

CTJ: INPUT-OUTPUT BASED RELATION

COMBINATORIAL TESTING STRATEGY

USING JAYA ALGORITHM

NG YEONG KHANG

BACHELOR OF COMPUTER SCIENCE

(SOFTWARE ENGINEERING)

UNIVERSITI MALAYSIA PAHANG

ii

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : Ng Yeong Khang

Date of Birth : 19/11/1995

Title : CTJ: Input-Output Based Relation Combinatorial Testing Strategy

 Using Jaya Algorithm

Academic Session : 2018/2019

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

Ng Yeong Khang

951119-07-5055

Date: 08/01/2019

 (Supervisor’s Signature)

Dr. AbdulRahman al-Sewari

Date: 08/01/2019

iii

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Bachelor of Computer Science

(Software Engineering).

 (Supervisor’s Signature)

Full Name : Dr. AbdulRahman al-Sewari

Position : Senior Lecturer

Date : 8 January 2019

iv

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : Ng Yeong Khang

ID Number : CB15092

Date : 8 January 2019

v

CTJ: INPUT-OUTPUT BASED RELATION COMBINATORIAL TESTING

STRATEGY USING JAYA ALGORITHM

NG YEONG KHANG

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering)

Faculty of Computer Systems and Software Engineering

UNIVERSITI MALAYSIA PAHANG

JANUARY 2019

vi

ACKNOWLEDGEMENTS

First, I would express my deepest appreciation to my respected final year project

supervisor, Dr. AbdulRahman al-Sewari in guiding me to complete this thesis which has

the title of CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya

Algorithm. He always welcomes me to consult him anytime whenever I faced any

problem in doing this final year project. His expertise in software testing gave me insight

and well understanding on combinatorial testing and this knowledge accelerates my

progress in completing this thesis.

Moreover, I would like to thank to my family members especially my dear parents in

supporting me throughout the implementation of my final year project. They always give

me advice and backing when I was no idea to solve the trouble encountered. The strong

mental support given by them is a great motivation for me to complete this thesis.

Furthermore, a special thanks goes to all friends of mine who gave their helping hands

when I need any assistance from them. Their willingness in helping me should be

acknowledged as their contributions made the progress of my final year project run

uneventful.

Finally, a special gratitude I want to give to all lecturers and staff in Faculty of Computer

Systems and Software Engineering, Universiti Malaysia Pahang that helped me directly

and indirectly in completing this final year project. Their precious helps made me able to

work smoothly throughout this final year project.

vii

ABSTRAK

Pengujian perisian adalah salah satu unsur yang penting dalam pembangunan

perisian. Kebanyakan masa, sistem yang diuji mempunyai lebih daripada satu input dan

pengujian setiap kombinasi input adalah hampir mustahil kerana masa pelaksanaan kes

ujian terlalu panjang. Pengujian kombinatorial ialah satu cara untuk menggantikan ujian

menyeluruh melalui pengujian setiap nilai input dan setiap kombinasi antara parameter.

Pengujian kombinatorial boleh dibahagikan kepada tiga jenis iaitu interaksi kekuatan

seragam, interaksi kekuatan berubah-ubah dan hubungan berdasarkan input-output

(IOR). Pengujian kombinatorial IOR hanya menguji kombinasi penting yang dipilih oleh

penguji. Kebanyakan penyelidikan dalam pengujian kombinatorial menggunakan

interaksi kekuatan seragam dan berubah-ubah tetapi terdapat hanya beberapa kajian yang

menangani IOR. Oleh hal sedemikian, pengujian kombinatorial IOR dipilih untuk dikaji

dalam kajian ini. Untuk mengatasi masalah pengoptimalan gabungan, algoritma Jaya

dicadangkan untuk digunakan dalam projek ini disebabkan algoritma metaheuristik

pantas dalam pengoptimuman dan strategi ini dinamakan sebagai CTJ. Hasil penerapan

algoritma Jaya dalam pegujian kombinatorial input-output dapat diterima kerana

menghasilkan jumlah kes ujian yang hampir optimum dalam tempoh masa yang

memuaskan.

viii

ABSTRACT

Software testing is a vital part in software development lifecycle. Most of the

time, system under test has more than one input and testing of every combinations of

inputs is almost impossible as the time of execution of test case is outrageously long.

Combinatorial testing is the way to encounter exhaustive testing through the testing of

every input values and every combination between parameters. Combinatorial testing can

be divided into three types which are uniform strength interaction, variable strength

interaction and input-output based relation (IOR). IOR combinatorial testing only test for

the important combinations that selected by tester. Most of the researches in

combinatorial testing applied uniform and variable interaction strength but there are only

few studies feature IOR. Thus, IOR combinatorial testing is selected to be studied in this

research. To overcome the combinatorial optimization problem, Jaya algorithm is

proposed to apply in this project since metaheuristic algorithm is fast in optimization and

this strategy is named as CTJ. The result of applying Jaya algorithm in input-output based

combinatorial testing is acceptable since it produces nearly optimum number of test cases

in the satisfactory time range.

ix

TABLE OF CONTENT

ACKNOWLEDGEMENTS vi

ABSTRAK vii

ABSTRACT viii

TABLE OF CONTENT ix

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 2

1.3 AIM AND OBJECTIVES 5

1.4 SCOPE 6

1.5 THESIS ORGANIZATION 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 INPUT-OUTPUT BASED RELATION COMBINATORIAL TESTING 7

2.2 RELATED WORK 12

2.2.1 Pure Computational Approach 12

2.2.2 Natural Based Approach 18

2.3 JAYA ALGORITHM 27

CHAPTER 3 METHODOLOGY 32

3.1 INTRODUCTION 32

x

3.2 METHODOLOGY 32

3.2.1 Phase 1: Literature Review 33

3.2.2 Phase 2: Design the Solution 34

3.2.3 Phase 3: Implementation of the Solution 42

3.2.4 Phase 4: Test and Evaluation 51

3.2.5 Phase 5: Documentation 55

3.3 HARDWARE AND SOFTWARE 55

3.4 GANTT CHART 56

CHAPTER 4 IMPLEMENTATION, RESULT AND DISCUSSION 57

4.1 INTRODUCTION 57

4.2 IMPLEMENTATION OF CTJ 57

4.2.1 Level 1: Reading of input values 57

4.2.2 Level 2: Data analysis and data mapping 60

4.2.3 Level 3: Combinations of input values generation 61

4.2.4 Level 4: Test case generation based on Jaya algorithm 62

4.2.5 Level 5: Finalization of test suite generation 64

4.3 EXPERIMENTAL RESULTS AND DISCUSSION 64

4.3.1 Parameter tuning of CTJ 64

4.3.2 Experiments for input-output based relation 66

4.3.3 Experiments for uniform interaction strength 67

CHAPTER 5 CONCLUSION 70

5.1 INTRODUCTION 70

5.2 RESEARCH CONSTRAINTS 71

5.3 FUTURE WORKS 71

xi

REFERENCES 72

APPENDIX A GANTT CHART 77

xii

LIST OF TABLES

Table 1.1 All possible input values for “Print” section in Notepad++’s Preferences 4

Table 2.1 All input parameters and their input values 8

Table 2.2 List of all possible combinations of input values with t = 2 9

Table 2.3 Test suite generated through pairwise combinatorial testing 9

Table 2.4 List of all possible combinations of input values with IOR 11

Table 2.5 Test suite generated through IOR 12

Table 2.6 Comparison between natural based approaches 18

Table 2.7 Comparison between natural based approaches 27

Table 2.8 Comparison between Jaya algorithm with existing strategies 31

Table 3.1 Result of data mapping using the input values from Table 2.1 35

Table 3.2 60 input-output relationships (R) that utilized in experiments 52

Table 3.3 The size of test suite of existing IOR strategies using configuration IOR

(N, 310, R) 52

Table 3.4 The size of test suite of existing IOR strategies using configuration (N, 23

33 43 51, R) 53

Table 3.5 System configuration for uniform interaction strength experiment 54

Table 3.6 The test suite size of existing strategies using uniform interaction

strength 54

Table 3.7 List of needed hardware 55

Table 3.8 List of needed software 56

Table 4.1 The mapped values for both input parameters and their corresponding

values 60

Table 4.2 Parameter Setting 64

Table 4.3 Test case size and execution time in 30 input-output relationships

configuration 65

Table 4.4 Test case size and execution time in CA(N; 3, 6, 6) configuration 65

Table 4.5 Test case size and execution time of IOR (N, 310, R) configuration in first

IOR experiment 68

Table 4.6 Test case size and execution time of IOR (N, 23, 33, 43, 51, R)

configuration in second IOR experiment 68

Table 4.7 Test case size and execution time of different configurations in uniform

interaction strength experiment 69

xiii

LIST OF FIGURES

Figure 1.1 Print section of Preferences of Notepad ++ 3

Figure 2.1 Input-output relationship between P, Q, R, S and X, Y, Z of Program P1 11

Figure 2.2 Example to show Greedy algorithm's problem 13

Figure 2.3 Pseudocode of recursive Greedy algorithm (Cormen et al., 2009) 14

Figure 2.4 Pseudocode of test case generation using concept of Density (Z. Wang

et al., 2008) 15

Figure 2.5 Overview of AURA strategy (Ong & Zamli, 2011) 16

Figure 2.6 Pseudocode of interaction pair generation algorithm (Ong & Zamli,

2011) 17

Figure 2.7 Pseudocode of test suite generation algorithm (Ong & Zamli, 2011) 17

Figure 2.8 Pseudocode of actual data mapping algorithm (Ong & Zamli, 2011) 18

Figure 2.9 Pseudocode of Ant Colony Optimization (Blum, 2005) 20

Figure 2.10 The illustration on how ants find the shortest path between food source

and their nest (Blum, 2005) 20

Figure 2.11 Crossover operation to generate offspring (Elbeltagi, Hegazy, &

Grierson, 2005) 22

Figure 2.12 Pseudocode for Genetic Algorithm (Elbeltagi et al., 2005) 22

Figure 2.13 Pseudocode of Harmony Search algorithm (Abdul Rahman, 2012) 24

Figure 2.14 Pseudocode of Particle Swarm Optimization (Poli et al., 2007) 25

Figure 2.15 Pseudocode of Simulated Annealing algorithm (Xambre & Vilarinho,

2003) 26

Figure 2.16 Flowchart of Jaya Algorithm (R Rao, 2016) 29

Figure 3.1 The flowchart of research methodology 33

Figure 3.2 The flowchart of the execution of IOR combinatorial testing based on

Jaya algorithm 34

Figure 3.3 The flowchart of test case generation using Jaya algorithm 37

Figure 3.4 GUI for the input of parameters and its values 38

Figure 3.5 GUI of load from file 39

Figure 3.6 GUI of uniform interaction strength 40

Figure 3.7 GUI of input-output based relation 41

Figure 3.8 Pseudocode on reading the parameters and their corresponding values 42

Figure 3.9 Pseudocode of reading all necessary information for test case generation 43

Figure 3.10 Pseudocode for data analysis 43

Figure 3.11 Pseudocode for data mapping 44

xiv

Figure 3.12 Pseudocode of combination of input values generation for uniform

strength interaction 46

Figure 3.13 Pseudocode of combination of input values generation for input-output

relationship 47

Figure 3.14 Pseudocode for test case generation using Jaya algorithm (Part 1) 49

Figure 3.15 Pseudocode for test case generation using Jaya algorithm (Part 2) 50

Figure 3.16 Pseudocode of finalization of test case generation 51

Figure 4.1 Example of completed input parameters and its corresponding values at

the Home page of CTJ 58

Figure 4.2 File selection for Load From File option 59

Figure 4.3 The GUI after reading the data from file 59

Figure 4.4 Error message for duplication of value entered 60

Figure 4.5 The complete details that have to be filled in before test case generation

through uniform interaction strength 61

Figure 4.6 The complete details that have to be filled in before test case generation

through input-output relationships 62

Figure 4.7 The test suite generated through ordinary GUI input 63

Figure 4.8 Test suite generated through Load From File 63

xv

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

AETG Automatic Efficient Test Generator

AGC Controller for Automatic Generation Control

AI Artificial Intelligence

CA Covering Array

EA Evolutionary Algorithm

FIFT Failure-Triggering Fault Interaction

GA Genetic Algorithm

GUI Graphical User Interface

HM Harmony Memory

HMCR Harmony Memory Considering Rate

HMS Harmony Memory Size

HS Harmony Search

IOR Input-Output Based Relation

MCA Mixed Level Covering Array

PAR Pitch Adjustment Rate

PHSS Pairwise Harmony Search Testing Strategy

PID Proportional-Integral-Derivative

PSO Particle Swarm Optimization

PSTG Particle Swarm Test Generator

PV-DSTAT-COM Photovoltaic Fed Distributed Static Compensator

QAP Quadratic Assignment Problem

SA Simulated Annealing

SBPWM Simple Boost Pulse Width Modulation

SI Swarm Intelligence

SUT System Under Test

TLBO Teaching-Learning-Based Optimization

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Software testing is an inevitable process in software development lifecycle to find

out the software bugs by validating and verifying the application whether it works as

expected and meets the business and technical requirements. A recent report from

Tricentis, a leading software testing company in Continuous Testing found that there are

606 recorded software failure that happened around the globe which affected over 3.7

billion people and 314 companies as well as $1.7 trillion in lost revenue and 268 years of

downtime (Tricentis, 2018). Therefore, a more effective defect detection approach

needed to be carried out to increase the coverage of testing.

Combinatorial testing is a black-box testing technique that generate test cases by

combining the values of different test object input parameters using combinatorial

optimization strategies (De Vries, Vohra, Economics, & Science, 2003). Taking the study

from the failure of medical device application, the failure-triggering fault interaction

(FTFI) is 68% for single parameter value, 97% of failures triggered by 2 combination

values while the percentage of failures caused by 3 and 4 combination values are 99%

and 100% respectively (Kuhn, Wallace, & Gallo, 2004). By using combinatorial testing,

all input values of the test objects and interactions between each parameter are tested

which result in higher detection of interaction failure compared to single parameter

testing.

Combinatorial optimization is a process of searching the optimum number of test

cases for combinatorial testing. There are many different optimization strategies that are

used to generate the test cases for combinatorial testing such as Harmony Search (A. R.

A. Alsewari & Zamli, 2012), Genetic Algorithm (Shiba, Tsuchiya, & Kikuno, 2004b),

2

Ant Colony Algorithm (Shiba et al., 2004b), Simplified Swarm Optimization (Ahmed,

Sahib, & Potrus, 2014), Differential Evolution Algorithm (Liang, Guo, Huang, & Jiao,

2014) and so on. Jaya Algorithm is chosen to be applied in this study as this algorithm

has been used in lots of optimization problems in other fields.

Combinatorial testing also known as interaction t-way testing where t represents

the interaction strength. There are two types of t-way interaction which are uniform

strength t-way interaction and variable strength t-way interaction. The interaction

between all parameters are uniform in uniform strength t-way interaction while variable

strength t-way interaction involves main uniform interaction and sub-uniform interaction.

Both type of interactions will generate all possible interactions between each parameter.

Often, some of the interactions generated maybe not even be used in the testing. This

waste the precious time and effort of the tester to generate those useless interactions.

Hence, input-output based relation (IOR) has been introduced in combinatorial

optimization to improve the efficiency in finding optimum number of test case as well as

given the flexibility in selecting the desired parameter and its interaction (A. R. A.

Alsewari & Zamli, 2012).

1.2 PROBLEM STATEMENT

In most of the software application, often there exists one part of system input

required to enter a combination of values or choices. The system under test (SUT) is then

needed to test for every combination of input parameter to make sure the actual behaviour

of the system is same as expected behaviour since the cost of fixing the defect found after

software delivered is much higher. Testing of each combination of values is a time and

effort wasting job and this leads to exhaustive testing. Exhaustive testing is an impractical

software testing technique and usually impossible to achieve in the real testing

environment due to budget available and time constraint to execute all combinations of

inputs.

3

Figure 1.1 Print section of Preferences of Notepad ++

Taking the example from the renowned open source code editor, Notepad ++, the

“Print” section in the Preferences as shown in Figure 1 is chosen to show the total number

of test cases needed to carry out the testing process via exhaustive testing. There are 22

input parameters required to enter in the “Print” section and all possible input values are

shown in Table 1.

4

Table 1.1 All possible input values for “Print” section in Notepad++’s Preferences

Input parameter Input values/ Range
Number of possible

inputs

Print line number Check, Unchecked 2

Colour options
WYSIWYG, Invert, Black on

white, No background colour
4

Margin Setting

Top 0 to 99 100

Bottom 0 to 99 100

Left 0 to 99 100

Right 0 to 99 100

Variable

Full file name path, File name,

File directory, Page, Short date

format, Long date format, Time

7

Header

Left part

Minimum number of characters

is 0 while maximum number of

characters is 50

51

Middle part

Minimum number of

characters is 0 while maximum

number of characters is 50

51

Right part

Minimum number of characters

is 0 while maximum number of

characters is 50

51

Font 276 types of fonts 276

Font size 6 to 14 9

Bold Check, Unchecked 2

Italic Check, Unchecked 2

Footer

Left part

Minimum number of characters

is 0 while maximum number of

characters is 50

51

Middle part

Minimum number of characters

is 0 while maximum number of

characters is 50

51

Right part

Minimum number of characters

is 0 while maximum number of

characters is 50

51

Font 276 types of fonts 276

Font size 6 to 14 9

Bold Check, Unchecked 2

Italic Check, Unchecked 2

5

Based on the number of possible inputs in Table 1, the total number of test cases

required for exhaustive testing that cover all possible interactions between each input

value are 9,728,194,594,213,496,217,600,000,000 which approximately to 9 octillions.

The calculation of total number of test cases is done by multiplying all possible number

of input values. Given the execution time of each test case is 1 second, the total time

taken to complete all test case execution is 308,479,026,960,093,106,849.32 years

(nearly 308 quintillion years) which exceeds human lifetime to complete the testing for

one section in the Preferences in Notepad++.

Moreover, the interactions generated through uniform strength or variable

strength in combinatorial testing mostly are not fully utilized in real testing environment.

This may cause the important interactions between the input parameters are excluded and

unwanted test cases are including in the test suite which make the size of test suite

increases (Ramli, Othman, & Ali, 2016). Wasting of time to generate the unrelated

interactions and test cases is happened as well as fail to reduce the test suite’s redundancy.

The increase of the number of test cases in test suite will increase the time to find out the

fault in the test object and this will induce the rise of testing effort.

To overcome the exhaustive testing and reduce the number of unwanted test cases

produced by combinatorial testing, input-output based relation combinatorial testing

strategy based on Jaya Algorithm which known as CTJ is introduced in this study.

1.3 AIM AND OBJECTIVES

The goal of this thesis is to implement input-output based relation combinatorial testing

strategy using Jaya Algorithm (CTJ). Several objectives have been identified to

accomplish to succeed the goal of this thesis:

I. To study the existing input-output based relation combinatorial testing

strategies.

II. To implement Jaya Algorithm in input-output based combinatorial testing.

III. To assess the performance of the proposed combinatorial testing strategy.

6

1.4 SCOPE

The scopes of this project are stated as below:

I. The program is built based on Java programming language.

II. The program is worked on desktop platform only.

III. The degree of interaction strength of combinatorial testing is only two, three

and four.

1.5 THESIS ORGANIZATION

This thesis is made up of five chapter. Chapter 1 is about the overview of the

project which consists of background of study, problem statement, aim & objectives and

scope of the project. Next, Chapter 2 is the literature review of existing input-output based

relation combinatorial testing metaheuristic algorithm, comparison between each

metaheuristic algorithm and Jaya Algorithm. Chapter 3 is the methodology of CTJ which

including the hardware and software needed, Gantt chart as well as the implementation

flow and testing design. Further, the implementation, result of execution and discussion

on the performance of CTJ are in Chapter 4. Lastly, Chapter 5 is the conclusion for this

thesis that includes summary, research constraints and future works of CTJ.

7

CHAPTER 2

LITERATURE REVIEW

2.1 INPUT-OUTPUT BASED RELATION COMBINATORIAL TESTING

Combinatorial testing also known as t-way interaction testing need every t-way

combination of input parameters and its values to be covered in at least one test case in

the test suite (Shiba et al., 2004b). This approach can be divided into three main types

which are uniform interaction strength, variable interaction strength and input-output

based relation. Uniform interaction strength and variable interaction strength rely on the

interaction strength (t) which used to decide the interactions between each input

parameters. Pairwise testing where t is equal to two is one of the combinatorial technique

that has the interaction between the input parameters in the pair form (McCaffrey, 2009).

In the other word, the input parameters will be paired up with each other and the test suite

is generated based on the combination of input parameters’ values which covered by at

least one of the test cases.

Combinatorial testing can be expressed into a covering array (CA). CA is widely

implemented in interaction testing where all input parameters have equal number of input

values to generate a test suite that cover all possible interactions. A covering array,

CAλ(N; t, k, v), is an N×k array on v symbols such that every N × t sub-array contains

all ordered subsets from v symbols of size t at least λ times (Myra B. Cohen, 2004). In

the simple word, CA is an array with Nth row and kth column which satisfies the condition

that all t-tuples are covered in these rows at least once. N represents the number of test

cases, t is the interaction strength while k and v are the number of input parameters and

the number of values for each input parameters. The value of t must be the same for all

parameters since this is a uniform interaction strength combinatorial testing.

8

Mixed level covering array (MCA) is another mathematical way to present the

combinatorial testing for the input parameters that have different number of input values.

A mixed level covering array, MCAλ(N; t, k, (v1, v2, ..., vk)), is an N × k array on v

symbols, where v = ∑ vi
𝑘
𝑥=1 , with the following properties:

1. Each column i (1 ≤ i ≤ k) contains only elements from a set Si of size vi.

2. The rows of each N×t sub-array covers all t-tuples of values from the t columns

at least λ times.

Above is the definition of mixed level covering array from the research of (Myra B.

Cohen, 2004). From the formula on the above, (v1, v2, ..., vk) represent the number of

input values for specific input parameter respectively. The only difference between the

CA and MCA is the input parameter of MCA can have different number of input values

while every input parameter in CA must have same amount of input values.

The uniform interaction strength combinatorial testing is demonstrated as below.

Table 2.1 shows all input parameters and its input values which will be involved in

generating the optimum number of test cases.

Table 2.1 All input parameters and their input values

Parameters P Q R S

Input values

P1 Q1 R1 S1

P2 Q2 R2 S2

P3 Q3 S3

 Q4

MCA is chosen to represent this model since not every parameter are having the

same number of input values. The MCA formula for this model is MCA(N, 2, 4, (3, 4, 2,

3)). N is still unknown as the number of test cases needed is not yet compute. All

parameters and their input values are then paired up to come out with a list of

combinations of input values which is presented in Table 2.2.

9

Table 2.2 List of all possible combinations of input values with t = 2

PQ PR PS QR QS RS

P1Q1 P1R1 P1S1 Q1R1 Q1S1 R1S1

P1Q2 P1R2 P1S2 Q1R2 Q1S2 R1S2

P1Q3 P2R1 P1S3 Q2R1 Q1S3 R1S3

P1Q4 P2R2 P2S1 Q2R2 Q2S1 R2S1

P2Q1 P3R1 P2S2 Q3R1 Q2S2 R2S2

P2Q2 P3R2 P2S3 Q3R2 Q2S3 R2S3

P2Q3 P3S1 Q4R1 Q3S1

P2Q4 P3S2 Q4R2 Q3S2

P3Q1 P3S3 Q3S3

P3Q2 Q4S1

P3Q3 Q4S2

P3Q4 Q4S3

 From the list of all possible combinations of input values in Table 2.2, the test

suite is generated where all combinations are covered in one of the test case by at least

one time.

Table 2.3 Test suite generated through pairwise combinatorial testing

Test Case
Input Parameters

Occurrences Combination Covered
P Q R S

1 P1 Q3 R1 S2 6
(P1, Q3), (P1, R1), (P1, S2),

(Q3, R1), (Q3, S2), (R1, S2)

2 P3 Q1 R2 S3 6
(P3, Q1), (P3, R2), (P3, S3),

(Q1, R2), (Q1, S3), (R2, S3)

3 P2 Q4 R2 S1 6
(P2, Q4), (P2, R2), (P2, S1),

(Q4, R2), (Q4, S1), (R2, S1)

4 P2 Q2 R1 S3 6
(P2, Q2), (P2, R1), (P2, S3),

(Q2, R1), (Q2, S3), (R1, S3)

5 P3 Q2 R1 S1 5
(P3, Q2), (P3, R1), (P3, S1),

(Q2, S1), (R1, S1)

6 P1 Q2 R2 S2 5
(P1, Q2), (P1, R2), (Q2, R2),

(Q2, S2), (R2, S2)

7 P3 Q4 R1 S2 4
(P3, Q4), (P3, S2), (Q4, R1),

(Q4, S2)

8 P1 Q1 R1 S1 4
(P1, Q1), (P1, S1), (Q1, R1),

(Q1, S1)

9 P2 Q1 R1 S2 3 (P2, Q1), (PS, S2), (Q1, S2)

10 P1 Q4 R1 S3 3 (P1, Q4), (P1, S3), (Q4, S3)

11 P3 Q3 R2 S1 3 (P3, Q3), (Q3, R2), (Q3, S1)

12 P2 Q3 R2 S3 2 (P2, Q3), (Q3, S3)

10

Based on the test suite in Table 2.3, the final MCA formula for this interaction

testing is MCA(12, 2, 4, (3, 4, 2, 3)). The number of test cases required to comprise all

input values in at least one test case through 2-way combinatorial testing is 12 test cases

while the number of test cases produced using exhaustive testing is 72 test cases. This

shows combinatorial testing strategy significantly cut down the amount of test cases by

6 times if measured with number of test cases generated using exhaustive testing.

Combinatorial testing using uniform strength interaction does decrease the

number of test cases for black box testing but not all combinations of input values are

going to use in the real-world scenario. Therefore, input-output based relation (IOR)

combinatorial testing has been introduced by Schroeder P.J. et al to overcome this

problem by handling the input combinations that will generate the desired output instead

of using all possible input combinations (Patrick J. Schroeder & Korel, 2000).

Information on the relationships between the input values and output value is taking into

consideration in this approach.

To express IOR in the mathematical way, a combination of input-output

relationship (Rel) and covering array are needed to come out with input-output based

relations covering array. Rel can be written in this form, Rel = {{x1}, {x2}, … ,{xn}}

where x is the combination of inputs that will generate the specific output. Input-output

based relations covering array, IOR (N, C, Rel) is the mathematical form of IOR relation.

N represents the number of test case in the test suite, C is the number of value of each

input parameter (v1
P

1, v2
P

2, … , vn
P

n) where v is the amount of input value and p is the

amount of parameter that has the same amount of v while Rel is the input-output

relationship as stated above (Othman & Zamli, 2011).

To further explain the implementation of IOR in combinatorial testing, the

program P1 in the research of Schroeder P.J. et al has been adopted (Patrick J. Schroeder

& Korel, 2000). Considering the input parameters from Table 2.1, the inputs (P, Q, R, S)

are having three outputs (X, Y, Z). Output X is the combination between inputs P and R,

output Y is the combination between inputs R and S while the output Z is the combination

of inputs Q and R. In this case, the input-output relationship is Rel ({P, R}, {Q, R} {R,

S}}). The input-output based relations covering array for this instance is IOR (N, 32 41

21, Rel) with N is unknown since the IOR combinatorial testing have not taken place yet.

11

Program P1

P

(P1, P2, P3)

X

(P with R)

Q

(Q1, Q2, Q3, Q4)

R

(R1, R2)

S

(S1, S2, S3)

Y

(R with S)

Z

(Q with R)

Figure 2.1 Input-output relationship between P, Q, R, S and X, Y, Z of Program P1

Figure 2.1 shows the illustration of the relationship between inputs and outputs

used in this example. With IOR, only the combinations of input parameters that will result

in corresponding output which are combinations PR, QR and RS will be involved in

interaction between the input parameters.

Table 2.4 List of all possible combinations of input values with IOR

PR QR RS

P1R1 Q1R1 R1S1

P1R2 Q1R2 R1S2

P2R1 Q2R1 R1S3

P2R2 Q2R2 R2S1

P3R1 Q3R1 R2S2

P3R2 Q3R2 R2S3

 Q4R1

 Q4R2

 All combinations of input values that generate the output X, Y and Z are listed in

Table 2.4. The total number of possible combinations has reduced from 53 to 20

comparing to uniform interaction strength combinatorial testing where the interaction

strength is equal to 2.

12

Table 2.5 Test suite generated through IOR

Test Case
Input Parameters

Occurrences Combination Covered
P Q R S

1 P1 Q1 R1 S1 3 (P1, R1), (Q1, R1), (R1, S1)

2 P1 Q1 R2 S1 3 (P1, R2), (Q1, R2), (R2, S1)

3 P2 Q2 R1 S2 3 (P2, R1), (Q2, R1), (R1, S2)

4 P2 Q2 R2 S2 3 (P2, R2), (Q2, R2), (R2, S2)

5 P3 Q3 R1 S3 3 (P3, R1), (Q3, R1), (R1, S3)

6 P3 Q3 R2 S3 3 (P3, R2), (Q3, R2), (R2, S3)

7 P1 Q4 R1 S1 1 (Q4, R1)

8 P1 Q4 R2 S1 1 (Q4, R2)

Based on the test suite generated through IOR, the complete input-output based

relations covering array is IOR (8, 32, 41, 21, Rel) where Rel = ({P, R}, {Q, R} {R, S}}).

From Table 2.5, the extent of the test suite produced for all input parameters in Table 2.1

using IOR strategy (12 is much reduced compared to exhaustive testing (72 test cases)

and uniform interaction strength combinatorial testing strategy (12 test cases). This

happened due to the unwanted combinations of input values have been eliminated from

involving in generating test suite. Hence, this prove that IOR approach is efficient enough

to trim the amount of test cases generated.

2.2 RELATED WORK

Lately, there are many input-outputs based relation combinatorial testing with

different optimization strategies are being studied by researchers. Basically, the

optimization strategies used by IOR combinatorial testing can be classified into two types

which are pure computational approach and nature based approach (AbdulRahman A

Alsewari, Tairan, & Zamli, 2015).

2.2.1 Pure Computational Approach

Pure computational approach is a way that generate the test suite through greedy

and iteratively process. The strength of this process is it searches for possible

combinations in the search space and terminate upon all combinations are covered.

However, the weakness of pure computational approach is too many combinations will

cause the approach to become impractical and the cost will increase as well (Xiang,

Alsewari, & Zamli, 2015). Moreover, computational using greedy strategies often will

13

get trapped in local optima (Wu, Nie, Kuo, Leung, & Colbourn, 2015). There are few

examples of pure computational approach which are Greedy (Cormen, Leiserson, Rivest,

& Stein, 2009), Density (Colbourn, Cohen, & Turban, 2004), TVG (Yu-Wen & Aldiwan,

2000), Union (Patrick J. Schroeder, 2001), ITTDG (Othman & Zamli, 2011), ReqOrder

(Ziyuan, Changhai, & Baowen, 2007), ParaOrder (Z. Y. Wang, B. W. Xu, & C. H. Nie,

2008), AURA (Ong & Zamli, 2011), Automatic Efficient Test Generator (AETG) (D. M.

Cohen, Dalal, Parelius, Patton, & Bellcore, 1996), IPOG (Lei, Kacker, Kuhn, Okun, &

Lawrence, 2007) and Jenny (Jenkins, 2003). Greedy, Density and AURA approaches are

selected and their details are discussed at below.

2.2.1.1 Greedy Algorithm

Greedy algorithm is introduced in the book of Introduction to Algorithms

(Cormen et al., 2009). Basically, Greedy algorithm always selects the choice that are the

best at the moment. Selecting a locally optimal choice is in hope to get the chance that

leads to obtain the globally optimum solution. Not every optimization problem can be

solved by generating the optimum result using Greedy algorithm, but it works well for

most of the problems.

Figure 2.2 Example to show Greedy algorithm's problem

The purpose of this example is to find out the largest path cost of this tree. Based

on Figure 2.2, considering the path cost is the number inside the node, the initial node of

the tree is node 7 and it has two child nodes which are node 3 and node 12. By using

Greedy algorithm, the selection of the next node will be node 12 since the value of node

3 is smaller than node 12. After that, it will continue with the selection of the children of

node 12 which are node 5 and node 6. Once again, node 6 will be selected as the value of

node 6 is bigger than node 5. So, the total path cost using Greedy algorithm is 25. In this

example, the highest path cost should be 109 (the combination of path 7, path 3 and path

14

99). This shows the Greedy algorithm is not always optimum and it will trap in its local

optima and it may not competent to attain the global optimum. Figure 2.3 shows the basic

operation of recursive Greedy algorithm.

Figure 2.3 Pseudocode of recursive Greedy algorithm (Cormen et al., 2009)

Greedy algorithm has previously used by Schroeder, the researcher who proposed

combinatorial testing with IOR feature in one of his study. This research is about the

strategy to generate the expected output of a test suite for automated black box testing (P.

J. Schroeder, Faherty, & Korel, 2002). This research has applied input-output based

relation combinatorial testing to determine particular combinations of inputs which affect

the outputs of program. Furthermore, the study of variable strength combinatorial test

suite using Greedy algorithm is done by Wang and his colleagues to increase the

flexibility of controlling the interaction strength (Z. Wang, B. Xu, & C. Nie, 2008).

2.2.1.2 Density

Density is a concept in optimizing the generation of the best single test case which

proposed by Colbourn, Cohen and Turban in their research in pairwise testing (Colbourn

et al., 2004). There are two types of density which are local density and global density.

Global density is used in test case generation and it is calculated based on local density.

For each coverage requirement rk (1 ≤ k ≤ t), local density can be defined as below.

numk represents the number of combinations that have not been covered yet in set

CombSetk where the values of such aspects are equivalence to rigid values in present test

case. The value of pk is the fixed number of aspects. The maximum available combination

is one if the value of pk is equal to nk. The density is equal to 1 whenever there is any

15

combination that covers an uncovered combination else the density is 0. The larger the

value of local density of each coverage requirement, the more the combinations covered

by the test case. Deriving from the definition above, the global density can be represented

as below.

The global density should be high to ensure the test case generated are capable to

cover uncover combinations as much as possible when generates a test case. Figure 2.4

shows the pseudocode of generating test case using Density concept.

Figure 2.4 Pseudocode of test case generation using concept of Density (Z. Wang et al.,

2008)

Density based algorithm was first applied in the research in interaction testing by

Colbourn and his associates but it was limited only to pairwise testing (Colbourn et al.,

2004). Colbourn and his colleagues are then continue the research by increasing the limit

of interaction strength (R. C. Bryce & Colbourn, 2009). There is another research

conducted by Wang and his colleagues that introduced density based algorithm in

variable strength interaction combinatorial testing (Z. Wang et al., 2008).

16

2.2.1.3 AURA

AURA is a non-deterministic input-output based relationship combinatorial

testing strategy that proposed by Ong and Kamal (Ong & Zamli, 2011). This strategy is

focusing in solving the mapping of symbolic values to actual data manually and the lack

of flexibility of existing test suite generation. Automated input-output mapping is

implemented to reduce the time and cost consumed as well as the mistake that may made

by software testers when they are carrying out the mapping process. Besides, AURA has

managed to increase the optimality of the size of test suite and decrease the time taken

for the test suite generation. Figure 2.5 is the overview of AURA strategy in generating

the test suite for combinatorial testing.

Figure 2.5 Overview of AURA strategy (Ong & Zamli, 2011)

AURA strategy starts with software tester specifies the input in actual data form

into the look-up table for system under test as well as designates the symbolic values of

inputs into AURA strategy. AURA strategy is built based on three algorithm which are

interaction pair generation algorithm, test suite construction algorithm and actual data

mapping algorithm. The first algorithm of AURA strategy is triggered once the symbolic

values are entered in the AURA strategy to bring about all potential interaction pairs. All

generated interaction pairs are then used to form the test suite using test suite construction

algorithm. Lastly, actual data mapping algorithm is applied to come out with the final test

suite that is in the actual data form based on the predefined look-up table. Figure 2.6, 2.7

and 2.8 shows the pseudocode for interaction pair generation algorithm, test suite

construction algorithm and actual data mapping algorithm respectively.

17

Figure 2.6 Pseudocode of interaction pair generation algorithm (Ong & Zamli, 2011)

Figure 2.7 Pseudocode of test suite generation algorithm (Ong & Zamli, 2011)

18

Figure 2.8 Pseudocode of actual data mapping algorithm (Ong & Zamli, 2011)

2.2.1.4 Comparison between pure computational approaches

The maximum interaction strength supported and the presence of input-output

relation feature by each approach are recorded in Table 2.6.

Table 2.6 Comparison between natural based approaches

Approaches Maximum interaction strength support IOR Support

Greedy algorithm

(Z. Wang et al., 2008)
3 Yes

Density algorithm

(R. Bryce & Colbourn,

2007)

4 Yes

AURA

(Ong & Zamli, 2011)
3 Yes

2.2.2 Natural Based Approach

The nature based approach is inspired by the behaviour of natural like such as ant

colony, the gene of the chromosome, swarm of birds and so on. There are many

approaches such as Ant Colony Optimization Algorithm (ACO) (Blum, 2005), Genetic

algorithm (GA) (Holland, 1992), Harmony Search algorithm (HS) (Z. W. Geem & Kim,

19

2001), Simulated Annealing (SA) (M. B. Cohen, Gibbons, Mugridge, & Colbourn, 2003)

and Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995) that are being

implemented in combinatorial testing but only one of them supports IOR feature which

is Ant Colony Optimization algorithm (Ramli et al., 2016). The details of ACO are

explained as below.

2.2.2.1 Ant Colony Optimization (ACO)

Ant Colony optimization algorithm is a strategy which first introduced by Marco

Dorigo and his associates (Blum, 2005). Basically, ACO is inspired by the way on how

a colony of ants seeks for the shortest pathway when they are finding the food sources

from their nest. At first, ants will seek the surrounding in the random manner and they

will leave a trail of chemical pheromone on the ground while moving. Ants will then

determine the road path that with strong pheromone by smelling it. After the ants found

the food source, they will analyse the quality and quantity of the food and carry any of

the food they afford. The ants will leave the pheromone along the road path they go back

to their nest and the concentration of pheromone leave is decided based on quantity and

quality of the food. Other ants will follow the pheromone that leave by the previous ant

to carry the food back to their nest. Once the food is fully collected, the ants will not

continue to leave the pheromone on the same track anymore instead they will start

exploring the new path to get new food. The pheromone on the track will eventually

evaporate. This phenomena is known as stigmergy which favours the ants to discover the

shortest pathway between food source and their nest by communicating indirectly

through pheromone (Blum, 2005). Figure 2.9 shows the algorithm of ACO while the

process of finding the shortest path from their nest to the food source using pheromone

is illustrated in Figure 2.10.

20

Figure 2.9 Pseudocode of Ant Colony Optimization (Blum, 2005)

Figure 2.10 The illustration on how ants find the shortest path between food source and

their nest (Blum, 2005)

There are few advantages of Ant Colony Optimization which are the speed in

finding good solutions and inherit parallelism (Selvi & Umarani, 2010). Moreover, ACO

is capable to select the best edge at the very beginning of the execution of this algorithm

(Ramli et al., 2016). Furthermore, ACO also able to avoid premature convergence as well

Algorithm 1. Ant colony optimization (ACO)

while termination conditions not met do

ScheduleActivities

AntBasedSolutionConstruction() {see Algorithm 2}

PheromoneUpdate()

DaemonActions() {optional}

end ScheduleActivities

end while

Algorithm 2. Procedure AntBasedSolutionConstruction() of Algorithm 1

s = < >

Determine N (s)

while N (s) ≠ ∅ do

c ← ChooseFrom(N (s))

s ← extend s by appending solution component c

Determine N (s)

end while

21

as mutually explore the search space (Liang et al., 2014). Conversely, uncertain time for

convergence is one of the disadvantages of ACO. The probability distribution varies by

iteration and the research is more towards experimental instead of theoretical. In addition,

the sequences of random decisions are dependent as well as the theoretical analysis is

complex (Selvi & Umarani, 2010).

There are several researches have been done on showing the implementation of

Ant Colony Optimization algorithm in combinatorial testing. These include the study of

comparing the efficiency of ACO with simulated annealing and genetic algorithm (Mao,

Yu, Chen, & Chen, 2012) as well as applying ACO in variable interaction strength

combinatorial testing (X. Chen, Gu, Li, & Chen, 2009). ACO has been proposed to be

applied in IOR combinatorial testing in the recent research by Ramli and her associates

(Ramli et al., 2016) but there is lack of result of implementation in the study.

2.2.2.2 Genetic Algorithm

Genetic algorithm (GA) is one of the metaheuristic algorithms that belongs to

evolutionary algorithm that most often used in solving combinatorial optimization

problem. GA was proposed by John Holland back in 1992 (Holland, 1992). This

algorithm possesses the same principle as Darwin’s principle of evolution by applying

the selection of gene in each generation. Initially, a population of chromosomes is

randomly generated. Then, the process of selecting the chromosomes based on the fitness

function is happened and the chromosomes are then recombined by crossover their genes

between the pair of chromosomes to produce offspring. The next generation of population

are born after the combination of chromosomes. The iteration of this process is then

continued and the successive generation of chromosomes are evolved to become better

with the improved fitness function. The iteration terminates when the stopping criteria is

achieved (McCall, 2005). Figure 2.11 shows how the crossover process is happened while

Figure 2.12 is the pseudocode for GA.

22

Figure 2.11 Crossover operation to generate offspring (Elbeltagi, Hegazy, & Grierson,

2005)

Figure 2.12 Pseudocode for Genetic Algorithm (Elbeltagi et al., 2005)

 GA is well adapt in the optimization problems such as the structure of the search

space is irregular and the situation where the search is computationally intractable

(McCall, 2005). Besides, GA has the ability to extract rules which are considered simple

to understand (Shin & Lee, 2002). However, GA has some disadvantages and the most

significant one is the speed of finding the solution using GA is very slow (Abramson &

23

Abela, 1991). In addition, GA tends to get trapped in local optima and the speed

convergence is slow as well as it contain non-explicit memorization of best individuals

(Lam, Raju, M, Ch, & Srivastav, 2012).

Generally, GA has been implemented in solving combinatorial testing

optimization problem such as in the research by Shiba and his associates (Shiba,

Tsuchiya, & Kikuno, 2004a). Srivastava and Kim developed variable strength interaction

combinatorial testing using GA to focus on the parts that are critical by implementing a

more selective approach (Srivastava & Kim, 2009). Furthermore, McCaffrey conducted

a study to identify the effectiveness of GA in pairwise testing (McCaffrey, 2009).

Nevertheless, GA has not yet been applied for the optimization in combinatorial testing

that has IOR feature.

2.2.2.3 Harmony Search Algorithm

Harmony Search (HS) algorithm is a new metaheuristic optimization algorithm

introduced by (Zong Woo Geem, Kim, & Loganathan, 2001) back in 2001. HS algorithm

is inspired by the spontaneity of playing music by an experienced musician. There are

three ways to play a music spontaneously by a skilled musician. The first way is playing

any well-known melody literally from his mind. Playing with the aforementioned melody

with marginally adjusted pitch is the second way while the third way is playing some

random or completely new notes. The ways of playing music instinctively have been

defined into quantitative optimization process by (Zong Woo Geem et al., 2001) which

consists of three main components which are harmony memory (HM), pitch adjustment

and randomization. HS algorithm always search for global optimum based on objective

function by going through iteration.

Harmony Search algorithm starts with initialization of Harmony Memory. The

size of HM is determined by harmony memory size (HMS). HM plays role in containing

the candidates that sorted by best objective values. Next, a new Harmony is improvised

based on the value of Harmony Memory Considering Rate (HMCR) and Pitch

Adjustment Rate (PAR) to enhance the HM. Moreover, replacement of minimum

harmony by new harmony generated in HM takes place when new harmony is better than

the minimum harmony in HM. The process undergoes iteration until the stopping criteria

is achieved. The pseudocode of HS algorithm is shown in Figure 2.13.

24

Figure 2.13 Pseudocode of Harmony Search algorithm (Abdul Rahman, 2012)

 HS algorithm possess a few advantages compared to traditional methods. Firstly,

HS algorithm used simple mathematical operations and randomly selects the control

variables as well as the search process of HS algorithm is run randomly (Khazali &

Kalantar, 2011). However, HS algorithm also has some limitations. Notably, the decision

variables of other harmony vectors that keep in HM often being selected to become the

decision variables of a new harmony. Moreover, taking a place by new harmony vector

in the memory may happens after the fitness test of new harmony vector. These issues

cause the time taken for HS to be converged to the global optimum is affected (Ammar,

Bouaziz, Alimi, & Abraham, 2013).

 There are several researches have been applied Harmony Search algorithm in

combinatorial testing. In 2011, Alsewari and his associates are the first to apply HS

algorithm in t-way interaction test data generation (Abdulrahmn A. Alsewari & Zamli,

2011). Besides, HS algorithm is being implemented in pairwise testing strategy (PHSS)

and PHSS is outperformed existing strategies in term of the size of test suite generated in

the study in (Abdul Rahman, 2012). In addition, utilization of HS algorithm in variable

strength interaction combinatorial testing with constraint support is carried out by (A. R.

A. Alsewari & Zamli, 2012). There is one research regarding t-way testing using HS

algorithm that supports input-output relation feature. However, this research is not yet

published.

25

2.2.2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm was introduced by James Kennedy

and Russell Eberhart back in 1995 (Kennedy & Eberhart, 1995). PSO is a population

based stochastic algorithm in solving optimization problem. This algorithm was inspired

by the act of a flock of birds and a school of fish where they possess the swarming

behaviour in nature. PSO uses particles to make up its own population which will move

in n-dimensional, real-valued search space to get the possible solution for the problem

faced (Vesterstrom & Thomsen, 2004). Each particle has three D-dimensional vectors

which are current position, previous best position as well as the velocity. The current

position represents a problem solution and it will be stored as previous best position if it

is better than any previously found solutions. Velocity is used to determine the step size

and failure to tune the velocity will affects the performance of the algorithm (Poli,

Kennedy, & Blackwell, 2007). The pseudocode of PSO is shown as below.

Figure 2.14 Pseudocode of Particle Swarm Optimization (Poli et al., 2007)

Based on the findings, PSO have been applied in pairwise testing by China

researchers in 2010 (Xiang Chen, Gu, Qi, & Chen, 2010). Other than that, test suite

generation using variable interaction strength also implemented PSO to solve the

combinatorial problem (Ahmed & Zamli, 2011). Still, there is no combinatorial testing

employ IOR feature using PSO.

26

2.2.2.5 Simulated Annealing

Simulated Annealing (SA) is a metaheuristic algorithm which used probabilistic

techniques to estimate the global optimum of a problem. SA is inspired by the effect of

slow cooling process on the molecule of a metallic substance. The cooling of molecules

will make the molecules slowly converge toward optimal rest energy and SA replicates

this phenomena in the algorithm (Stardom, 2001). SA can optimize process cost functions

which has random degree of nonlinearities, discontinuities and stochasticity and it is

proven to have an optimal solution when executed. SA is considered easy to be

implemented compared to other nonlinear optimization algorithms in term of coding

(Ingber, 1993). The concept of SA is similar to hill climbing but it has additional feature

which is probability can be controlled. This feature is to control whether to reduce the

quality of current solution which will prevent from getting stuck in a bad configuration

in the searching process is going on (M. B. Cohen, Gibbons, et al., 2003). The details on

how SA works is shown in the pseudocode below.

Figure 2.15 Pseudocode of Simulated Annealing algorithm (Xambre & Vilarinho, 2003)

Furthermore, there are few researches that related to combinatorial testing using

SA for optimization have been carried out. Cohen and Colbourn used SA to solve the

optimization problem while constructing test suite for interaction testing (M. B. Cohen,

Gibbons, et al., 2003). SA also used to combine with algebraic construction to build

covering arrays for interaction testing that is strength three (M. B. Cohen, Colbourn, &

Ling, 2003). Again, there is no research which used SA algorithm to optimize the

combinatorial problem in combinatorial testing that features IOR.

27

2.2.2.6 Comparison between natural based approaches

Table 2.7 presents the maximum interaction strength support and the availability

of input-output relation of each natural based strategy.

Table 2.7 Comparison between natural based approaches

Approaches
Maximum interaction

strength support
IOR Support

Ant Colony Optimization

(Shiba et al., 2004a)
3 P/S

Genetic algorithm

(Shiba et al., 2004a)
3 No

Harmony Search algorithm

(Abdulrahmn A. Alsewari & Zamli, 2011)
6 N/P

Particle Swarm Optimization

(Ahmed, Zamli, & Lim, 2012)
6 No

Simulated Annealing

(M. B. Cohen, Gibbons, et al., 2003)
3 No

Note:

P/S represents only strategy is proposed

N/P represents not published

2.3 JAYA ALGORITHM

Swarm Intelligence (SI) is one of the pillars under artificial intelligence (AI)

discipline and it became much more well-known over the last decade (Blum & Li, 2008).

The concept of SI depends on the mannerism of social swarm of insects and animals like

ants, birds, bees and so on. The examples of SI optimization method are ant colony

optimization, artificial bee colony and particle swarm optimization. Furthermore,

Evolutionary algorithm (EA) which belongs to another AI discipline that proposed to

discover the near-optimal solutions for the problem faced. The most notably EA

algorithms are Evolution Programming, Genetic Algorithm and Evolution Strategy

(Vesterstrom & Thomsen, 2004).

Both swarm intelligence and evolutionary algorithms are probabilistic algorithm

which need common controlling parameters such as number of generations and

population size as well as each algorithm-specific control parameters (R Rao, 2016). For

instance, Genetic Algorithm uses selection operator, crossover probability and mutation

probability as its own algorithm-specific control parameters. Every parameter in an

28

algorithm must be tuned properly including algorithm-specific control parameters to

ensure the algorithm can perform well. Failure of tuning the algorithm-specific control

parameters will cause the solution being trapped in local optimum or long computational

time needed.

To conquer the necessity of tuning of algorithm-specific control parameters,

teaching-learning-based optimization (TLBO) algorithm is proposed by Rao and his

associates (R. V. Rao, Savsani, & Vakharia, 2011). The advantage of this algorithm is no

algorithm-specific control parameter is needed and it needs only common controlling

parameters which are number of generations and population size to work. However,

TLBO algorithm needs two phases which are teacher and learner phase to function.

Therefore, Rao and his colleagues introduced a simpler algorithm that has only one phase

which is Jaya algorithm (R Rao, 2016).

Jaya algorithm begins with the initialization of population size, number of design

variables, termination criterion and a population of solutions by an objective function.

Next, the iteration of improvement begins with identifying the best and worst solution in

the population based on the function value. After that, the value of each design variable

will be modified using the formula that proposed in Jaya algorithm. At the end of the

iteration, the modified solution will compare with original solution using function value

to determine if the modified solution has improved. If the modified solution is better than

the original solution, the original solution will be replaced by modified solution. The next

iteration will start with the new population of solutions that are improved using modified

solutions. The iteration continues until the termination criterion which is number of

iterations for improvement is achieved. Below shows the flowchart of Jaya Algorithm.

29

Figure 2.16 Flowchart of Jaya Algorithm (R Rao, 2016)

The main purpose of Jaya algorithm is to find the minimum or maximum solution

of an objective function, f(x). There are three variables that are needed in this algorithm

and they are stated as following:

a. Number of iteration (i): The total rounds of improvements

b. Number of design variables (m): The number of parameters in objective function,

j = 1, 2, …, m

c. Number of candidate solutions (n): The size of population, k = 1, 2, …, n

Assume that the best candidate solution (best) has the best value of f(x) while the

worst candidate solution (worst) has the worst value of f(x) in the entire candidate

solutions and Xj,k,i is the value of the jth design variable for kth candidate solution in ith

iteration, then the following equation is fulfilled aforementioned requirements.

30

 r1,j,i and r2,j,i are two randomly generated number for jth design variable in ith

iteration which is in the range of 0 to 1. These random numbers assure the search space

is explored well (RV Rao, More, Taler, & Ocłoń, 2016). Xj,best,i and Xj,worst,i serve as the

value of the design variable j for the best and worst candidates respectively. The presence

of | Xj,k,i | is to make sure the exploration could be done even better (RV Rao et al., 2016).

The tendency of the solution to move closer to the best solution is expressed by r1,j,i

(Xj,best,i - | Xj,k,i |) while r2,j,i (Xj,worst,i - | Xj,k,i |) denotes the tendency of the solution to stay

away from worst solution. X’j,k,i represents the updated value of Xj,k,i and it will only be

accepted if it delivers better function value.

Jaya Algorithm has several advantages over other optimization algorithm as

affirmed by the researchers. Firstly, Jaya algorithm are free from algorithm-specific

parameters which result in less computational effort is needed and the complexity of the

algorithm is decreased (Singh, Prakash, Singh, & Babu, 2017). Moreover, Jaya algorithm

has the ability to avoid the solution from trapping in local optima compare to other

optimization algorithm (Warid, Hizam, Mariun, & Abdul-Wahab, 2016). Additionally,

the ease of resolving discrete optimization problem and convergence to global optimum

value make Jaya algorithm even better than other optimization algorithms (Mishra & Ray,

2016). Furthermore, Jaya algorithm is found out that the speed of convergence to reach

the global solution is faster than TLBO algorithm which indicates the time to compute

will be much shorter (Mishra & Ray, 2016).

Jaya Algorithm is considered as relatively new optimization algorithm as it was

just introduced back in 2016. However, there are a number of researches that adopted

Jaya algorithm in solving the optimization problems. Dimensional optimization of a

micro-channel heat sink is optimized using Jaya algorithm (RV Rao et al., 2016). Besides,

Jaya algorithm also applied in optimizing the coefficients of proportional plus integral

controller and filter parameters of photovoltaic fed distributed static compensator (PV-

DSTAT-COM) (Mishra & Ray, 2016). In addition, Jaya algorithm also used to minimize

the single objective of performance measure of a proportional-integral-derivative (PID)

controller for automatic generation control (AGC) of an interconnected power system

(Singh et al., 2017).

31

Table 2.8 Comparison between Jaya algorithm with existing strategies

Approaches
Maximum interaction

strength support
IOR Support

Greedy algorithm

(Z. Wang et al., 2008)
3 Yes

Density algorithm

(R. C. Bryce & Colbourn, 2009)
3 Yes

AURA

(Ong & Zamli, 2011)
3 Yes

Ant Colony Optimization

(Shiba et al., 2004a)
3 P/S

Genetic algorithm

(Shiba et al., 2004a)
3 No

Harmony Search algorithm

(Abdulrahmn A. Alsewari & Zamli, 2011)
6 N/P

Particle Swarm Optimization

(Ahmed et al., 2012)
6 No

Simulated Annealing

(M. B. Cohen, Gibbons, et al., 2003)
3 No

Jaya algorithm 4 Yes

Note:

P/S represents only strategy is proposed

N/P represents not published

From Table 2.8, although there are so many researches have been done to

overcome combinatorial optimization problem but until now there has nobody

implemented Jaya Algorithm in combinatorial testing for both uniform strength

interaction and IOR. Furthermore, there is lack of population-based strategies which is

fast in getting the solution have applied in combinatorial testing. Hence, this thesis is

going to propose the implementation of Jaya algorithm in input-output based relation

combinatorial testing.

32

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter discusses about the process of input-output based test case generation

using Jaya algorithm. The data set that are going test the efficiency of Jaya algorithm is

based on the previous study published by (AbdulRahman A Alsewari et al., 2015). The

discussion begins with the methodology implemented in this study, hardware and

software requirement, Gantt chart and testing plan for the evaluation of the competence

of Jaya algorithm in input-output based combinatorial testing.

3.2 METHODOLOGY

Research methodology which comprised of five vital phases is employed in this

study. The five essential phases in research methodology start with conduct literature

review on existing study, design the solution for IOR combinatorial testing using Jaya

algorithm, carry out the implementation of the solution designed, test and evaluate the

performance of Jaya algorithm based IOR combinatorial testing, followed by

documenting all of the findings as the last step. The overall flow of the methodology is

shown as in Figure 3.1.

33

Phase 1: Conduct literature review

Phase 2: Design the solution

Phase 3: Implementation of the solution

Phase 4: Test and evaluation

Phase 5: Documentation

Figure 3.1 The flowchart of research methodology

3.2.1 Phase 1: Literature Review

At the very beginning of conducting a research, the exploration did by other

researchers have to be studied first in order to summarize the facts of interested topic.

The literature review starts with the background of combinatorial testing including

uniform interaction strength, variable interaction strength and input-output relation. The

background study is to understand what combinatorial testing is, its types and the

difference between uniform interaction strength and input-output based relation

combinatorial testing. Later, the review of existing combinatorial testing that applied

different optimization strategies is carried out. Based on the review, there are two types

of approaches in solving combinatorial optimization problems which are pure

computational and natural based approaches. Furthermore, Jaya algorithm, one of the

population-based optimization algorithms, is being studied in detail including the

algorithm of Jaya, advantages and disadvantages of Jaya algorithm as well as the

application of Jaya algorithm in solving real world problems. From the revision of current

optimization algorithms, there is still a gap for improvement in combinatorial testing.

Hence, Jaya algorithm is proposed to increase the effectiveness of combinatorial

optimization in software testing.

34

3.2.2 Phase 2: Design the Solution

To realize the input-output based relation combinatorial testing based on Jaya

algorithm, there are five level of actions to be carried out. The five level of actions start

with reading of the input values entered by user, data analyzation and data mapping, input

values combination generation, test case generation and final test suite generation. The

flow of each steps is illustrated in Figure 3.2.

Start

Level 1:
Reading the input
values from user

Level 2:
Analyse the data and execute

data mapping

Level 3:
Generate all possible

combinations of input values

Level 4:
Generate the test cases using

Firefly algorithm

Level 5:
Wrap up the test suite

End

Figure 3.2 The flowchart of the execution of IOR combinatorial testing based on Jaya

algorithm

35

3.2.2.1 Level 1: Reading of input values

The very first step of using IOR combinatorial testing based on Jaya algorithm is

read the input values from text box provided where the inputs include number of

parameters, number of values inside each parameter, parameter name, name of the values,

interaction strength and input-output relationship. After reading the input values, the

process is advanced to next level.

3.2.2.2 Level 2: Data analysis and data mapping

After getting the input values, all information entered by the user will be analysed

thoroughly. The purpose of analysis is to ensure the information user keyed in is in right

format and syntax. Any wrong information inclusive of amiss format and syntax entered

will caused system not able to recognize even more the system will crash. Therefore, a

preventive action is taken to counter the happening of above situation by giving users

feedback message so that they can recheck the problem and make the correction.

Data mapping is carried out right after data analysis. The input values from each

parameter that has been verified during data analysis process will undergo mapping

process with integers. Take the example from Table 2.1, all input values for each

parameter will map with integers starting from 0. The outcome of data mapping is

presented in Table 3.1.

Table 3.1 Result of data mapping using the input values from Table 2.1

Parameters P Q R S

Input values

0 3 7 9

1 4 8 10

2 5 11

 6

By applying data mapping, the time taken to generate all possible combinations

of input values as well as the test case will be reduced due to the size of the input data is

decreased. The size of a string is larger than an integer in normal case. Smaller bytes of

data always process faster than the larger one. Hence, the string values of input data are

being substituted with integers when the processing of data takes place.

36

3.2.2.3 Level 3: Combinations of input values generation

In level 3, the combination of input values is generated to be used in test case

generation. Each input value that belongs to the same parameter and have mapped to

corresponding integer is merged with other parameters’ values to form combinations of

values. There are two types of combinations implemented in this project which are

combinations of input values based on input-output relationship and interaction strength.

The details of IOR and uniform interaction strength combinations is discussed in section

3.2.3.3. Table 2.2 is the example of the combinations of input values between each

parameter that are going to be adopted in generating the test case using Jaya algorithm.

3.2.2.4 Level 4: Test case generation based on Jaya algorithm

After gathering all combinations of input values, the next step is to generate the

test case. It starts with generating a test case by randomly pick one of the input values

from each parameter. The generated test case which will be assessed by determining the

number of combinations of input values that generated in step 3 covered by the test case.

The best and worst test cases in term of coverage in the population will be picked for

modification purpose. Each test case in the population will be improved by applying

modification based on the best and worst test cases. If the test case generated after

employing the modification has better coverage than the previous one, it will then replace

the former test case. After one iteration, the best and worst test cases will be reselected

and the modification is done based on the new best and worst test cases. The process is

iterated until the maximum number of generations is achieved. The best test case which

generated at the end of the iterative process is added into a temporary test suite. The

whole process is keep repeating until all combinations of input values are fully covered.

These series of actions are illustrated as shown in Figure 3.3.

37

Level 3

Check the remaining
combinations of input

values in the list

Randomly generate a test case

Maximum
Coverage?

Add into test suite

Coverage > 0
&

Coverage < max?

List of
combinations is

empty?

No

Yes No

Add the test case into Jaya list

Yes

Maximum
population of Jaya is

achieved?

No

No

Get the best and worst test
case from Jaya population

Coverage A >A?

A replace A in the Jaya
population

Yes

Maximum number of
times for improvement

is achieved?

Select the best test case

Evaluate the coverage of
test case generated

Level 5Yes

No

Modify the current test
case, A using Jaya formula

I < maxJayaPopulation?

I++

Yes

No

Yes

No

Yes

Figure 3.3 The flowchart of test case generation using Jaya algorithm

38

3.2.2.5 Level 5: Finalization of test suite generation

The test cases generated in step 4 that stored in a temporary test suite is not the

final test cases yet. This is because the values that used to represents the real input values

are integers. Therefore, the record of data mapping that collected in step 2 is served to

revert the integers to its corresponding real input values. Later, the final test suite is

generated and it includes the total number of test cases, the input values for each test case,

total number of combinations of input values covered and the number of combinations of

input values covered by each test case.

3.2.2.6 Graphical user interface design

There are four graphical user interface (GUI) design in this system. The first GUI

is for the input of parameters and its values. For the second GUI, it functions to read the

input values from file and generate test case through either uniform interaction strength

or input-output relationships while the third GUI offers test case generation based on

uniform interaction strength which data is from the first GUI. The last GUI serves for the

input-output based relation test case generation using the data obtained in first GUI.

Figure 3.4 GUI for the input of parameters and its values

39

Figure 3.4 shows the first GUI which is the input of parameters and its values. A

parameter can be added by entering the parameter name into the text box provided and

click Add button. The added parameter is shown in the list and it can modify and delete

by clicking the action button. To add the values of each parameter, the parameter in the

list has to be selected first and fill in the value’s name then click Add button. The added

value also can be modified and deleted as well. For all the input of parameters and its

values, it will be shown in the text area. After entering all parameters and its values, select

Finalize Input to display all data input in table form. Furthermore, two options are

available to be chosen to generate the test cases which are through uniform interaction

strength or input-output based relation. Once the type of combinatorial testing is selected,

new window is shown for further action. If the user wants to enter the data through file

reading instead of entering in the provided GUI, select Load From File button to select

the file that wish to read and proceed to the next window as shown in Figure 3.5.

Figure 3.5 GUI of load from file

40

Once the file is selected to be loaded, the user will be redirected to this window

as in Figure 3.5. The input parameters and their corresponding values that stated in the

file will be shown in table form on the top of the window. All the information that needed

in test case generation are displayed in the respective section to allow user to verify

whether the data they input are correct. If they found out there is a mistake in the data

entered, they can modify the data in the file and reload the file through Load New File

button. If everything is set, they may execute the generation of test case through Generate

Test Case button. The Back button can be used by the user to return to previous window.

Figure 3.6 GUI of uniform interaction strength

If uniform interaction strength option is selected in the first GUI, the new window

that pop up is shown in Figure 3.6. First, select the interaction strength to determine how

the combination is. Only two interaction strength are available which are 2, 3 and 4. Then,

enter the population size of test cases that are going to improve, number of improvement

iterations, number of result set that wish to have as well as the result mode. There are two

result mode to be chosen which are normal mode and best mode. Best mode offers user

41

to get the best result set out of all result sets generated while normal mode prints all of

the result set without suggesting the best one. After that, click Generate Test Case button

for test case generation. The test suite will be displayed in the text area provided. To store

the test suite generated, click Save Test Suite button. The selection of Back button will

back to previous window.

Figure 3.7 GUI of input-output based relation

Figure 3.7 shows the design of GUI of input-output based relation combinatorial

testing. It starts with the selection of the desired parameter for combination. The selected

parameter is added into the parameter list before the combination of parameters is

generated. The parameter in parameter list can be removed through Remove button. The

combination of parameter can be generated and saved at the list of combinations through

Generate Combination button. The added combinations can be modified and deleted

through the selection of respective action button. The additional information that needed

to fill in right side of the GUI are same with the third GUI. Test case generation is

happened when Generate Test Case button is clicked and the test suite will be displayed

in the text area. Save Test Suite button functions to save the result of test suite into a text

file while Back button is to go back to the previous window.

42

3.2.3 Phase 3: Implementation of the Solution

This section explains the design of each level in the system in more details. The

pseudocode is used to demonstrate the detail process of each action from Level 1 to 5.

3.2.3.1 Level 1: Reading of input values

There are two parts in reading the data input by the user. The first part is reading

the parameters and their corresponding values. It starts with the reading of parameter

name and display it on the parameter list. To enter the corresponding value for a

parameter, the parameter has to be selected from the parameter list. The entered value

will then be displayed on the value list that belongs to the particular parameter. Then, all

parameters and their respective values are displayed in a table form for ease of reading.

This operation is demonstrated in Figure 3.8.

Figure 3.8 Pseudocode on reading the parameters and their corresponding values

The second part of reading data from user input is to read all necessary

information for test case generation which are test case generation method, population

size, number of improvement iterations, result mode and number of result set. Firstly,

read the test case generation method which is either uniform interaction strength or input-

output relationship. If it is uniform interaction strength, read for the interaction strength.

Else if it is input-output relationships, read for all the parameter combinations. The

process continues with the reading of population size, number of improvement iteration,

result mode and number of result sets as shown in Figure 3.9.

43

Figure 3.9 Pseudocode of reading all necessary information for test case generation

3.2.3.2 Level 2: Data analysis and data mapping

Level 2 begins with the analysis of input data to ensure the data entered is correct

in term of data type, no duplication and no empty input. For the input of parameters, no

duplication is allowed. All text boxes are not allowed to be empty either to ensure there

is no null value is obtained. For any text box that required to enter number, the system

will verify the entered value whether is in integer format or not. If the input values are

not following the aforementioned criteria, an error message will prompt to alert the users

to make the correction. Figure 3.10 is the pseudocode for checking the input data.

Figure 3.10 Pseudocode for data analysis

44

Next, data mapping process is being carried out. Two arraylist are initialized at

the very beginning which serve the purpose of storing the parameters that have paired

with a symbolic integer as well as the input values of each parameter which paired with

symbolic integer and symbolic integer of its corresponding parameter. The mapping

process is initiated by mapping of symbolic integer with parameter. Looping takes place

to go through every parameter and assign the symbolic integer to each parameter. The

input values of each parameter undergo the same process but the only difference is the

symbolic integer of the parameter also includes inside the input values’ arraylist. The

pseudocode of data mapping is shown in Figure 3.11.

Figure 3.11 Pseudocode for data mapping

3.2.3.3 Level 3: Combinations of input values generation

There are two types of combination of input values which are combination based

on uniform interaction strength and input-output based relation. The pseudocode of each

type of combination is shown in Figure 3.12 and 3.13 respectively.

For combination based on uniform strength interaction, the first step is to get the

interaction strength. Next, two arraylist which used to store the combinations of

parameters as well as the input values that are going to be generated are defined. If the

interaction strength is equal to two, the iteration for generating combination between

parameters and combinations between input values will go through twice respectively.

The combinations are obtained through the non-overlapping concatenation between

parameters and input values. The result of combinations is then saved in the arraylist that

45

defined initially. If the entered interaction strength is three, the process is gone through

as stated above with the only difference is the number of loops to generate the

combinations is three times.

Moreover, generation of combination using input-output based relation is

commenced by initializing two arraylist. The first arraylist is used to store the

combination of parameter which is in the symbolic form while second arraylist is a

temporary list for the input values based on selected parameter’s combination. Later, the

number of combinations of parameters is acquired and each parameter in the combination

is converted to symbolic form and added into the first arraylist. Based on the parameters’

combinations in first arraylist, the input values that correspond to the parameter is saved

into the second arraylist. Each of the input values goes through combination by

concatenating with each other without repetition based on the number of parameters in

each combination of parameters. The second arraylist will be cleared once the

combination of input values of selected parameters’ combination is done in order to allow

the next combination of input values to be happened.

46

Figure 3.12 Pseudocode of combination of input values generation for uniform strength

interaction

47

Figure 3.13 Pseudocode of combination of input values generation for input-output

relationship

48

3.2.3.4 Level 4: Test case generation based on Jaya algorithm

After the combinations of input values are generated in Level 3, the process is

continued with test case generation using Jaya algorithm. Firstly, get the boundary values

for the values in each parameter and the arraylist that stores all value combinations. Then,

initialize two arraylist to store the test suite and the test cases that are needed to be

improved. The looping starts by checking whether the population size of test cases that

need to be improved is reaching the maximum population size defined by user. If the size

is not yet reached what user specified, a random test case is generated else proceed with

improvement of the test cases. The generated random test case is then examined and

identify the number of value combinations covered. If it has maximum coverage, the test

case will be added into test suite and the value combinations covered by this test case are

removed from the arraylist that stores all value combinations. However, if the random

test case’s coverage neither maximum nor zero, this test case will be added into the list

that stores all test cases that need to be improved.

Test case improvement using Jaya algorithm begins when the maximum

population size is achieved. The number of improvements is get based on what user

defined and the following process is looping based in the number of improvements.

Initially, get the best and the worst test case from the population. The population

mentioned is the list of all test cases that are needed to be improved. Next, initialize two

random number for the calculation later. Every test case in the population will go through

the improvement using Jaya algorithm. For each value that represents each parameter, it

will be modified using Jaya formula as stated in line 46 in the pseudocode. After the

calculation made, the modified value must be checked using boundary value to prevent

the value key from excessing the permitted range. If the modified value is lower than

lower boundary value, it will be replaced with the lower boundary value while the

modified value that excess higher boundary value is replaced by the higher boundary

value. Later, modified test case will replace unmodified test case if its number of

combinations covered is higher than latter. After the improvements iterate based on the

number of times user defined, the best test case which has the highest coverage will be

selected, added into the test suite and the combinations that covered by this test case are

removed. This whole process is kept on looping until all value combinations are covered.

The pseudocode for this process is shown in Figure 3.14 and Figure 3.15.

49

Figure 3.14 Pseudocode for test case generation using Jaya algorithm (Part 1)

50

Figure 3.15 Pseudocode for test case generation using Jaya algorithm (Part 2)

3.2.3.5 Level 5: Finalization of test case generation

The test suite generated in Level 4 is not the final test suite as the value for each

parameter in the test case is still in symbolic form. Therefore, it must convert back to the

name that user input earlier. Firstly, the input values of each of the test case inside the

test suite will retrieve their corresponding name based on their symbolic value and replace

the symbolic value with the name obtained. Later, the test case with the real input values

will be added into the final test suite. After this, the final test suite and other information

are displayed to the user. Figure 3.16 is the pseudocode for the finalization of test case

generation.

51

Figure 3.16 Pseudocode of finalization of test case generation

3.2.4 Phase 4: Test and Evaluation

In this phase, experiments are conducted to make a comparison between existing

input-output based relation and uniform strength interaction combinatorial testing that

applying different types of approaches with the proposed solution which used Jaya

algorithm in handling the combinatorial optimization.

3.2.4.1 Experiments for input-output based relation combinatorial testing

The existing input-output based relation approaches that are involving in these

experiments are Density (Z. Y. Wang et al., 2008), TVG (Arshem, 2009), ReqOrder

(Ziyuan et al., 2007), ParaOrder (Z. Y. Wang et al., 2008), Union (Patrick J. Schroeder

& Korel, 2000), Greedy (P. J. Schroeder et al., 2002), ITTDG (Othman & Zamli, 2011)

and AURA (Ong & Zamli, 2011). The attribute that utilized in determining the efficiency

of the strategies is the number of test cases generated based on the same scenario. There

are two experiments will be carried out to complete the testing. The aforementioned

combinatorial strategies, system configuration and result of both experiments are adopted

from the study which are in published (AbdulRahman A Alsewari et al., 2015). The first

experiment will be using 10 parameters and each parameter has 3 input values while the

second experiment consists of 3 parameters with 2 input values each, 3 parameters with

3 input values each, 3 parameters with 4 input values each and 1 parameter with 5 input

values each. The parameters are labelled from 0 to 9 for both experiments. There are 60

input-output relationships (R) that defined for both experiments as shown in Table 3.2.

52

Table 3.2 60 input-output relationships (R) that utilized in experiments

 10th relationship 20th relationship 30th relationship

Relationship

(R)

{1, 2, 7, 8} {2, 3, 4, 8} {1, 3, 6, 9}

{0, 1, 2, 9} {2, 3, 5} {2, 4, 7, 8}

{4, 5, 7, 8} {5, 6} {0, 2, 6, 9}

{0, 1, 3, 9} {0, 6, 8} {0, 1, 7, 8}

{0, 3, 8} {8, 9} {0, 3, 7, 9}

{6, 7, 8} {0, 5} {3, 4, 7, 8}

{4, 9} {1, 3, 5, 9} {1, 5, 7 ,9}

{1, 3, 4} {1, 6, 7, 9} {1, 3, 6, 8}

{0, 2, 6, 7} {0, 4} {1, 2, 5}

{4, 6} {0, 2, 3} {3, 4, 5, 7}

40th relationship 50th relationship 60th relationship

{0, 2, 7, 9} {2, 3, 9} {0, 6, 7, 9}

{1, 2, 3} {1, 5, 8} {2, 6, 7, 9}

{1, 2, 6} {1, 3, 5, 7} {2, 6, 8}

{2, 5, 9} {0, 1, 2, 7} {2, 3, 6}

{3, 6, 7} {2, 4, 5, 7} {1, 3, 7, 9}

{1, 2, 4, 7} {1, 4, 5} {2, 3, 7}

{2, 5, 8} {0, 1, 7, 9} {0, 2, 7, 8}

{0, 1, 6, 7} {0, 1, 3, 6} {0, 1, 6, 9}

{3, 5, 8} {1, 4, 8} {1, 3, 7, 8}

{0, 1, 2, 8} {3, 5, 7, 9} {0, 1, 3, 7}

The configuration of first experiment is IOR (N, 310, R) where N is the number of

test case for this configuration while R is the input-output relationships as listed in Table

3.2. 10 parameters that designated from 0 to 9 and each of them consists 3 input values

are going to undergo combinatorial testing for six iterations. The R will be the first 10

relationships from Table 3.2 for iteration 1. For the subsequent iterations, the next 10

relationships will be added into the experiment until all 60 relationships are being tested.

The result of first experiment of existing IOR strategies is listed in Table 3.3.

Table 3.3 The size of test suite of existing IOR strategies using configuration IOR (N,

310, R)

R Density TVG ReqOrder ParaOrder Union Greedy ITTDG AURA

10 86 86 153 105 503 104 81 89

20 95 105 148 103 858 110 94 99

30 116 125 151 117 1599 122 114 132

40 126 135 160 120 2057 134 122 139

50 135 139 169 148 2635 138 131 147

60 144 150 176 142 3257 143 141 158

53

For the second experiment, the configuration is set to be IOR (N, 23 33 43 51, R).

R is the input-output relationships in Table 3.2 while N is the number of test cases. In

second experiment, there will be 3 parameters with 2 input values for each parameter, 3

parameters with 3 input values for each parameter, 3 parameters with 4 input values for

each parameter and 1 parameter with 5 input values for each parameter. The total number

of parameters in this experiment is 10 and each parameter is tagged from 0 to 9. The

experiment will be conducted for six iterations. R will increment in each iteration where

first 10 relationships is evaluated in first iteration and the following relationships are

added in the successive iterations until all relationships are assessed. Table 3.4 shows the

result of current IOR approaches using second experiment configuration.

Table 3.4 The size of test suite of existing IOR strategies using configuration (N, 23 33

43 51, R)

R Density TVG ReqOrder ParaOrder Union Greedy ITTDG AURA

10 144 144 154 144 505 137 144 144

20 160 161 187 161 929 158 160 182

30 165 179 207 179 1861 181 169 200

40 165 181 203 183 2244 183 173 207

50 182 194 251 200 2820 198 183 222

60 197 209 250 204 3587 207 199 230

3.2.4.2 Experiment for uniform interaction strength combinatorial testing

Uniform interaction strength combinatorial testing is widely implemented using

different strategies which including Harmony Search Strategy (HSS), Simulated

Annealing (SA), Genetic Algorithm (GA), Ant Colony Algorithm (ACA), Automatic

Efficient Test Generator (AETG), IPOG, Jenny, TVG and Particle Swarm Test Generator

(PSTG). The result and system configuration of all above strategies are being published

in (Abdulrahmn A. Alsewari & Zamli, 2011). Hence, the configuration of the experiment

is derived from the research above. One experiment with fourteen configurations will be

conducted to evaluate the size of test suite generated.

54

Table 3.5 System configuration for uniform interaction strength experiment

No. Interaction Strength (t) System Configuration

C 1 2 CA (N; 2, 4, 3)

C 2 2 CA (N; 2, 13, 3)

C 3 2 CA (N; 2, 10, 10)

C 4 2 CA (N; 2, 10, 15)

C 5 2 CA (N; 2, 10, 5)

C 6 3 CA (N; 3, 6, 3)

C 7 3 CA (N; 3, 6, 4)

C 8 3 CA (N; 3, 6, 5)

C 9 3 CA (N; 3, 6, 6)

C 10 3 CA (N; 3, 7, 5)

C 11 2 MCA (N; 2, 11, (5, 38, 22)

C 12 2 MCA (N; 2, 20, (7, 6, 5, 46, 38, 23)

C 13 3 MCA (N; 3, 6, (52, 42, 32)

C 14 3 MCA (N; 3, 7, (10, 62, 43, 3)

Table 3.5 is the system configuration for each test in the experiment. CA is the

covering array while MCA is the mixed covering array as discussed in Chapter 2.1. There

are 14 tests that are going to conduct, evaluate and compare the performance with other

aforementioned strategies that applied uniform interaction strength. The result of those

strategies is presented in Table 3.6.

Table 3.6 The test suite size of existing strategies using uniform interaction strength

System

Configuration

HSS SA GA ACA AETG IPOG Jenny TVG PSTG

C 1 9 9 9 9 9 9 10 11 9

C 2 18 16 17 17 17 20 20 19 17

C 3 155 NA 157 159 NA 176 157 208 NA

C 4 341 NA NA NA NA 373 336 473 NA

C 5 43 NA NA NA NA 50 45 51 45

C 6 39 33 33 33 38 53 51 49 42

C 7 70 64 64 64 77 64 112 123 102

C 8 199 152 125 125 194 216 215 234 NA

C 9 336 300 331 330 330 382 373 407 338

C 10 236 201 218 218 218 274 236 271 229

C 11 20 15 15 16 20 19 23 22 NA

C 12 48 42 42 42 44 43 50 51 48

C 13 119 100 108 106 114 111 131 136 NA

C 14 378 360 360 361 377 383 399 414 385

Note: NA represents Not Available

55

After conducting the experiments using Jaya algorithm optimization strategy,

comparison between proposed strategy and the existing IOR as well as uniform

interaction strength strategies can be takes place to identify the effectiveness of suggested

approach in IOR and uniform interaction strength combinatorial testing. The strategy

with the least number of test cases in experiments is considered as the most efficient

approach in handling IOR and uniform interaction strength combinatorial testing. The

discussion of the result obtained is further conferred.

3.2.5 Phase 5: Documentation

Documentation is a continuous process throughout the project to come out with

an entire thesis. During phase 1, all the findings which get from literature review is being

analysed and recorded. The overview and detail design of input-output based relation

combinatorial testing strategy using Jaya algorithm in phase 2 and 3 respectively are filed

in proper way. Moreover, the settings of the experiments and the result of existing

strategies of both experiments are listed for testing purpose. After gathering all

information from each phase, the documentation is then finalized and applied the right

formatting.

3.3 HARDWARE AND SOFTWARE

This section explains the usage of hardware and software in this project. Table

3.7 lists the hardware that will be used while Table 3.8 shows the needed software to

develop the suggested IOR combinatorial testing strategy and document the findings.

Table 3.7 List of needed hardware

Hardware Purpose

Laptop Workstation of this project

Printer Device for printing required documents

56

Table 3.8 List of needed software

Software Purpose

Windows 10 Professional Operating system of the workstation

Microsoft Word 2016 To do all documentations in this project

Microsoft Visio Professional 2016 To draw required figures and flowcharts

Microsoft Project Professional 2016 To construct the Gantt chart

IntelliJ IDEA Community Edition 2018.3 To develop the proposed CTJ system

Notepad ++

To create a text file for the parameters and

its input values for IOR combinatorial

testing

3.4 GANTT CHART

A Gantt chart has been illustrated to show the progress of the project based on the

planning of research methodology. The Gantt chart is attached in Appendix A for

reference.

57

CHAPTER 4

IMPLEMENTATION, RESULT AND DISCUSSION

4.1 INTRODUCTION

This chapter discusses the implementation of CTJ in real environment, the result

of implementation of CTJ and discussion about the result obtained. The implementation

of input-output based combinatorial testing strategy using Jaya algorithm will be

explained thoroughly in the first section. Moreover, section two shows the results of

execution of CTJ and the discussion of CTJ’s performance compared to other existing

strategies.

4.2 IMPLEMENTATION OF CTJ

There are five main steps in generating test suite using CTJ which are reading of

input values, data analysis and data mapping, combinations of input values generation,

test case generation based on Jaya algorithm as well as finalization of test suite

generation. The details of implementation of each step will be explained in the following

subsections.

4.2.1 Level 1: Reading of input values

There are two ways to get the user input in CTJ. The first way is through entering

the data in the provided GUI while the second way is through file reading of the data.

Both ways to get the data required are demonstrated as below.

Initially, the user is needed to enter the input parameters and corresponding values

in the textboxes provided for the first way of reading the inputs. The input parameters

and its values can be modified and deleted when needed. Any modification and deletion

58

of input parameters and corresponding values can be made by selecting the modify and

delete button respectively. Figure 4.1 shows the example of completed input parameters

and its corresponding values.

Figure 4.1 Example of completed input parameters and its corresponding values at the

Home page of CTJ

For reading the input through file reading, it has to be triggered by selecting the

“Load From File” button in the Home page. Then, select the configuration file that would

like to be utilized in the test case generation as shown in Figure 4.2. The data in the file

is displayed at the respective section as in Figure 4.3. If the information entered is

founded to be an error, user can replace current file with a new file by selecting “Load

New File” button.

59

Figure 4.2 File selection for Load From File option

Figure 4.3 The GUI after reading the data from file

60

4.2.2 Level 2: Data analysis and data mapping

Data analysis process is happened when user enters the parameter and its

corresponding values. Any duplications of parameters or input-output relationships are

prohibited. Thus, an error message will pop up if it happened as shown in Figure 4.4.

Figure 4.4 Error message for duplication of value entered

Further, all input parameters and its corresponding values will undergo data

mapping to increase the performance of CTJ. Taking the example from the demonstration

above, the outcome of data mapping is shown in Table 4.1.

Table 4.1 The mapped values for both input parameters and their corresponding values

Input

parameters

Mapped values for

input parameters

Corresponding

values

Mapped values for

corresponding values

CPU 0

Intel 0

AMD 1

Qualcomm 2

GPU 1

Nvidia 3

AMD 4

Asus 5

RAM 2

Kingston 6

Samsung 7

Micron 8

61

4.2.3 Level 3: Combinations of input values generation

Next, user is required to select whether to generate the test cases through uniform

interaction strength or input-output based relation. If uniform interaction strength option

is chosen, user will be redirected to select the interaction strength, population size,

number of improvement iterations, result mode and number of result set that wish to get.

The interaction strengths supported are 2 to 4 and there are two result mode which are

normal and best. Best mode represents user defines the number of result set are generated

and the best out all generated result set will be displayed at the end of the text area while

normal mode is displaying the result without displaying the best result set. The example

of this operation is shown in Figure 4.5.

Figure 4.5 The complete details that have to be filled in before test case generation

through uniform interaction strength

If the user wants to go for input-output based relation, this option must be selected

to redirect to another user interface for entering the details of relationships. The

relationships are generated by selecting the desired parameters from the list of parameters

and added it into the list of all IOR relationships. This process is demonstrated in Figure

4.6.

62

Figure 4.6 The complete details that have to be filled in before test case generation

through input-output relationships

Then, the test suite will be generated once “Generate Test Cases” button is

selected.

4.2.4 Level 4: Test case generation based on Jaya algorithm

Once “Generate Test Cases” button is clicked, the test case generation process

will begin in background. The details of the execution can refer to section 3.2.3.4. The

test suite will be generated when the test case generation is completely done. Figure 4.7

and Figure 4.8 show the example of test suite generated based on the configuration above.

63

Figure 4.7 The test suite generated through ordinary GUI input

Figure 4.8 Test suite generated through Load From File

64

4.2.5 Level 5: Finalization of test suite generation

Reverse data mapping happens once the test cases are completely generated. It

will revert the mapped values that used in data combination and test case generation into

the original string. After that, the complete test suite will be printed on the text area

provided as shown in Figure 4.7 and Figure 4.8.

4.3 EXPERIMENTAL RESULTS AND DISCUSSION

This section is divided into three parts which are parameter tuning of CTJ, two

experiments for IOR and one experiment for uniform strength interaction strength to

evaluate the difference between CTJ with other existing strategy in handling

combinatorial optimization.

4.3.1 Parameter tuning of CTJ

All experiments conducted are using Intel i7-6500U as the CPU with the RAM of

8GB in Windows 10 Professional operating system. There are only two common

controlling parameters involved in CTJ which are population size and number of

iterations. Hence, tuning of parameters setting is performed to ensure the optimal results

and efficiency of CTJ before the experiments are carried out. The tuning process is

executed using one of the configurations from each IOR and uniform interaction strength

experiments in (AbdulRahman A Alsewari et al., 2015) and (Abdulrahmn A. Alsewari &

Zamli, 2011). Three types of parameters settings that stated in Table 4.2 are being

experimented for 10 iterations to figure out which parameters setting will generate the

most optimum and efficient result.

Table 4.2 Parameter Setting

Parameters Setting Population Size Number of Iterations

S1 10 100

S2 50 500

S3 100 1000

65

Table 4.3 Test case size and execution time in 30 input-output relationships

configuration

Parameters Setting
Number of Test Cases Average Execution Time

(seconds) Best Average

S1 136 139.6 63.089

S2 118 122.5 1148.0973

S3 113 116.6 4337.3287

Table 4.4 Test case size and execution time in CA(N; 3, 6, 6) configuration

Parameters Setting
Number of Test Cases Average Execution Time

(seconds) Best Average

S1 387 396.9 215.0552

S2 354 358.8 3270.3555

S3 346 349.3 10784.2423

The first experiment is adopted from (AbdulRahman A Alsewari et al., 2015)

which using 10 parameters with 3 values each and the first 30th input-output relationships

are utilized. From the result of execution in Table 4.3, S1 setting is generated test cases

in the shortest time but it yielded the highest number of test cases generated. S3 has the

best number of generated test cases but it consumed very long time to finish the execution.

If compared to S2, S3 took approximately four times of S2’s time to reduce five test cases

to be generated in the best result. It is impractical to consume such a long time to reduce

small number of test cases. The number of test cases produced in S1 is reduced

significantly compared to S2 which reduced 18 test cases. This result is much more

optimum and acceptable to be used.

The second experiment’s configuration is originated from (Abdulrahmn A.

Alsewari & Zamli, 2011) and the configuration is 6 parameters with 6 values each with

uniform interaction strength of 3. The best and average number of test cases generated as

well as the average execution time are stated in Table 4.4. S1 in this experiment is still

the fastest parameters setting that completed the test case generation. However, the

number of test cases it produced is still undesired compared to S2 and S3 settings. The

time taken for S3 setting to complete the generation of test cases is approximately 3 hours

while S2 only took 55 minutes. The difference of the number of test cases generated

66

between S3 and S2 is just eight test cases. These issues show that it is unrealistic to use

S3 setting in the real environment.

Based on both experiments that are conducted to decide the parameters settings,

S2 setting is selected to be parameters setting for all experiments since it is capable to

generate the optimum number of test cases in a satisfactory time frame.

4.3.2 Experiments for input-output based relation

There are two input-output based relation experiments conducted as mentioned in

section 3.2.4.1. Both experiments adopted the same input-output relationships as stated

in Table 3.2. The results of both experiments are presented in Table 4.5 and Table 4.6

respectively.

The result of first experiment which used IOR (N, 310, R) configuration with the

relationships in Table 3.2 is shown in Table 4.5 and the highlighted number of test cases

represents the most minimum number of test cases produced out of all strategies. Overall,

ITTDG is still outperformed other strategies in term of the size of test cases generated.

However, CTJ is still delivered almost optimum solution if compared to the best result

generated by ITTDG and ParaOrder. The average difference between the best result of

CTJ and other strategies is five test cases only. Besides, the time of execution of CTJ is

considerably fast. For R10, CTJ took only approximately 5 minutes to finish the test case

generation. 7 minutes, 19 minutes, 27 minutes, 33 minutes and 35 minutes are taken by

CTJ to complete the execution of R20, R30, R40, R50 and R60 respectively.

Table 4.6 is the result of execution of experiment two in IOR. The most minimum

number of test cases produced by CTJ in R10 and R20 only vary for 7 test cases if

compared to Greedy algorithm. While R30 to R60, the difference between the best result

of CTJ and Density is not more than 12 test cases. Additionally, the time taken to

complete an execution in experiment two is in the range of 500 to 1000 seconds which

approximately around 8 to 16 minutes only. These show CTJ generates solutions that are

close to optimum.

67

4.3.3 Experiments for uniform interaction strength

One experiment is carried out to test the efficiency of CTJ in generating test case

through uniform interaction strength. There are 14 configurations as mentioned in Table

3.5 are being tested using CTJ and the result of execution is shown in Table 4.7.

Based on the outcome of execution of CTJ, it is observed that most of the

strategies including CTJ has generated the most optimal number of test cases except

Jenny and TVG. For the remaining configurations, SA and GA are dominant in

generating the most optimal number of test cases as they are natural based metaheuristic

algorithms. The number of test cases generated through CTJ is still acceptable in overall

if compared to the size of test suite produced through exhaustive testing. Furthermore,

the results produced by other strategies often go for very high population size and number

of iterations for improvement while the parameters setting of CTJ for these experiments

are only 500 iterations with the population size of 50. Different parameters setting will

affect how well a strategy is performed and hence resulting in different size of test suite

produced.

68

Table 4.5 Test case size and execution time of IOR (N, 310, R) configuration in first IOR experiment

R Density TVG ReqOrder ParaOrder Union Greedy ITTDG AURA

CTJ

Best Average
Average Execution Time

(seconds)

10 86 86 153 105 503 104 81 89 88 90.3 334.6039

20 95 105 148 103 858 110 94 99 100 101.3 444.9273

30 116 125 151 117 1599 122 114 132 118 122.5 1148.0973

40 126 135 160 120 2057 134 122 139 128 130.1 1660.4286

50 135 139 169 148 2635 138 131 147 134 137.8 2006.5269

60 144 150 176 142 3257 143 141 158 145 148.9 2128.8449

Table 4.6 Test case size and execution time of IOR (N, 23, 33, 43, 51, R) configuration in second IOR experiment

R Density TVG ReqOrder ParaOrder Union Greedy ITTDG AURA

CTJ

Best Average
Average Execution Time

(seconds)

10 144 144 154 144 505 137 144 144 144 144.5 509.8875

20 160 161 187 161 929 158 160 182 165 167.1 712.4719

30 165 179 207 179 1861 181 169 200 170 173.2 699.6736

40 165 181 203 183 2244 183 173 207 173 176 748.7497

50 182 194 251 200 2820 198 183 222 191 194.7 842.7382

60 197 209 250 204 3587 207 199 230 209 211.5 987.9181

69

Table 4.7 Test case size and execution time of different configurations in uniform interaction strength experiment

System

Configuration
HSS SA GA ACA AETG IPOG Jenny TVG PSTG

CTJ

Best Average Average Execution Time (seconds)

C1 9 9 9 9 9 9 10 11 9 9 10.7 27.1609

C2 18 16 17 17 17 20 20 19 17 20 20.8 77.2595

C3 155 NA 157 159 NA 176 157 208 NA 182 184 786.1252

C4 341 NA NA NA NA 373 336 473 NA 409 414.8 2198.7327

C5 43 NA NA NA NA 50 45 51 45 46 48.1 172.7624

C6 49 33 33 33 38 53 51 49 42 43 45.6 161.6301

C7 70 64 64 64 77 64 112 123 102 105 108.6 384.8579

C8 199 152 125 125 194 216 215 234 NA 206 209.8 1273.5151

C9 336 300 331 330 330 382 373 407 338 354 358.8 3270.3555

C10 236 201 218 218 218 274 236 271 229 235 239 2152.9612

C11 20 15 15 16 20 19 23 22 NA 22 23 78.6618

C12 48 42 42 42 44 43 50 51 48 50 54 242.4338

C13 119 100 108 106 114 111 131 136 NA 124 127.8 429.332

C14 378 360 360 361 377 383 399 414 385 394 405.2 1969.9214

Note: NA represents Not Available

70

CHAPTER 5

CONCLUSION

5.1 INTRODUCTION

The aim of this thesis to succeed the fulfilment of CTJ which is an input-output

based relation combinatorial testing strategy using Jaya algorithm. The objectives stated

in Chapter 1 has attained to realize the aim.

Firstly, conduct a research on existing input-output based relation combinatorial

testing strategies which is the first objective have successfully done. This shows in the

literature review of Chapter 2 where the introduction of input-output based relation

combinatorial testing, all existing uniform interaction strength and IOR combinatorial

testing strategies as well as the Jaya algorithm are explained thoroughly.

Moreover, the second objective of this thesis which is implement Jaya algorithm

in input-output based relation combinatorial testing has accomplished as well. The

methodology and design of CTJ that includes every step of implementation and testing

are clearly defined in Chapter 3. There is an example of the execution of CTJ is included

in Chapter 4 as well for further understanding the implementation of CTJ.

Furthermore, the evaluation of the performance of CTJ is carried out to realize

the last objective of this thesis. Three experiments that includes the evaluation of CTJ in

term of performance and efficiency in IOR and uniform interaction strength are carried

out to compare with the result of execution of existing combinatorial testing strategies.

Based on the result of execution of CTJ in Chapter 4, CTJ is observed perform well

especially in test case generation through input-output based relation.

71

With the successfulness on achieving each objective for this thesis, the aim of this

thesis is said to be accomplished. In general, CTJ can generate nearly optimal number of

test cases in a considerable time range.

5.2 RESEARCH CONSTRAINTS

There are few constraints that have been found in this research. Firstly, the input

parameters and their corresponding values that utilized in the experiments are not the

parameters and values from the system under test in the real environment. This is because

there is no any real SUT exists that can fulfil all the configuration in both IOR and

uniform interaction strength experiments. Hence, a set of mock data is employed to

conduct the experiments to get the result of execution.

Moreover, the time taken for CTJ in generating test case for the most complex

configuration is found to be long which took around one hour to finish the process. This

will waste the time of the tester just to wait for so long to produce the test suite of a

particular configuration. Furthermore, lack of customization on the output in CTJ affects

the professional software tester to get the specific outcome they desired. Those

customizations include disallow the tester to specify certain interaction between values

from including or excluding in the test case generation. These constraints should be

tackled in the future development of CTJ.

5.3 FUTURE WORKS

From the execution result of CTJ that obtained in Chapter 4, CTJ is found out that

there is room for improvement for CTJ. Basically, Jaya algorithm has to be modified in

order to improve the performance of CTJ and even generate more optimum number of

test cases. The modification may include alteration of the formula of CTJ. In addition,

new features can be introduced in CTJ as well to increase the functionality of CTJ. The

new features that are suitable for CTJ are adding the support of variable interaction

strength, constraints and seeding. Variable interaction strength gives user to set the

interaction strength in a more customized way. Further, constraint is a functionality that

provides user to restrict certain interactions from being included in test case generation

while seeding allows user to define the interaction that must be included in generating

the test cases. With the improvement of Jaya algorithm as well as addition of those extra

features in the future, CTJ can be become even better and easier to use.

72

REFERENCES

Abdul Rahman, A. A. (2012). A harmony search based pairwise sampling strategy for

combinatorial testing. International Journal of the Physical Sciences, 7(7), 1062

- 1072. doi:10.5897/ijps11.1633

Abramson, D., & Abela, J. (1991). A parallel genetic algorithm for solving the school

timetabling problem.

Ahmed, B. S., Sahib, M. A., & Potrus, M. Y. (2014). Generating combinatorial test

cases using Simplified Swarm Optimization (SSO) algorithm for automated

GUI functional testing. Engineering Science and Technology, an International

Journal, 17(4), 218-226. doi:https://doi.org/10.1016/j.jestch.2014.06.001

Ahmed, B. S., & Zamli, K. Z. (2011). A variable strength interaction test suites

generation strategy using Particle Swarm Optimization. Journal of Systems and

Software, 84(12), 2171-2185. doi:https://doi.org/10.1016/j.jss.2011.06.004

Ahmed, B. S., Zamli, K. Z., & Lim, C. P. (2012). Constructing a T-Way Interaction

Test Suite Using the Particle Swarm Optimization Approach. International

Journal of Innovative Computing, Information and Control, 8(1), 431-452.

Alsewari, A. A., Tairan, N. M., & Zamli, K. Z. (2015). Survey on Input Output Relation

based Combination Test Data Generation Strategies. ARPN Journal of

Engineering and Applied Sciences, 10(18), 8427-8430.

Alsewari, A. A., & Zamli, K. Z. (2011). Interaction Test Data Generation Using

Harmony Search Algorithm. Paper presented at the Proceeding of IEEE

Symposium on Industrial Electronics & Applications, Langkawi, Malaysia.

Alsewari, A. R. A., & Zamli, K. Z. (2012). Design and implementation of a harmony-

search-based variable-strength t-way testing strategy with constraints support.

Information and Software Technology, 54(6), 553-568.

Ammar, M., Bouaziz, S., Alimi, A. M., & Abraham, A. (2013, 12-14 Aug. 2013).

Hybrid harmony search algorithm for global optimization. Paper presented at

the 2013 World Congress on Nature and Biologically Inspired Computing.

Arshem, J. (2009). TVG. Retrieved from http://sourceforge.net/projects/tvg

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of

Life Reviews, 2(4), 353-373. doi:https://doi.org/10.1016/j.plrev.2005.10.001

Blum, C., & Li, X. (2008). Swarm intelligence in optimization. In Swarm intelligence

(pp. 43-85): Springer.

Bryce, R., & Colbourn, C. (2007). One-Test-at-a-Time Heuristic Search for Interaction

Test Suites. Paper presented at the Proceedings of the 9th Annual Conference on

Genetic and Evolutionary Computation, London, England.

Bryce, R. C., & Colbourn, C. J. (2009). A Density-Based Greedy Algorithm for Higher

Strength Covering Arrays. Software Testing, Verification & Reliability, 19(1),

37-53. doi:http://dx.doi.org/10.1002/stvr.v19:1

Chen, X., Gu, Q., Li, A., & Chen, D. (2009, 1-3 Dec. 2009). Variable Strength

Interaction Testing with an Ant Colony System Approach. Paper presented at the

2009 16th Asia-Pacific Software Engineering Conference.

Chen, X., Gu, Q., Qi, J., & Chen, D. (2010). Applying particle swarm optimization to

pairwise testing. Paper presented at the Computer Software and Applications

Conference (COMPSAC), 2010 IEEE 34th Annual.

Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C., & Bellcore, N. J. (1996). The

Combinatorial Design Approach to Automatic Test Generation. IEEE software,

13(5), 83-88.

https://doi.org/10.1016/j.jestch.2014.06.001
https://doi.org/10.1016/j.jss.2011.06.004
http://sourceforge.net/projects/tvg
https://doi.org/10.1016/j.plrev.2005.10.001
http://dx.doi.org/10.1002/stvr.v19:1

73

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing. (Doctor of

Philosophy PhD Thesis), University of Auckland, New Zealand.

Cohen, M. B., Colbourn, C. J., & Ling, A. C. H. (2003, 17-20 Nov. 2003). Augmenting

simulated annealing to build interaction test suites. Paper presented at the 14th

International Symposium on Software Reliability Engineering, 2003. ISSRE

2003.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003). Constructing

Test Suites for Interaction Testing. Paper presented at the Proceedings of the

25th International Conference on Software Engineering, Portland, Oregon USA.

Colbourn, C. J., Cohen, M. B., & Turban, R. (2004). A deterministic density algorithm

for pairwise interaction coverage. Paper presented at the IASTED Conf. on

Software Engineering.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms third edition. MIT Press. ISBN 0-262-03384-4. Section, 23, 631-638.

De Vries, S., Vohra, R., Economics, N. U. C. f. M. S. i., & Science, M. (2003).

Combinatorial auctions: A survey. INFORMS Journal on Computing, 15(3),

284-309.

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Paper

presented at the Micro Machine and Human Science, 1995. MHS'95.,

Proceedings of the Sixth International Symposium on.

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-

based optimization algorithms. Advanced Engineering Informatics, 19(1), 43-

53. doi:https://doi.org/10.1016/j.aei.2005.01.004

Geem, Z. W., & Kim, J. H. (2001). A New Heuristic Optimization Algorithm: Harmony

Search. Simulation, 76(2), 60-68.

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A New Heuristic Optimization

Algorithm: Harmony Search. Simulation, 76(2), 60-68.

doi:10.1177/003754970107600201

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence: MIT

press.

Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathematical and

Computer Modelling, 18(11), 29-57. doi:https://doi.org/10.1016/0895-

7177(93)90204-C

Jenkins, B. (2003, February 5 2005). Jenny. Retrieved from

http://burtleburtle.net/bob/math/jenny.html

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Paper presented at

the Proceedings of IEEE International Conference Neural Networks.

Khazali, A. H., & Kalantar, M. (2011). Optimal reactive power dispatch based on

harmony search algorithm. International Journal of Electrical Power & Energy

Systems, 33(3), 684-692. doi:https://doi.org/10.1016/j.ijepes.2010.11.018

Kuhn, D. R., Wallace, D. R., & Gallo, A. M. (2004). Software fault interactions and

implications for software testing. IEEE Transactions on Software Engineering,

30(6), 418-421. doi:10.1109/TSE.2004.24

Lam, S. S. B., Raju, M. L. H. P., M, U. K., Ch, S., & Srivastav, P. R. (2012).

Automated Generation of Independent Paths and Test Suite Optimization Using

Artificial Bee Colony. Procedia Engineering, 30, 191-200.

doi:https://doi.org/10.1016/j.proeng.2012.01.851

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). IPOG: A General

Strategy for T-Way Software Testing. Paper presented at the Proceedings of the

https://doi.org/10.1016/j.aei.2005.01.004
https://doi.org/10.1016/0895-7177(93)90204-C
https://doi.org/10.1016/0895-7177(93)90204-C
http://burtleburtle.net/bob/math/jenny.html
https://doi.org/10.1016/j.ijepes.2010.11.018
https://doi.org/10.1016/j.proeng.2012.01.851

74

14th Annual IEEE International Conference and Workshops on the Engineering

of Computer-Based Systems, Tucson, AZ U.S.A.

Liang, X., Guo, S., Huang, M., & Jiao, X. (2014). Combinatorial Test Case Suite

Generation Based on Differential Evolution Algorithm. JSW, 9(6), 1479-1484.

Mao, C., Yu, X., Chen, J., & Chen, J. (2012, 27-29 Aug. 2012). Generating Test Data

for Structural Testing Based on Ant Colony Optimization. Paper presented at the

2012 12th International Conference on Quality Software.

McCaffrey, J. D. (2009, 20-24 July 2009). Generation of Pairwise Test Sets Using a

Genetic Algorithm. Paper presented at the Proceedings of the 2009 33rd Annual

IEEE International Computer Software and Applications Conference.

McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of

Computational and Applied Mathematics, 184(1), 205-222.

doi:https://doi.org/10.1016/j.cam.2004.07.034

Mishra, S., & Ray, P. K. (2016). Power quality improvement using photovoltaic fed

DSTATCOM based on JAYA optimization. IEEE Transactions on Sustainable

Energy, 7(4), 1672-1680.

Ong, H. Y., & Zamli, K. Z. (2011). Development of Interaction Test Suite Generation

Strategy with Input-Output Mapping Supports. Scientific Research and Essays,

6(16), 3418-3430. doi:Available online at

http://www.academicjournals.org/SRE

Othman, R. R., & Zamli, K. Z. (2011). ITTDG: Integrated T-way Test Data Generation

Strategy for Interaction Testing. Scientific Research and Essays, 6(17), 3638-

3648. doi:Available online at http://www.academicjournals.org/SRE

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm

intelligence, 1(1), 33-57.

Ramli, N., Othman, R. R., & Ali, M. S. A. R. (2016, 11-12 Aug. 2016). Optimizing

combinatorial input-output based relations testing using Ant Colony algorithm.

Paper presented at the 2016 3rd International Conference on Electronic Design

(ICED).

Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained

and unconstrained optimization problems. International Journal of Industrial

Engineering Computations, 7(1), 19-34.

Rao, R., More, K., Taler, J., & Ocłoń, P. (2016). Dimensional optimization of a micro-

channel heat sink using Jaya algorithm. Applied Thermal Engineering, 103, 572-

582.

Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based

optimization: a novel method for constrained mechanical design optimization

problems. Computer-Aided Design, 43(3), 303-315.

Schroeder, P. J. (2001). Black-Box Test Reduction Using Input-Output Analysis. (Ph.D.

Ph.D.), Illinois Institute of Technology.,

Schroeder, P. J., Faherty, P., & Korel, B. (2002, 2002). Generating expected results for

automated black-box testing. Paper presented at the Proceedings 17th IEEE

International Conference on Automated Software Engineering.

Schroeder, P. J., & Korel, B. (2000). Black-box test reduction using input-output

analysis. SIGSOFT Softw. Eng. Notes, 25(5), 173-177.

doi:http://doi.acm.org/10.1145/347636.349042

Selvi, V., & Umarani, D. R. (2010). Comparative analysis of ant colony and particle

swarm optimization techniques. International Journal of Computer Applications

(0975–8887), 5(4).

https://doi.org/10.1016/j.cam.2004.07.034
http://www.academicjournals.org/SRE
http://www.academicjournals.org/SRE
http://doi.acm.org/10.1145/347636.349042

75

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004a, 28-30 Sept. 2004). Using Artificial Life

Techniques to Generate Test Cases for Combinatorial Testing. Paper presented

at the Proceedings of the 28th Annual International Computer Software and

Applications Conference.

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004b, 28-30 Sept. 2004). Using artificial life

techniques to generate test cases for combinatorial testing. Paper presented at

the Proceedings of the 28th Annual International Computer Software and

Applications Conference, 2004. COMPSAC 2004.

Shin, K.-S., & Lee, Y.-J. (2002). A genetic algorithm application in bankruptcy

prediction modeling. Expert Systems with Applications, 23(3), 321-328.

doi:https://doi.org/10.1016/S0957-4174(02)00051-9

Singh, S. P., Prakash, T., Singh, V., & Babu, M. G. (2017). Analytic hierarchy process

based automatic generation control of multi-area interconnected power system

using Jaya algorithm. Engineering Applications of Artificial Intelligence, 60, 35-

44.

Srivastava, P. R., & Kim, T.-h. (2009). Application of genetic algorithm in software

testing. International Journal of software Engineering and its Applications,

3(4), 87-96.

Stardom, J. (2001). Metaheuristics and the search for covering and packing arrays:

Simon Fraser University.

Tricentis. (2018). Software Fail Watch: 5th Edition. Retrieved from

https://www.tricentis.com/wp-content/uploads/2018/02/20180207_Software-

Fails-Watch.pdf

Vesterstrom, J., & Thomsen, R. (2004). A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems. Paper presented at the IEEE Congress on Evolutionary

Computation.

Wang, Z., Xu, B., & Nie, C. (2008, 12-13 Aug. 2008). Greedy Heuristic Algorithms to

Generate Variable Strength Combinatorial Test Suite. Paper presented at the

2008 The Eighth International Conference on Quality Software.

Wang, Z. Y., Xu, B. W., & Nie, C. H. (2008). Greedy Heuristic Algorithms to Generate

Variable Strength Combinatorial Test Suite. Paper presented at the Proceedings

of the 8th International Conference on Quality Software.

Warid, W., Hizam, H., Mariun, N., & Abdul-Wahab, N. I. (2016). Optimal power flow

using the Jaya algorithm. Energies, 9(9), 678.

Wu, H., Nie, C., Kuo, F. C., Leung, H., & Colbourn, C. J. (2015). A Discrete Particle

Swarm Optimization for Covering Array Generation. IEEE Transactions on

Evolutionary Computation, 19(4), 575-591. doi:10.1109/TEVC.2014.2362532

Xambre, A. R., & Vilarinho, P. M. (2003). A simulated annealing approach for

manufacturing cell formation with multiple identical machines. European

journal of operational research, 151(2), 434-446.

Xiang, L. Y., Alsewari, A. A., & Zamli, K. Z. (2015). Pairwise test suite generator tool

based on harmony search algorithm (HS-PTSGT). International Journal on

Artificial Intelligence, 2.

Yu-Wen, T., & Aldiwan, W. S. (2000). Automating Test Case Generation for the New

Generation Mission Software System. Paper presented at the Proceedings of the

IEEE Aerospace Conference, Big Sky, MT, USA.

Ziyuan, W., Changhai, N., & Baowen, X. (2007). Generating combinatorial test suite

for interaction relationship. Paper presented at the Proceeding of the 4th

https://doi.org/10.1016/S0957-4174(02)00051-9
https://www.tricentis.com/wp-content/uploads/2018/02/20180207_Software-Fails-Watch.pdf
https://www.tricentis.com/wp-content/uploads/2018/02/20180207_Software-Fails-Watch.pdf

76

international workshop on Software quality assurance: in conjunction with the

6th ESEC/FSE joint meeting, Dubrovnik, Croatia.

77

APPENDIX A

GANTT CHART

