting of 683 instances having 9 

components. They included: Clump Thickness, Cell Size 

Uniformity, Cell Shape Uniformity, Marginal Adhesion, 

Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, 

Normal Nuclei, and Mitoses. Each of the instances was 

possibly of one class, either benign or malignant. 

• Glass dataset 

The dataset consisted of 214 objects with nine features, which 

were: refractive index, sodium, magnesium, aluminum, 

silicon, potassium, calcium, barium, and iron. The data 

sampling was done using six groups of glass, which were: float 

processed building windows, non-float processed building 

windows, float-processed vehicle windows, containers, 

tableware, and headlamps. 

• Vowel dataset 

The dataset was comprised of 871 Indian Telugu vowel 

sounds, inclusive of three attributes that corresponded to the 

first, second and third vowel frequencies, as well as six 

overlapping classes. 

The algorithm’s performances were assessed and subjected to 

a comparison using two features:  

• Sum of intra-cluster distances as an internal quality measure: 

The distance between each data object and the center of the 

corresponding cluster was calculated and totaled up, per 

equation (1). Generally, a smaller sum of intra-cluster 

distances was linked with a higher clustering quality. The 

sum of intra-cluster distances was also an assessment 

component for the fitness in this study.   

• Error Rate (ER) as an external quality measure: The 

percentage of misplaced data objects as depicted in the 

equation below:  

 

𝐸𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
100  (12) 

TABLE 4. Main characteristics of the test datasets 

Datasets 
No. of 

classes 

No. of 

features 

No. of 

instances 
The Size 

Iris  3 4 150 50,50,50 

Wine  3 13 178 59,71,48 

CMC 3 9 1473 629,334,510 

Cancer 2 9 683 444,178 

Glass 6 9 214 70,17,76,13,9,29 

Vowel 6 3 871 72,89,172,151,207,180 

 

The performance showed by the proposed algorithm was 

compared against several heuristic methods previously 

explained in literature, such as K-means [48], 

PSO[69],ABC[70] , BAT[55], GSA[71], BB-BC[72], CS[56], 

GWO [73] and BH[21]. 

In contrast, LBH was compared against newer hybrid and 

modified meta-heuristics algorithms reported in the literature. 

They include: improved krill herd algorithm [74] hybrid 

clustering method using artificial bee colony  and Mantegna 

levy distribution displayed in [75], a new quantum chaotic 

cuckoo search algorithm [56], Hd-ABC history-driven 

artificial bee colony [57] (ICAKHM) is regarded as a novel 

method which was designed based on a combination of K-

harmonic means algorithm and a modified version of the 

imperialist competitive algorithm (ICA) presented in[76] and 

grey wolf optimizer with levy flight steps presented in [73]. 

Table 5 and Table 6 displayed the sum of intra-cluster 

distances and error rate using the standard meta-heuristics 

clustering algorithm and the hybrids and modified meta-

heuristics algorithms alike to obtain a better comparison of the 

LBH.   

In Table 5, a summary of intra-cluster distance and error rate 

is presented. The values for the best, average, worst, standard 

deviation and the error rate were calculated based on the 

simulation of each independent algorithm after 30 

independent implementations. Best obtained values by 

algorithms are marked as bold for each dataset. The 

experimental results indicated that LBH better than BH and K-

means. Furthermore, the suggested algorithm has the smallest 

standard deviation compared to other algorithms, which mean 

the LBH get to minimum value each time. Other algorithms is 

a little worse than LBH. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2937021, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (April 2019) 

10   VOLUME XX, 2019 

 

TABLE 5. The result obtained by LBH and standard algorithms on different data sets. 

Dataset Criteria Kmeans PSO ABC BA GSA BB-BC CS GWO BH LBH 

Iris 

Best 97.32590 96.89428 N/A 97.433 96.68794 96.67648 97.98364 96.65826 96.65589 96.5403 

Average 106.5766 97.23280 96.65502 103.036 96.73105 96.76537 102.51332 99.12574 96.65681 96.5622 

Worst 123.9695 97.89733 N/A 108.870 96.82463 97.42865 106.76087 N/A 96.66306 96.5873 

standard 12.938 0.347168 2.213958 3.410 0.02761 0.20456 2.182.24 N/A 0.001.73 0.00014 

Error rate 13.42 12.58 10.00 10.78 10.04 10.05 09.80 10.74 10.02 9.40 

Wine 

Best 16,555.68 16,345.97 N/A 16,391.46 16,313.87 16,298.67 16,363.12 16,307.1 16,293.41 16,291.99 

Average 17,251.35 16,417.47 16,308.53 16,606.90 16,374.30 16,303.41 16,420.81 16,318.4 16,294.31 16,292.99 

Worst 18,294.85 16,562.32 N/A 17,160.39 16,428.86 16,310.11 16,525.72 N/A 16,300.22 16,296.89 

standard 874.148 85,497.4 5.096923001 237.740 34,671.22 2,661.98 45,540.86 N/A 16,512.70 0.90340 

Error rate 31.14 28.52 28.76 28.92 29.15 28.52 29.10 29.56 28.47 28.40 

CMC 

Best 5703.20000 5700.98500 N/A 5671.52600 5542.27631 5534.09483 5778.45388 N/A 5532.88323 5531.99898 

Average 5705.37000 5820.96500 5.584,630.1 5802.14400 5581.94502 5574.75174 5962.09604 N/A 5533.63122 5532.29789 

Worst 5704.57000 5923.24900 N/A 5966.19000 5658.76293 5644.70264 6205.93042 N/A 5534.77738 5532.58940 

standard 1.033 46.95969 10.16857871 88.219 41.13648 39.43494 115.23954 N/A 0.59940 0.58878 

Error rate 54.48 54.49 57.68 56.00 55.67 54.52 57.18 N/A 54.39 54.35 

Cancer 

Best 2988.43000 2973.50000 N/A 3021.483000 2965.76394 2964.38753 3089.77652 2964.390 2964.38878 2961.95000 

Average 2988.99000 3050.04000 N/A 3107.125000 2972.66312 2964.38798 3200.79638 2964.395 2964.39539 2963.90000 

Worst 2999.19000 3318.88000 N/A 3250.525000 2993.24458 2964.38902 3476.06894 N/A 2964.45074 2988.43000 

standard 315.14560 110.8013 N/A 77.110 8.91860 0.00048 102.96476 N/A 0.00921 0.0072 

Error rate 04.39 05.25 N/A 03.79 03.74 03.70 04.94 03.65 03.70 3.65 

Glass 

Best 215.73000 270.57000 N/A 232.00700 224.98410 223.89410 220.12580 265.8142 210.51549 209.99689 

Average 218.70000 275.71000 254.03500 241.91600 233.54329 231.23058 225.19820 302.0415 211.49860 210.97180 

Worst 227.35000 283.52000 N/A 247.08500 248.36721 243.20883 227.02230 N/A 213.95689 211.56990 

standard 2.456 4.557134 10.107 5.059 6.13946 4.65013 5.6623 N/A 1.18230 0.99869 

Error rate 38.44 30.58 38.67 40.56 41.39 41.37 41.89 40.90 36.51 30.50 

Vowel 

Best 149,398.66 148,976.01 N/A 155,163.59 151,317.56 149,038.51 149,417.31 N/A 148,985.61 148,965.64 

Average 151,987.98 148,999.82 153,218.45 147,411.21 152,931.81 151,010.03 150,186.12 N/A 149,848.18 149,466.52 

Worst 162,455.69 149,121.18 N/A 160,783.94 155,346.69 153,090.44 150,841.40 N/A 153,058.98 149,484.69 

standard 3425.250 28.8134692 162,2703 3001.8245 2486.70285 1859.32353 1576.3697 N/A 1306.95375 1297.64781 

Error rate 43.57 41.92 42.87 42.55 42.39 41.89 42.41 N/A 41.65 41.36 
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In Iris dataset, LBH outperforms other algorithms of intra-

cluster distance 96.5403 value and standard deviation 0.00014 

in comparison to other algorithms. In the case of the Wine 

dataset, the proposed LBH algorithm obtained the optimum 

value of 16,291.99 which is remarkably superior compared to 

the other comparative algorithms. Similarly, upon comparison 

with the CMC dataset, the proposed LBH algorithm is also far 

better compared to the other algorithms, with the worst 

solution achieved at 5532.58940. However, it is still much 

better than the best solutions found by other algorithms. In 

case of the Cancer dataset, the proposed LBH algorithm’s 

performance surpassed the K-means, PSO and GSA 

algorithms, but the BB–BC algorithm outcomes were superior 

compared to the proposed LBH in terms of standard deviation.  

For the Glass dataset, the suggested LBH algorithm obtained 

an average of 210.97180, whereas other algorithms failed to 

attain the solution at all. Meanwhile, the Vowel dataset was 

provided the best average solutions and standard deviation by 

the suggested LBH algorithm compared to the other 

algorithms. Therefore, the LBH offered better solution quality 

and smaller standard deviation in comparison with the other 

algorithms. LBH is capable of locating the optimal solutions 

as seen in a majority of the cases, while other algorithms may 

be trapped in local optima.  

As per in Table 6, the proposed LBH obtained the best 

performance according to the average intra-cluster distances 

and error rate when subjected to a comparison with the 

remaining comparative algorithms. It also displayed better 

performance on all six datasets as opposed to the other 

comparative algorithms, in which a notable balance between 

exploitation and exploration enhanced the proposed LBH 

algorithms’ performance.  

On the Iris dataset, the standard deviation for the suggested 

LBH algorithm is 0.00014, which is significantly less than the 

other comparative algorithms. In contrast, the best solution is 

96.5403 and the Worst is 96.5873, which is far superior 

compared to other algorithms. Furthermore, the Wine dataset 

indicated that the proposed LBH algorithm obtained the 

optimum value of 16,291.99, which surpassed the other 

algorithms.  

The CMC dataset also yielded a proposed LBH algorithm that 

was far better compared to other algorithms, in which the 

worst solution attained is 5532.88940. This remained to be far 

superior to the best solutions obtained by the other algorithms. 

For the Cancer dataset, the proposed LBH best solutions are 

2961.95000 and the average solution is 2963.90000, while the 

standard deviation is 0.00723. This was superior compared to 

ABCL, QCCS, HD-ABC, ICAKHM and EGWO.  

Lastly, the Glass dataset obtained the best 199.86000 that was 

reached by the ICAKHM algorithm. Meanwhile, the Vowel 

dataset indicated that the suggested LBH algorithm provided 

the best average solutions 149,466.52. It passed sufficiently by 

yielding the best outcomes on almost all of the datasets and 

when compared to the other comparative algorithms. Thus, it 

proved that the suggested (LBH) was exceedingly effectual to 

resolve complex optimization problems, simply by the 

addition of new operators. 

In addition to the previous presented comparison, the 

algorithms have been compared statistically based on 

Friedman test as well as the Iman–Davenport to determine 

whether there are significant differences in the results of the 

algorithms. Table 7 below shows the ranking of the algorithms 

based on them.  

 

TABLE 7. The results of the statistical analysis tests 

Test Value p- value Results 

Friedman test 11.79000 0.02538 Rejected 

Iman-Davenport 5.15721 0.00214 Rejected 

 

V. CONCLUSION 

In this paper, Levy flight was combined with Black Hole 

algorithm to improve the clustering result. The suggested 

approach was subjected to testing on six datasets, whereby the 

experimental outcomes indicated that the proposed algorithm 

clustered the data objects efficiently. It also illustrated its 

escape from the local optima and exploration into the search 

space effectively. In the future, this work may be implemented 

to other applications, such as text document clustering for the 

purpose of clustering the set of documents effectively. 
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Table 6: The sum of intra-cluster distances and error rate obtained by LBH and modified algorithms on different data sets. 

Datasets Criteria IKH ABCL QCCS Hd-ABC ICAKHM EGWO LBH 

Iris 

Best 96.65550 N/A 96.65548 N/A 96.63620 96.65230 96.5403 

Average 96.65550 96.65550 96.65623 94.47 96.66640 99.12530 96.5622 

Worst 96.65550 N/A 96.66771 N/A 96.69190 N/A 96.5873 

standard 9.8E − 06 1.351718 0.00266 N/A 0.01055 N/A 0.00014 

Error rate 9.78 10.45 09.43 0.0 11.23 9.76 9.40 

Wine 

Best 16,292.21 N/A 16,292.26 N/A 16,293.90 16,292.15 16,291.99 

Average 16,294.30 16,295.30 16,293.26 16,280.96 16,295.60 16,292.43 16,292.99 

Worst 16,292.84 N/A 16,294.34 N/A 16,296.94 N/A 16,296.89 

standard 0.706742 1.09745 0.71534 N/A 1.002372 N/A 0903.40 

Error rate 28.90 29.80 28.70 4.68 28.73 28.71 28.40 

CMC 

Best 5693.720 N/A 5532.22476 N/A 5699.21830 N/A 5531.99898 

Average 5693.779 5533.7790 5532.71992 5692.75 5705.14850 N/A 5532.29789 

Worst 5693.735 N/A 5535.29050 N/A 5721.17790 N/A 5532.58940 

standard 0.007975 0.85343 0.134 N/A 1.268275 N/A 0.58878 

Error rate 55.90 57.12 57.11 2.81 54.47 N/A 54.35 

Cancer 

Best 2964.387 N/A 2964.38951 N/A 2962.42000 2964.11000 2961.95000 

Average 2964.393 N/A 2964.41463 N/A 3022.81000 2964.49000 2963.90000 

Worst 2964.389 N/A 2964.49945 N/A 3150.15000 N/A 2988.43000 

standard 0.001258 N/A 0.02761 N/A 0.396 N/A 0.0072 

Error rate 3.69 N/A 03.51 N/A 4.27 3.75 3.65 

Glass 

Best 210.2520 N/A N/A N/A 199.86000 214.42500 209.99689 

Average 222.8008 2.2009e+0 N/A 217.89 202.41000 242.43800 210.97180 

Worst 215.9355 N/A N/A N/A 209.77000 N/A 211.56990 

standard 2.737919 4.6367333 N/A N/A 0.26 N/A 0.99869 

Error rate 33.90 32.56 N/A 34.45 32.61 33.60 30.50 

Vowel 

Best 148,967.24 N/A N/A N/A 149,201.63 N/A 148,965.64 

Average 158,600.52 149,600.5 N/A N/A 161,431.04 N/A 149,466.52 

Worst 150,172.42 N/A N/A N/A 165,804.67 N/A 149,484.69 

standard 1732.4516 1128.941 N/A N/A 2746.041 N/A 1297.64781 

Error rate 41.56 41.90 N/A N/A 41.98 N/A 41.36 
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