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Abstract—In this paper, this research introduces low-power 

radio frequency identification (RFID) using analog circuit 

techniques for passive sensors.  As part of Internet of Things 

(IoT) transformation, RFID is widely used. In the application 

where power supply is limited, power consumption is always a 

remarkable criterion as analog circuits and RF are the common 

power demanding parts in the system. The proposed design for 

the optimized rectifier circuit, low-power analog to digital 

converter (ADC)/resistance to digital converter (RDC) circuit 

and the high efficiency regulator circuit are focused. In the 

design of energy harvesting rectifier circuit, the use of zero-

threshold negative channel metal oxide semiconductor (NMOS)s 

in 18-stage rectifier circuit is improved. The high efficiency 

regulator circuit is added to work directly with rectifier circuit. 

When the energy accumulation in the charge bank that is 

supplied by rectifier circuit is enough, only then the regulator 

circuit start to produce constant voltage. To reduce the power 

usage of the regulator circuit, the regulator circuit avoids the use 

of amplifiers. In addition, a low-power ADC/RDC circuit is 

introduced to achieve lower power consumption by conversion 

scheme and novel sampling. This will minimize the total 

capacitance that is used by capacitance sensor (CS) array of 

ADC/RDC circuit by 50%. The RFID system circuit blocks on 

passive sensor are designed and optimized using analog circuit 

techniques. The demands for low-power consumption of RFID 

passive sensor is well examined. The validity of the proposed 

design is showed by both hardware measurement and 

simulation results. 

Index Terms—RFID system; Analog circuit techniques; 

passive sensor; IoT; low-power rectifier circuit; high efficiency 

regulator circuit; ADC/RDC circuit. 

 

I. INTRODUCTION 

 

RFID is the wireless use of electromagnetic fields to 

transfer data in the purposes of tracking and automatically 

identifying tags attached to the objects. RFID tag and reader 

are the main components in RFID system. Tags have unique 

identification numbers in each of them and will attached to 

the objects meanwhile reader in contrast will executes the tag 

interrogation process to clarify an object by releasing wireless 

RF signals to interpret the identification (ID) of the equipped 

tags. 

Due to its relatively small in sizes, low price and power 

consumption in general, RFID widely used in the era of IoT 

nowadays. RFID tags can be either active or passive. The 

latter doesn’t have internal power supply meanwhile the 

former supplies its own energy. In passive tag, since not 

having its own power supply and limited in the first place, 

low power consumption is constant requirement. For active 

tag, low power consumption will increase longevity and also 

decrease in size of battery. 

 

II. RELATED WORK IN LOW-POWER ANALOG CIRCUIT 

DESIGN 

 

One disadvantage of the active RFID systems is the 

accurate synchronization requirement between the reader and 

tags. Tags are put to sleep mode most of the times in this 

study, in which all circuitry of tags are turned off. One tag is 

only activated by the reader command in the small fraction of 

one reading cycle resulting tag is basically inactive for most 

portion of the time. 

Similar studies on power consumption were conducted in 

[1]-[4]. These studies have used different approaches and 

equipment. In this paper, we optimize the complexity of 

RFID system by improving its analog circuit designs. 

As mentioned above, RFID system becomes more and 

more demanding in terms of long operating cycle, size, cost 

and power especially. Analog circuits such as rectifier circuit, 

analog to digital converter (ADC)/resistance to digital 

converter (RDC) and regulator circuits are normally take in 

most of the power. To address the challenge of the analog 

circuit high usage of power, different method of circuit 

designs had been proposed in [5], [6] and [7].  

Figure 1 shows the design of low-power RFID system 

circuit which includes control logic, memory, modulator, 

demodulator and voltage multiplier (rectifier). Although the 

design is quite good in reducing the cost of the tag by having 

no external components needed with the exception of the 

antenna and also the tag information can be read effortlessly 

by the integration of memory in the design, the utilization of 

this RFID tag is limited because there is no sensor integrated 

in the tag [5]. This problem will make it limited and cannot 

be used in application of information collection. 

 
Figure 1: RFID tag proposed in [5] 
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In [8], voltage regulator of rated 300nA current is proposed. 

The circuits are capable of using sensor in low-power design 

in RFID system due to highly improved circuits, these circuits 

are complex in structures. On top of that, it will make the 

circuits difficult to stabilize because of the nature of passive 

RFID sensors. 

For the related work for ADC/RDC circuit, Figure 2 shows 

the proposed tag RFID design taken form [7]. The recovered 

clock form input wireless signal is acted as counter’s 

reference in order to convert the analog code to the digital 

code. This process is based on RDC method of converting 

from analog code to digital code. It has the advantage of more 

flexibility of the tag if compared to method in [5]. However, 

RDC cannot be directly be measured the input from the 

sensors as RDC only capable of measuring the voltage level. 

To convert input from the sensor to the voltage level, biasing 

circuit is needed. Unfortunately, integration of biasing circuit 

in passive RFID tag is complicated due to the limited 

resolution of RDC that using recovered clock as reference. As 

was reported in [9], only 5-bits resolution is obtained from 

the circuit. 

  
Figure 2: RFID tag proposed in [7] 

 

This creates motivation for research in designing and 

optimizing low power for the above circuits. 
 

III. DESIGN OF LOW-POWER ANALOG CIRCUIT FOR RFID 

TAG 

 

A. Rectifier Design  

RFID circuit can be improved in term of low-power 

capability by designing the rectifier. RFID can be categorized 

as passive and active. The difference of passive and active is 

passive did not need external power supply to be functioned 

but active need a power supply to be functioned. As passive 

RFID don’t have its own power source, it receives energy 

from the electromagnetic (EM) field.  

Coupling technique indicates that passive RFID can be 

grouped as two categories which are far-field RFID and near-

field RFID. According to Faraday’s law, most near-field 

RFID count on the magnetic field through inductive coupling 

to the coil in the tag. Small current is induced from the 

magnetic field around it that is produced by flow of the 

current through the coil’s reader. Limitation for near-filed 

passive RFID application is due to its operation range that is 

normally less than 1m only. In compassion to near-field 

passive RFID, far-field passive RFID usually function in 

long-range, In the range of 5m to 20m. This is due to it is 

usually operate in ultra-high frequency (UHF) band in which 

lies on in between 850 megahertz (MHz) to 960 MHz. 

Operating at ultra-high frequency gives a far-field passive 

RFID tag a benefit of smaller antenna. Impedance 

mismatching between the circuit and the antenna had resulted 

some of the incident energy of the RFID’s tag antenna is 

reflected back. Backscattering technique is called when the 

value reflected energy incident can differ according to 

mismatch on the antenna. Consequently, the cost of assembly 

and fabrication can be lowered. In addition of using 

nRF24L01 RF transceiver that already small size and low 

cost, far-field passive RFID is more acceptable for the 

proposed RFID system. 

To regulate the power input, based on the coupling 

principle of far field passive RFID, the peak voltage on the 

antenna of the tag, 𝑣s,peak be represented by [9]: 

  
  

pRP ANTapeaks  22.  (1) 

  

Firstly, it shows that 𝜐𝑠.𝑝𝑒𝑎𝑘  is controlled by the available 

power in which connected to the power sent out by the reader, 

the distance and the size of the antenna. 𝑅𝐴𝑁𝑇  is the resistance 

of the antenna. 𝑝 is the polarization mismatch. Pₐ indicates 

the power obtained by the antenna of RFID tag. Polarization 

mismatch often is the reason of the limitation of the antenna 

resistance. The value of the antenna’s resistance is normally 

50Ω or 75Ω. 𝜐𝑠.𝑝𝑒𝑎𝑘 is very small in value so it cannot be used 

to give power supply to the other circuits. Type of voltage of 

𝜐𝑠.𝑝𝑒𝑎𝑘 as AC voltage also added to the reason of it cannot be 

used as power supply. In order to give enough power to give 

power supply to the other circuits, the voltage rectifier is 

required in passive RFID tag to convert AC voltage to DC 

voltage. 

B. Regulator Design  

The proposed regulator circuit is shown in Figure 3. The 

regulator in the RFID is responsible for the power supply for 

circuit. The rectifier as the current source acts as an input, 𝐼𝑖𝑛 

charging the capacitance tank, 𝐶𝑡𝑎𝑛𝑘. At the top of 𝐶𝑡𝑎𝑛𝑘, 𝑉𝐷𝐶 

acts as the power supply of the regulator circuit. There is little 

charge stored in the capacitance tank, 𝐶𝑡𝑎𝑛𝑘 and 𝑉𝐷𝐶  is low at 

the beginning. At the same time, 𝑉𝐵, the voltage across the 

capacitor 𝐶2, is low and the transistors 𝑀2 and 𝑀3 are off and 

thus resulting the output of 𝐼𝑁𝑉3 is logic ”1”. This condition 

will closes switch 𝑆1 in order to charge capacitor 𝐶1 via 𝑀3. 

𝑉𝐷𝐶 will increase slowly when the rectifier start to charge the 

capacitor tank, 𝐶𝑡𝑎𝑛𝑘. To disconnect the regulator load circuit 

the source terminal, 𝑀4, switch 𝑆2 is opened. Capacitor 𝐶2 

will start to charge and Transistor 𝑀1 and 𝑀2 will to turn on 

when the value of 𝑉𝐷𝐶 is increase to the voltage value of two 

times of 𝑉𝑡, in which where 𝑉𝑡 is the threshold voltage. 

The proposed regulator design does not need complex 

circuits such as operation amplifier, loop compensation, 

voltage reference and unit-gain filter that are used by past 

designs in [10] and [11]. Consequently, the proposed 

regulator circuit is very simple and systematic structure. In 

addition, after the regulator output is enabled, the proposed 
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circuit has almost zero current dissipation. Even though there 

are leakage in current before the regulator output is enabled, 

the amount is irrelevant due to inverters are made up of 

transistors with very low ratios. 

 

 
Figure 3: Low-power regulator design 

 

C. Analog to Digital Converter (ADC)/Resistance to 

Digital Converter (RDC) Design 

The single-ended Successive Approximation Register 

(SAR) Analog to Digital Converter (ADC) is quite important 

for sensor measurement especially in wireless sensor due to 

differential signals is difficult for sensor to generate. 

However, the conventional single-ended SAR ADC require 

all of the capacitor array to sample the voltage. So, strong 

energy is needed to power the capacitor array thus will 

consume high power in general. 

Figure 4 shows the block diagram of the traditional SAR 

ADC. It has SAR logic, comparator, and capacitor array. The 

figure also indicates that 𝐶𝑃 is the parasitic capacitance of the 

top plate of the capacitor array and 𝑉𝐶𝑀 is the ground signal 

level. 

 
Figure 4: Block diagram of the traditional SAR ADC circuit 

 

Switch 𝑆1is closed meanwhile switch 𝑆2is connected to 

𝑉𝑖𝑛in which acts as ADC input voltage. As mentioned before, 

all of the capacitor arrays are used to sample the input voltage. 

Initially in the conversion phase, the switches from 𝐷𝑛−1 to 

𝐷0 are connected to the ground terminals. The Switch 𝑆1 is 

open meanwhile switch 𝑆2 is connected to the reference 

voltage, 𝑉𝑟𝑒𝑓 .  The switching process from 𝐷𝑛−1 to 𝑉𝑟𝑒𝑓  

indicates the beginning of the conversion cycle. After that, 

the voltage at the top the top of capacitor plate, 𝑉𝑋 will 

becomes to  𝑉𝐶𝑀 + 0.5∙𝑉𝑟𝑒𝑓-𝑉𝑖𝑛. The switch 𝐷𝑛−1 stays 

connected to 𝑉𝑟𝑒𝑓  if and only if  all the n-1 conversion cycle 

is done and the comparator output is 0. At the end of the 

conversion phase, the total capacitance, 𝐶𝑒𝑞  connected to 𝑉𝑟𝑒𝑓 

is: 

𝐶𝑒𝑞 = 𝐷𝑜𝑢𝑡 ∙ 𝐶 (2) 

where:   𝐶𝑒𝑞   = Total capacitance 

 𝐷𝑜𝑢𝑡 = Digital output code of ADC 

 

In the meantime, take into account that by disregard the 

difference less than 𝑉𝐿𝑆𝐵 of the ADC, 𝑉𝐶𝑀 is the same value 

as 𝑉𝑋. So, we can conclude: 

(𝑉𝐶𝑀 − 𝑉𝑖𝑛) ∙ 𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑉𝐶𝑀 ∙ 𝐶𝑃

= (𝑉𝑋 − 𝑉𝑟𝑒𝑓) ∙ 𝐶𝑒𝑞 + 𝑉𝑋 ∙ (𝐶𝑡𝑜𝑡𝑎𝑙

− 𝐶𝑒𝑞 + 𝐶𝑃) 
(3) 

Where 𝐶𝑡𝑜𝑡𝑎𝑙 is the total capacitance of the capacitor array 

and substitute its value by 2𝑛 ∙ 𝐶. Similarly, both 𝐶𝑒𝑞 = 𝐷𝑜𝑢𝑡 

and 𝑉𝑋 = 𝑉𝐶𝑀 is substituted respectively into equation in (3), 

we get: 

 

𝐷𝑜𝑢𝑡 = 2𝑛
𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
 (4) 

 

The equation demonstrates that the parasitic capacitance 𝐶𝑃 

is not a factor in the conversion accuracy of the traditional 

SAR ADC. Moreover, it also indicates that ADC output is the 

perfect representation of the analog input. 

The proposed method of ADC circuit design is to minimize 

the effect of parasitic capacitance, 𝐶𝑃. During sampling 

phase, the intention is to charge 𝐶𝑃 to the ADC input level. 

This is basis of the proposed method. As mentioned 

beforehand, 𝑉𝑖𝑛 is estimated to the voltage of the top plate of 

CS capacitors at the end of the conversion cycle phase. 

Consequently, both charge stored and the voltage in 𝐶𝑃 are 

remained at a constant value as well as its effect is reduced.  

 
Figure 5: Block diagram of the proposed SAR ADC circuit 

 

In Figure 5, the propose circuit is shown. Comparison 

between the propose circuit and SAR ADC circuit clearly 

with added of three switches, S3, S4, and S5 respectively. The 

switches S1, S2, and S3 are closed meanwhile S5 acts as 

connector to ADC input 𝑉𝑖𝑛(sampled by 𝐶𝑆) to the bottom 

plate of the capacitor. ADC input 𝑉𝑖𝑛 at the same time is also 

charged by 𝐶𝑃. It is important to mention that the rest of the 

scaling capacitors C, C, 2C, 2𝑛−2𝐶, and 2𝑛−1𝐶 are uncharged 

due to their terminals are connected to the 𝑉𝑖𝑛. The switches 

S1, S2, and S3 are open; switch S4 is closed during the 

conversion phase. During the same phase, last switch S5 is 

moved to node B in which directly connected to the ground. 

From that point on, all the normal charge scaling process are 

accomplished to produce ADC digital outputs. 

Same to previous remarks, we use 𝑉𝑟𝑒𝑓  as indication to the 

capacitance tied to 𝐶𝑒𝑞  at the end of conversion cycle phase. 

Therefore, we get: 
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𝑉𝑖𝑛 ∙ 𝐶𝑃 = (𝑉𝑋 − 𝑉𝑟𝑒𝑓) ∙ 𝐶𝑒𝑞 + 𝑉𝑋 ∙ (𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑒𝑞 + 𝐶𝑃) (5) 

Substituting 𝑉𝑋 = 𝑉𝑖𝑛, 𝐶𝑡𝑜𝑡𝑎𝑙 = 2𝑛𝐶, and 𝐶𝑒𝑞 = 𝐷𝑜𝑢𝑡 ∙ 𝐶 

respectively into the above equation, we obtain: 

𝐷𝑜𝑢𝑡 = 2𝑛
𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
 (6) 

 

Based on a constant 𝐶𝑃, the similarity of the equation of (4) 

and (6) clearly show that 𝐶𝑃 is not a factor in proposed circuit’s 

ADC conversion results. Across the capacitor, the capacitor’s 

value differs with the voltage. It also proven that the proposed 

circuit method can minimize the effect of parasitic 

capacitance, 𝐶𝑃.  

IV. EXPERIMENT RESULTS 

 
The 0.13µm CMOS technology is implemented in the 

proposed regulator and RDC circuit. Table 1 shows the 

capacitors and transistors sizes. The optimized rectifier is 

shown in Figure 6 is for powering the analog circuits. The 

layout of the design is shown in Figure 7. The transistors with 

zero threshold devices are proposed in the design. The 

importance of the simulated regulator and rectifier outputs is 

shown in Figure 8. 

 

Table 1 

List of devices parameters in the proposed rectifier 

 

Number of stages (N) 18 

Transistor sizes 25μm for W and 420nm for 

L 

Capacitance of 𝐶𝐿and 𝐶𝐶 500fF 

 

 

 
Figure 6: Optimized rectifier 

 

 
 

Figure 7: The layout of proposed analog circuit 

 

 
Figure 8: Simulation of the regulator and rectifier output 

  

 The rectifier operates with 900MHz RF signals and have 

of 18 stages altogether. When the input RF signal value is 

200mV, subsequently the rectifier circuit is around 10% 

efficiency in the capacitor-tank charging period in which is 

related and same value to a Shottky diode in [12]. 

 
Figure 9: Temporary measurement of 𝑉𝑑𝑑 vs. 𝑉𝐷𝐶. 

 

The regulator circuit’s measurement is shown in Figure 9 

– 11. In Figure 9 shown that the regulator begins to supply a 

constant 1.31 V of voltage (𝑉𝑑𝑑) the capacitor tank is charged 
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with 2.02 V of 𝑉𝐷𝐶. The overall constant value is the load 

current with 20 μA. The graph also suggested that as long as 

𝑉𝑑𝑑<𝑉𝐷𝐶, the output voltage is generated in constant. Figure 

10 shown that 𝑉𝑑𝑑 will reduce to 63 mV when 𝑉𝐷𝐶 is dropped 

to 532 mV. 

       
Figure 10: Regulator measurement of 𝑉𝑑𝑑 vs. 𝑉𝐷𝐶 

 
Figure 11: Regulator measurement of 𝑉𝑑𝑑 vs. 𝑙𝑙𝑜𝑎𝑑 

 

Figure 11 indicates that the reduce of 𝑉𝑑𝑑 is approximately 

87.5 mV when the load current increases from 10μA to 100 

μA. In Table 2, the parameters of the proposed regulator are 

summarized. 

Table 2 

The parameters in the proposed regulator 

 

Input Range 1.1-2.4V 

Input regulation (𝑉𝑑𝑑/𝑉𝐷𝐶) 11.7% 

Efficiency of current 100% 

Load regulation (𝑙𝑙𝑜𝑎𝑑/𝑉𝐷𝐶) 971Ω 

DC current 0 

Loop compensation None 

Voltage reference None 

 

 To make  simulation for ADC circuit, both circuit voltage 

reference, 𝑉𝑟𝑒𝑓  and power supply are at 1.2V. The sampling 

rate is 20MS/s due to the ADC clock frequency is at 200 Mhz. 

If each of ADC output happens to be eight times during the 

simulation period of 102.4 μs, the slope of the signal will at 

0.0117 V/μs for the ADC to be considered as ideal. The ADC 

gain errors and output slopes are summarized in Table 3. 

 

 

 

 

 

Table 3 

The gain errors and output slopes comparison between 

traditional SAR ADC and proposed design 

 

 Traditional 

SAR ADC 

Proposed 

Design 

Gain Error Derivation 

from ideal 

slope 

0 0 

𝑉𝐿𝑆𝐵 0 0 

Input range (V) 0-1.1 0.1.1 

Total load capacitance (pF) 1.83 0.76 

ADC output slope 1 1 

  

V. CONCLUSION AND FUTURE WORK 

 

In conclusion, the proposed low-power analog design 

techniques for rectifier circuit, regulator circuit and 

ADC/RDC circuit are presented for RFID passive sensor. 

These circuit techniques are not only suitable for the targeted 

RFID passive sensor system but also can be used in the design 

of other wireless devices. Furthermore, these circuits are 

important blocks in wireless sensor circuits. For the design of 

rectifier circuit, by using zero-threshold NMOSs, an 18 stage 

rectifier circuit is used. To further up optimizes the rectifier 

circuit, an efficient regulator circuit is designed. Constant 

voltage is provided by the regulator only and only if there is 

sufficient energy collected in the charge tank that is fed by 

the rectifier circuit. Besides, the regulator circuit also did not 

use the traditional close-loop method to optimize the power 

consumption. The low-power ADC/RDC circuit is designed 

to improve the system even more. It achieved its low-power 

criteria by conversion scheme and novel sampling thus 

minimizes the total capacitance used by the CS arrays by 

50%. The implemented circuits are verified and observed 

through multiple simulations and experiments.  

Hardware measurement indicates the validity of the proposed 

techniques. Further research is can be achieved based on the 

research finding of the study. Hardware optimization is 

always an option to tackle the next challenges since the new 

invention is produced regardless.  
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