Man-Made Lake of Taman Pertanian, Kuantan: The Valuation of Water Quality and Nutrient Removal by Using Hydrilla Verticillata Sp. and Myriophyllum Aquaticum Sp. as Submerged Plant Species

Muhammad Haziq Jamil¹, Farah Amalina Ishak¹, Abdul Syukor Abd Razak¹, Siti Zafirah Zainuddin¹, Md. Nurul Islam Siddique²

¹Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia.
²Faculty of Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia.

Abstract

Polluted water caused by the impact of eutrophication process known as essential negative impacts by the impedance of cyanobacterial species towards the spread of biomass in a freshwater biological system. Phytoremediation is a built utilization of green plants in order the evacuate natural contaminants. The goal of study was to assess the chosen submerged plant species towards supplement expulsion coming from treated lake water in execution light and capacities. The types of submerged plant species used includes Hydrilla Verticillata Sp. (Esthwaite Waterweed) and Myriophyllum Aquaticum Sp. (Parrot’s Feathers) which is to evacuate contaminants in water utilizing phytoremediation process. The study was conducted seven times whereby time gap for every study was seven days. A total of 7 parameters includes Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), Suspended Solid (SS), turbidity, pH, and Nitrite as for water quality evaluation. The comparison on the effectiveness of submerged plant species to evacuate and remediate contaminant substances shown Hydrilla Verticillata Sp. as the best plant in removing the contaminant based on the percentage of contaminant removal BOD = 66.72%; COD = 77.78%; TSS = 55.55% and Turbidity = 0.57%. In conclusion, there are significant changes before and after treatment from both plants.

© 2018 Elsevier Ltd. All rights reserved.

Selection and peer-review under responsibility of the scientific committee of the International Conference on Chemical Sciences and Engineering: Advance and New Materials, ICCSE 2018.

Keywords: artificial lake, phytoremediation, nutrient removal, water resources, cleaner production, bio-research technology

* Corresponding author. Tel.: +6 016 921 1143;
E-mail address: syukor@ump.edu.my
Acknowledgements

The authors are appreciative to Universiti Malaysia Pahang (UMP), the Faculty of Civil Engineering and Earth Resources (FKASA) and Taman Pertanian Jubli Perak Sultan Haji Ahmad Shah Kuantan (TPSAS) for their support. This a contemporary investigation was made conceivable by a given from the, UMP Post Graduate Research Grant Scheme (PGRS) Vote No: PGRS190317

References

18. QIAN Jin, WANG Chao, WANG Peifang, HOU Jun, Research progresses in purification mechanism and fitting width of riparian buter strip. Advances in water science, 20(1),2009, p.139-145 Daasad