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Abstract: This paper investigates the temperature sensitivity and electrical characteristics of Silicon Nanowire Transistor (SiNWT) and 

Germanium Nanowire Transistor (GeNWT) depending on variable channel length (Lg). It also studies the possibility of using them as a 

temperature nanosensor. The MuGFET simulation tool was exploited to investigate the characteristics of the considered nanowire 

transistors. Current-voltage characteristics with different values of temperature with channel length [Lg = 25, 45, 65, 85 and 105 

nanometer (nm)], were simulated. MOS diode mode connection suggested measuring the temperature sensitivity of SiNWT and GeNWT 

too. Three (3) electrical characteristics namely; (i) Subthreshold Swing (SS), (ii) Threshold voltage (VT), and (iii) Drain-induced barrier 

lowering (DIBL) were evaluated and compared for both NWTs. The obtained results show that SiNWT achieved a better temperature 

sensitivity with channel length range between 25 nm to 105 nm at operation voltage (VDD) range 1 V to 5 V nm. It is very clear that the 

temperature sensitivity increased remarkably by increasing channel length for both of SiNWT and GeNWT as well, but in SiNWT the 

sensitivity is more steady compared to GeNWT that showing less sensitivity. Moreover, SiNWT shows better result in terms of electrical 

performance metrics for various channel length at T = 300 K comparing with GeNWT. 

 

Keywords: SiNWTs; GeNWT; Channel length; Temperature sensitivity; Electrical characteristics. 

1. INTRODUCTION  

The improvement of new technology is described by its 

prominence on miniaturization scale to ultra-micro 

dimensions. That is the main principle of Nano technology 

which invaded the field of applied science, manufacturing, 

industrial, military, medical, agricultural and other fields[1-3] 

The most remarkable example for that is in nanoelectronics 

and nanoscience, where the technological progress has come 

from reductions, downsizing transistors and adding more 

numbers of transistors per chip [4, 5]. The scaling of the 

complementary metal-oxide-silicon (CMOS) does not track 

the constant-field scaling principle accurately because of 

non-scaling factors- the threshold voltage [6, 7]. The metal 

oxide semiconductor field effect transistors (MOSFET) are 

aiming at creating more sophisticated integrated circuits via 

using more transistors per chip. However, this was restricted 

by high-field effects on downscaled devices [5, 8]. Over the 

last four decades, experts and researchers had increased the 

intricacy of integrated circuits IC’s thru further five orders of 

stages. That incredible reaching has changed the world. The 

downsizing of transistors to the nm region means to find out 

and investigating in the field of nanoscale materials and 

nanoscience as well. The nanometer has been as significant 

to science as the micrometer was in the previous century [9]. 

Major studies published recently in nanoscience and 

nanotechnologies have focused on the fabrication of 

numerous new nano apparatus and tools as well with a wide 

series of uses in electronics, biomaterials, medicine and 

power supplying [10, 11]. Many innovative devices 

structures have been extensively explored due to the classical 

MOSFET approaches its scaling limits. Amongst them, 

nanowire transistor (NWT) which has pulled a magnificent 

attention from researchers to both, academic and semi-

conductor industry as well [12, 13]. In nanoelectronics 

research, nanowire is very important to be considered and 

studied as well for the purpose of designed as a nano 

transistor for many functions. Nanowire is a spherical or 

quadrangular intersected nanostructure where a thickness or 

diameter is designated to lots of nanometers or fewer and an 

undesignated length. Various altered types of nanowires were 

proposed including metal, semiconducting, and isolating, for 

http://dx.doi.org/10.12785/ijcds/090109 
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electronic scheme uses. In nano electronics exploration, a 

semiconducting nanowire is used in active devices, an 

isolating nanowire is used in nano-capacitors, and a metallic 

nanowire is used to connect nano-formed into particularly 

small circuits [14]. In order to generate dynamic electronic 

devices, an essential step is to dope a semiconductor 

nanowire to generate p-type and n-type semiconductors. This 

process has already been performed on individual nanowires 

[15]. The next step is to produce a p-n junction nanowire-

diode, which is the easiest amongst electronic devices. This 

process was conducted by either physically crossing a p-type 

wire over an n-type wire or doping a single wire with 

different dopants along the length of the wire or radially [16, 

17]. 

Among various sensing and monitoring techniques, 

sensors based on field effect transistors (FETs) have attracted 

considerable attention from both industry and academia. 

Owing to their unique characteristics such as small size, light 

weight, low cost, flexibility, fast response, stability, and 

ability for further downscaling, nanowire field effect 

transistor (NW-FET) can serve as an ideal nanosensor. It is 

the most likely successor to FET-based nanoscale devices. 

However, as the dimensions (channel length and diameter) of 

NWT channel are shrinking down, electrical and temperature 

characteristics of NWTs should be affected, thereby 

degrading transistor performance. Although applications of 

NWTs as biological and/or chemical sensors have been 

extensively explored in the literature, less attention has been 

devoted to utilize such transistors as temperature sensors.  
Consequently, this study aims to investigate, compare 

and analyze the impact of channel length of two NWTs 
namely; SiNWT and GeNWT N-Types, as the most 
commonly used NWTs, on their electrical and temperature 
characteristics. Accordingly, design of a temperature 
nanosensor for enabling continuous temperature monitoring 
with superior detection capabilities, high flexibility, and low-
cost can be achieved. To fulfil these objectives, the current 
study adopted the following methodology and contributions: 

 Analysing the impact of channel length of both SiNWT 

and GeNWT on their electrical and temperature 

characteristics.  

 Selection of optimal channel length for both types 

based on comparison of transistors performance. 

 Design a NWT-based temperature nanosensor 

depending on constituent semiconductor materials for 

enhancement of temperature stability and sensitivity. 

The remaining part of this paper is structured as follows: 

The next section presents related studies with an overview of 

Nanowire technology. Section III introduces adopted 

methods of this research. The results and discussions are 

presented in Section IV. Finally, paper is concluded in 

Section V. 

 

 

2. RELATED WORKS  

Electronic devices in Nano dimension such as diodes, 

transistors, capacitors and resistors appealing, particularly the 

attention to the electronics industry due to the drive for ever-

smaller electronic circuits. The ideas of nanotechnology 

emanated long ago from the concept promulgated by Richard 

Feynman. In his description of the concept put forward a 

scenario in which researchers can manipulate and control 

materials at atomic and molecular level [18]. The emergence 

of a scanning tunnelling microscope in 1981 clearly revealed 

the application of nanoscience for individual atoms at a 

molecular level [17]. Nanotechnology is therefore defined as 

the manipulation of atomic matter on a molecular and super-

molecular level [19] reported the molecular nanotechnology 

as the atomic or molecular manipulation which results in the 

fabrication of products on a macro scale. The National 

Nanotechnology Institute (NNI) further provided a 

generalized description of nanotech as the manipulation of 

matter with at least 1-dimension sized from one to hundred 

nanometres. This definition is a total deviation from the 

traditional technological point-of-view to a more research-

oriented category, which deals primarily with the special 

properties of matter below a certain size threshold. It is a 

common practice therefore to pluralize this miniaturization as 

form “nanotechnologies” as well as “Nano-scale 

technologies”. The application of nanoscience and its 

inherent technology has been extensively used in 

interdisciplinary research most especially for the past two 

decades. This indicated a wide range of research applications 

with size as the target variable. Many countries have 

therefore invested more in nanotechnology-related research 

due to several potential military and industrial applications.  

The concept of nanotechnology involves the use of low 

dimensional materials with different structural configurations 

which include the nanowires, nano-rods, nanotubes or nano-

crystalline films [20]. A nanowire in electronics engineering 

is a circular or rectangular cross-sectional nanostructure that 

has a thickness or diameter constrained to tens of nanometers 

or less and an unconstrained length. Numerous different 

types of nanowires exist, including metallic, semiconducting, 

and insulating, for electronic device applications. All of these 

types are important. In nano electronics research, a 

semiconducting nanowire is used in active devices, an 

insulating nanowire is used in nano-capacitors, and a metallic 

nanowire is used to link nano-components into extremely 

small circuits. In order to optimize dimensions, ambient 

temperature and orientation of channel in SiNWT and 

GeNWT design, simulation is needed to characterize the 

behavior of the NWT and help making design decisions. 

The transistor based temperature sensors are designed 

depending on the temperature characteristics of current-

voltage curves of the Nanowire transistor [21, 22]. The 

bipolar transistor can be used as a temperature sensor by 

connecting the base and collector together. This will use a 

transistor in diode mode. While the transistor in MOSFET 

https://en.wikipedia.org/wiki/Molecular
https://en.wikipedia.org/wiki/Supramolecular_complex
https://en.wikipedia.org/wiki/Supramolecular_complex
https://en.wikipedia.org/wiki/Nanometers


 

 

 Int. J. Com. Dig. Sys. 9, No.1, 87-95 (Jan-2020)                        89 

 

 

http://journals.uob.edu.bh 

structures can be used as a temperature sensor by connecting 

the gate with either source or drain.  

Simulating the characterisation of FinFET behaviour and 

helping in decision-making is necessary to reduce channel 

dimensions and improve the performance in FinFET design. 

Some of the studies discussed one-channel dimension length 

or width or oxide thickness, for example, depending on one 

property such as VT or SS or DIBL only and for one 

semiconductor type such as Ge-FinFET or Si-FinFET. The 

FinFET as a temperature nano-sensor based on channel 

semiconductor type was investigated by [23]. The 

temperature sensitivity of FinFET (with Si Ge GaAs and 

InAs) was simulated as a semiconductor channel. FinFET 

transfer properties with VD = 1V were studied at different 

operating temperature values (-25, 0, 25, 50, 75, 100 and 125 

°C) for all semiconductor channel types. The results showed 

that FinFET is best used as a nano-sensor with GaAs. 

However, the study only focused on FinFET types of 

transistor and none of nanowire transistors. 

In [24], authors carried out an evaluation and comparison 

study between SiNWT and planer MOSFET depending on 

ION/IOFF ratio and SS, and that led to fabricated the SiNWT 

devices with rectangular cross-section of thin silicon-on-

insulator nanowires, 10 nm thick and 30 nm wide, these 

transistor devices attained ION/IOFF ratios of 10
6
 with SS close 

to the idyllic MOSFET limit of 60 mV/decade at room 

temperature, which is the superlative performance so far in 

the gated-resistor device assembly. Nevertheless, temperature 

stability was not considered. In addition, only SiNWT was 

evaluated and not GeNWT.  

Ref. [25] simulated the temperature effects on the transfer 

(Id-Vg) characteristics of SNWT at Vd=1V with diverse 

values of temperature (275, 300, 325, 350 and 375 K). 

Authors claimed that current- regulated to diameter- 

increased with increasing temperature at low Vg (>0.4V) and 

reducing at high Vg (<0.4V). Additional to that it can be 

recorded that changing in an operational temperature lead to 

change in ON current to OFF current ratio (ION/IOFF), 

threshold voltage (VT), DBIL and SS. However, the study did 

not consider GeNWT and only electrical characteristics were 

evaluated. 

To the best of our knowledge, few studies investigated 

the effects of channel dimensions of NWT on the 

temperature characteristics and electrical characteristics 

simultaneously. Some studies focused more on electrical 

characteristics of NWT while others considered temperature 

characteristics of other types of transistors such as FinFET. 

Few related literatures focused on SiNWT and none of 

existing studies investigated GeNWT based on channel 

length and temperature variation. This study considered two 

types of nanowire transistors (SiNWT and GeNWT). In 

addition, it evaluates and compares their performance based 

on both electrical and temperature characteristics. It is among 

the limited number of studies that focused on the application 

of nanowire transistor as a temperature nanosensor. Unlike 

the previous studies that considered only one parameter in 

their evaluation, this paper analyses the impact of several 

parameters on the transistors performance simultaneously. In 

particular, the effect of varying channel length, operating 

voltages (VDD and Vg), ambient temperature, and 

semiconductor material (Si and Ge) all were considered. 

3. METHODS AND MATERIALS 

After reviewing relevant literature and highlighting 

limitations in the field of nanotechnology applications, thus 

identifying problem statement of this research, FOUR (4) 

main phases were adopted for the general descriptive 

research methodology. These phases include different stages 

and research activities in conjunction with the detailed 

simulation environment. In addition, it clarifies the 

simulation procedures to investigate and analyze transistor 

performance as a temperature nanosensor.  

(i) Phase I–. Considering Nanowire transistor as the 

most likely successor to FinFET-based nanoscale devices, 

and selecting the well-known MUGFET Simulator as the 

simulation tools to conduct this study due to its superiority 

and reliability in simulating and characterizing field effect 

transistors; 

(ii) Phase II– Developing an analytical framework to 

analyze the effect of channel length on the performance of 

Silicon Nanowire transistor (SiNWT) and Germanium 

nanowire transistor (GeNWT) on their electrical and 

temperature characteristics; 

(iii) Phase III– Accordingly, selection of NWTs optimal 

channel length by considering temperature sensitivity and 

electrical characteristics (SS, VTH, and DIBL).  

A. Simulation Setup 

MuGFET simulator is utilized in this study for the 

analysis of temperature characteristics for SiNWT and 

GeNWT based on channel length. Simulation tools of 

electronic devices have become increasingly important to 

understand the physics behind the structures of new devices. 

Simulation tools can also help to identify device strengths, 

weaknesses, and retrenchment costs and illustrate the 

extensibility of these devices in the nm range. This software 

provides many useful characteristic curves for both 

nanowires and FinFET for deeply understanding Physics.  
 

TABLE I. SIMULATION PARAMETERS 

Parameters value 

Channel length (Lg) (25, 45, 65, 85 and 105) nm 

Channel diameter (D) 40 nm 

Oxide thickness (TOX) 2.5 nm 

Channel concentration P-type 1016 cm−3 

Channel concentration N-type 1019 cm−3 
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The output characteristic curves of the transistor under 

different conditions and with different parameters that can be 

extracted from the simulator. MuGFET simulator also 

provides self-consistent solutions to the Poisson and drift-

diffusion equation. It is used to simulate the motion of 

transport objects in the calculation of the characteristics for 

Nanowire. Basically, experimental work can be supported by 

simulation studies to further explore the development of 

MuGFET for Nano-dimensional characterization. 
In our simulations, the Id-Vg characteristics of NWTs at a 

temperature (250, 275, 300, 325, 350, 375, 400, 425 and 450 
K) were simulated with Channel diameter = 40 nm for 
different channel lengths and operating voltages. Both 
semiconductor materials were considered, Si and Ge. In this 
case, for each channel length, twenty-one (21) operating 
voltages (VDD) in the range 0-5 V were considered by step of 
0.25 V. Details simulation parameters are listed in Table I. 

B. Temperature Sensitivity  

Temperature sensitivity is a performance metric that 
measure the changes in transistor behavior by varying 
operating voltages and surrounding temperature. It depends 
on the variation of drain current, ∆Id. Delta is used to 
measure and observe the drain current Id where simulation 
results arranging many matrices according to Vg as a 
function of Id. It can be calculated by subtract the small value 
of Id from the bigger one by using the following linear 
equation:  

∆𝐼𝑑 = 𝐼𝑑𝑛 − 𝐼𝑑(𝑛−1)  (1) 

The different values of temperature (225, 250, 275, 300, 
325, 350, 375, 400, 425 and 450 K) effects on SiNWT and 
GeNWT characteristics were studied with different channel 
lengths (Lg = 25, 45, 65, 85 and 105 nm). For the diode 
mode transistor connection, the increments in current (∆Id) 
with temperature will occurred by increasing of channel 
length and temperature for both transistors and SiNWT and 
GeNWT. 

4. SIMULATION RESULTS  

A. SiNWT Performance 

In the first simulation scenario, the Id–Vg characteristics 
of SiNWT for varying temperatures from 250 to 450 K by 
increasing of 25 K were simulated. Figure 1 to Figure. 5 
show the change in ∆Id, as an indicator of transistor 
sensitivity with temperature variation for each Lg value (25, 
45, 65, 85, and 105 nm) respectively. The VDD also varied in 
the range of 0 – 5 V at 0.25 V steps. For the sake of figures 
clarity, only 6 voltage values are selected (two max., two 
min. and two medium). Other obtained values for the rest 
voltages are distributed between the maximum and 
minimum. It is obvious that the maximum sensitivities (max 
∆Id) obtained at the relatively lower temperatures, and the 
values decreased linearly as temperature increased for all 
VDD voltages. Our aim in this scenario is to find the highest 
sensitivity for various operating voltage and various channel 
length. For SiNWT, the maximum temperature sensitivity 

values are obtained at VDD = 0.75 V for Lg = 25 nm; 
followed by max ∆Id at VDD = 1.5 V for Lg = 45 nm, VDD = 2 
V for Lg = 65 nm, VDD = 2.25 V for Lg = 85 nm, and finally 
VDD = 2.5 V for Lg = 105 nm.  

From the obtained simulation results, maximum 
sensitivities (max ∆Id) were observed at lower VDD voltages 
with short channel lengths (25 to 45 nm) while at longer 
channel length, the highest sensitivity was achieved with 
higher values of operating voltages. For the sake of brevity, 
in this paper we only highlight the highest obtained 
temperature sensitivity based on channel length. Figure 6 
shows the changes in ∆Id with increasing VDD at various 
temperatures for 105 nm channel length. As shown in the 
figures, the maximum sensitivity of 5.73×10

-5
 was achieved 

at 2.5 volts. The sensitivity was smaller at higher and lower 
operating voltages. The sensitivity also inversely 
proportional to the ambient temperature. The highest 
temperature sensitivity of SiNWT was achieved at the lowest 
operating temperature, 250

 
K. 

 

 

Figure 1.  Temperature characteristics of SiNWT at Lg = 25 nm 

 

Figure 2.  Temperature characteristics of SiNWT at Lg = 45 nm 
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Figure 3.  Temperature characteristics of SiNWT at Lg = 65 nm 

 

 

Figure 4.  Temperature characteristics of SiNWT at Lg = 85 nm 

 

 

Figure 5.  Temperature characteristics of SiNWT at Lg = 105 nm 

 

Figure 6.  ∆Id-VDD characteristics of SiNWT at Lg = 105nm 

B. GeNWT Performance 

In the second scenario, GeNWT was considered. The 
impact of changing channel length on the temperature and 
electrical characteristics of GeNWT was investigated and 
compared with the obtained results from the first scenario of 
SiNWT. Hence, Figure 7 to Figure 11 present the 
temperature sensitivity values depending on operating 
voltages and surrounding temperature. Only six of twenty-
one operating voltages are illustrated in the figures to 
increase clarity. It is obvious that the temperature sensitivity 
decreases with increasing ambient temperature and varies 
with changing channel length. The highest values of 
temperature sensitivity as a function of drain current 
variation were obtained at VDD = 0.75 V for Lg = 25 nm; 
followed by max ∆Id at VDD = 1.5 V for Lg = 45 nm, VDD = 
2 V for Lg = 65 nm, VDD = 2.25 V for Lg = 85 nm, and 
finally VDD = 2.5 V for Lg = 105 nm.  

 

 

Figure 7.  Temperature characteristics of GeNWT at Lg = 25 nm 
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Figure 8.  Temperature characteristics of GeNWT at Lg = 45 nm 

 

 

Figure 9.  Temperature characteristics of GeNWT at Lg = 65 nm 

 

 

Figure 10.  Temperature characteristics of GeNWT at Lg = 85 nm 

 

Figure 11.  Temperature characteristics of GeNWT at Lg = 105 nm 

Figure 12 demonstrates the changes in ∆Id with 
increasing operating voltage, VDD for various ambient 
temperature at channel length, Lg = 85. This results represent 
the highest obtained temperature sensitivity for GeNWT. 
Overall, maximum sensitivities (max ∆Id) were observed at 
lower VDD voltages with short channel lengths (25 to 45 nm) 
while at longer channel length, the highest sensitivity was 
achieved with higher values of operating voltages.  

 

 

Figure 12.  ∆Id-VDD characteristics of GeNWT at Lg= 85 nm 

C. SiNWT and GeNWT Comparison 

In terms of temperature characteristics, Fig. 13 compares 
the optimized operating voltage for SiNWT versus GeNWT 
based on the best temperature sensitivity with channel length. 
The figure is based on the obtained results of temperature 
sensitivity for both transistors. The displayed optimized 
operating voltage Vg represent the peaks of temperature 
sensitivity attained. It is very clear that the temperature 
sensitivity will increase remarkably by increasing channel 
length for both of SiNWT and GeNWT as well. Both 
transistors maintain consistent operating voltages regardless 
channel length. Only at 45 nm channel length, the optimized 
operating voltages are different. 
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In our simulations, three electrical characteristics were 
evaluated depending on channel length for both SiNWT and 
GeNWT. Figure 14 depicts subthreshold swing (SS) for 
SiNWT and GeNWT. SS value is an important indicator of 
transistor switching speed. As fast switching of the transistor 
is required SS to be as small as possible. As shown in the 
figure, for the simulated gate length (Lg = 25, 45, 65, 85 and 
105 nm) of SiNWT and GeNWT, SiNWT achieved the 
smallest values of SS and closest to ideal SS value which is 
approximately ≈ 60 mV/dec at T= 300 K. It is obvious that, 
the SS value decreases with increasing channel length 
regardless of semiconductor material. For Lg =105 nm, SS of 
SiNWT and GeNWT were 61.20 mV/dec and 83.76 mV/dec 
respectively which is the best obtained values. The worst SS 
values for both transistors were obtained at the shortest 
channel length, 45 nm. Those results clarify that the SiNWT 
outperformed GeNWT and scored the best SS vales for the 
all range of Lg. 

Figure 15 shows the characteristics of threshold voltage 
(Vth) for SiNWT versus GeNWT. It is noticeable that Vth is 
proportionally increased with increasing channel length. 
Generally, higher threshold voltage is an important factor to 
sustain power proficiency, thus lead to reduce IOFF which is 
more needed for transistor’s best performance and electrical 
characteristics stability too. For simulated channel length at 
T= 300 K, SiNWT outperformed GeNWT and achieved the 
highest values of Vth for all channel lengths. The highest Vth 
of SiNWT and GeNWT were occurred at Lg = 105 nm, with 
values of 0.775 V and 0.590 V respectively. On the other 
hands, the lowest threshold voltages were occurred at the 
shortest channel length of Lg = 25 nm and equal to 0.432 V 
and 0.249 V for SiNWT and GeNWT respectively. Drain 
induced barrier lowering (DIBL) for SiNWT versus GeNWT 
is compared in Figure 16. Here it is better to mention that 
lower values of DIBL are needed. It can be seen that as long 
as increasing channel length (Lg), DIBL decreased and 
SiNWT values are slightly less than GeNWT values. 

 

 

Figure 13.  Optimized operating voltage Vs. channel lengths based on best 

temperature sensitivity for SiNWT and GeNWT 

 

 

Figure 14.  Subthreshold Swing for SiNWT and GeNWT for varying 

channel length at T = 300 K 

 

 

Figure 15.  Threshold voltage of SiNWT Vs GeNWT for varying channel 

length at T = 300 K 

 

Figure 16.  DIBL of SiNWT Vs GeNWT for varying channel length at T = 

300 K 

5. CONCLUSIONS AND FUTURE WORKS 

The effects of changing Lg on SiNWT and GeNWT 
temperature and electrical characteristics were investigated. 
The obtained results show that with diode mode transistor 
connection, the best increments –sensitivity- in current (ΔId) 
with temperature occurred between 25 nm to 85 nm channel 
length range, and beyond will be stable without any effect by 
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increasing Lg, while for GeNWT, it always increased with 
increasing Lg. For the electrical parameters based on (SS, 
Vth and DIBL), the SiNWT shows better electrical 
characteristics than the GeNWT for all ranges of Lg. 

In this paper, only one dimension of channel which is 
channel length was considered in our comparison. For future 
work, other dimensions including channel diameter and 
oxide thickness will be investigated. The application of NWT 
as temperature sensor was the main concern of this study. 
However, a huge variety of NWT applications especially in 
biomedical field will be interested.  
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