RISK MANAGEMENT OF NEUROBEHAVIORAL HEALTH OF TYRE MANUFACTURING INDUSTRY WORKERS EXPOSED TO NAPHTHA

NORAZURA BINTI ISMAIL

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2011

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

RISK MANAGEMENT OF NEUROBEHAVIORAL HEALTH OF TYRE MANUFACTURING INDUSTRY WORKERS EXPOSED TO NAPHTHA

By

NORAZURA BINTI ISMAIL

May 2011

Chair: Professor Zailina binti Hashim, PhD

Faculty: Medicine and Health Sciences

Introduction: Neurobehavioral effects on cognitive functioning and motor disturbances were linked to organic solvents even in setting exposure standards in the workplace which may interfere with job tasks resulting in costly injuries and lost of productivity. This study is aimed to assess and manage the risks of naphtha exposure and the neurobehavioral health effects among workers in a tyre manufacturing industry. **Methodology:** A cross-sectional study was carried out in Phase I, followed by an intervention study in Phase II. A total of 119 male workers exposed to naphtha were universally recruited as the exposed group, while 72 male administrative workers who did not exposed to naphtha were selected as the unexposed group. In Phase I, questionnaires were used to collect the information on general background, occupational profile and the risk factors. Environmental and personal air monitoring were carried out using a portable volatile organic compound (VOC) monitor and personal air sampling pump. Neurobehavioral performance was measured using the Neurobehavioral Core Test Battery (NCTB). The respondents from the Phase 1 were

then followed up in the second phase for the intervention study. They were later undergone a workplace health promotion (WHP) programme for three consecutive davs in order to improve their knowledge, attitude and practice (KAP) of safe handling of naphtha. Seminar and small group discussion were carried out in this WHP programme. The pre- and post- questionnaires were administered before and after the WHP programme among the respondents. Results: The range of VOC concentration was from 1.10 to 546.10 ppm, with the highest mean of 92.93 (SD153.63) ppm found in the "repair" area. Laboratory analysis found various organic compounds such as 2-methyl pentane, hexane, methyl cyclopentane, heptane, cyclohexane and toluene made up the liquid naphtha. The mean neurobehavioral score of the exposed group was significantly lower than the unexposed group (p=0.001). There were significant differences in the tests of Digit Symbol (p=0.001), Pursuit Aiming (p<0.001), and Santa Ana Manual Dexterity for dominant hand (p=0.021) and non-dominant hand (p=0.048) scores between the 2 groups. However, there was no correlation between personal air naphtha concentration and the total NCTB scores among the exposed group. The personal air naphtha concentrations among the exposed group were significantly higher than the unexposed group (p<0.001). Factors such as duration of work, total years of education, age, household income, knowledge and practice influenced the neurobehavioral performance. The level of knowledge among workers was significantly higher after the intervention programme (p<0.05). Conclusion: An early sign of neurobehavioral impairment was identified among the exposed group to low level of VOC and naphtha exposure. Therefore, attention to the chronic adverse health effects of organic solvent exposure should be given for safe and healthy working environment. The WHP package is a good mechanism of communicating risk at the workplace for an early detection and

iii

prevention of adverse health effect. A continual education should be implemented through various methods to enhance and retain workers' good performance at the workplace.

Key words: Risk management, naphtha, neurobehavioral health, knowledge, attitude, practice, occupational health promotion.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGURUSAN RISIKO KESIHATAN TINGKAH LAKU SARAF PEKERJA INDUSTRI PEMBUATAN TAYAR YANG TERDEDAH KEPADA NAFTA

Oleh

NORAZURA BINTI ISMAIL

Mei 2011

Pengerusi: Profesor Zailina binti Hashim, PhD

Fakulti: Perubatan dan Sains Kesihatan

Pengenalan: Kesan tingkah laku saraf terhadap fungsi kognitif and gangguan motor adalah berkait dengan pelarut-pelarut organik walaupun pada ketetapan pendedahan piawai di tempat kerja yang boleh mengganggu tugasan kerja sekaligus menyebabkan banyak kecederaaan dan kehilangan produktiviti. Kajian ini bertujuan untuk menilai dan mengurus risiko pendedahan nafta dan kesan kesihatan tingkah laku saraf di kalangan pekerja di industri pembuatan tayar. Kaedah: Kajian keratan rentas dilakukan dalam Fasa 1, disusuli oleh kajian intervensi dalam Fasa 2. Seramai 119 orang pekerja lelaki yang terdedah kepada nafta telah dipilih secara universal sebagai kumpulan terdedah manakala 72 orang pekerja pentadbiran lelaki yang tidak terdedah kepada nafta dipilih sebagai kumpulan tidak terdedah. Dalam Fasa 1, soalselidik digunakan untuk mengumpul data latar belakang, profil pekerjaan dan faktorfaktor risiko. Pemantauan udara persekitaran dan individu masing-masing dilakukan menggunakan alat pemantau bahan organik meruap (*VOC*) mudah alih dan pam persampelan udara individu. Pengukuran performan tingkah laku saraf dilakukan menggunakan peralatan *Neurobehavioral Core Test Battery (NCTB)*. Responden dari

fasa 1 kemudiannya diikuti di dalam fasa 2 untuk menjalani kajian intervensi. Mereka kemudiannya menjalani program promosi kesihatan tempat kerja (WHP) selama 3 hari berturut-turut untuk meningkatkan tahap pengetahuan, sikap dan amalan terhadap penggunaan nafta secara selamat. Seminar dan perbincangan dalam kumpulan kecil telah dijalankan di dalam program WHP ini. Soal-selidik dijalankan ke atas responden sebelum dan selepas program WHP tersebut. Hasil: Julat kepekatan VOC adalah daripada 1.10 hingga 546.10 ppm, dengan min tertinggi sebanyak 92.93 (SD153.63) ppm ditemui di kawasan "baik pulih". Analisis makmal mendapati pelbagai pelarut seperti 2-metil pentana, heksana, metal siklopentana, heptana, sikloheksana dan toluene hadir dalam cecair nafta. Min skor total tingkah laku saraf kumpulan terdedah adalah lebih rendah secara signifikan daripada kumpulan tidak terdedah (p=0.001). Terdapat perbezaan signifikan dalam ujian-ujian Simbol Digit (p=0.001), Sasaran Mengejar (p<0.001), Kepantasan Tangan Santa Ana dominan (p=0.021) dan bukan dominan (p=0.048). Walau bagi tangan bagaimanapun, tiada korelasi di antara kepekatan nafta dalam udara individu dan skor total tingkah laku saraf kumpulan terdedah. Kepekatan nafta dalam udara individu bagi kumpulan terdedah adalah lebih tinggi daripada kumpulan tidak terdedah (p<0.001). Faktor-faktor seperti tempoh bekerja, jumlah tahun pendidikan, umur, pendapatan isi rumah, pengetahuan dan sikap mempengaruhi prestasi tingkah laku saraf. Tahap pengetahuan pekerja adalah lebih tinggi setelah menjalani program intervensi (p<0.05). Kesimpulan: Tanda awal kerosakan tingkah laku saraf telah dikenal pasti di kalangan kumpulan terdedah pada tahap pendedahan VOC dan nafta yang rendah. Oleh itu, kesan kesihatan teruk yang kronik terhadap pendedahan pelarut organik perlu diberi perhatian untuk persekitaran kerja yang selamat dan sihat. Pakej WHP merupakan mekanisma yang baik untuk komunikasi risiko di

1

vi

tempat kerja sebagai pengesanan dan pencegahan awal terhadap kesan kesihatan yang teruk. Pendidikan berterusan harus dilaksanakan melalui pelbagai kaedah untuk meningkatkan dan mengekalkan prestasi pekerja yang baik di tempat kerja.

Kata kunci: Pengurusan risiko, nafta, kesihatan tingkah laku saraf, pengetahuan, sikap, amalan, promosi kesihatan pekerjaan.

TABLE OF CONTENT

		Page
ABSTRACT		ii
ABSTRAK		v
ACKNOWL	EDGEMENT	viii
APPROVAL		ix
DECLARAT	ION	xi
LIST OF TA	BLES	xv
LIST OF FIG	GURES	xviii
LIST OF AP	PENDICES	XX
LIST OF AB	BREVIATIONS	xxii
CHAPTER		
1	INTRODUCTION	1
	1.1 Problem Statement	5
	1.2 Study Justification	6
	1.3 Conceptual Framework	8
	1.4 Definition of Variables	11
	1.5 Study Objectives	14
	1.6 Study Hypotheses	16
2	LITERATURE REVIEW	18
	2.1 Industrial Solvents Application	18
	2.1.1 Naphtha in Tyre Manufacturing Industry	20
	2.1.2 Exposure Assessment	26
	2.1.3 Naphtha Exposure Limits	30
	2.1.4 Occupational Exposure to Naphtha	32
	2.2 Nervous System as a Target Organ of Naphtha Exposure	34
	2.2.1 Mechanism of Neurotoxicity	37
	2.2.2 Neurobehavioral Health Effects	43
	2.2.3 Neurobehavioral Assessment	46
	2.2.4 Factors Contributing to Neurobehavioral Impairment	53
	2.3 Risk Management of Naphina Hazard 2.3 Risk Communication: Workplace Health Promotion	58
		50
3	METHODOLOGY	67
	3.1 Study Area	67
	3.2 Study Design	67
	3.3 Study Sample	68
	3.3.1 Sample Size	69
	3.4 Sampling Frame	71
	3.5 Sampling Unit	72
	3.6 Sampling Method	73
	3.7 Sampling Strategy	74
	3.8 Instruments and Methods	79
	3.8.1 Walk-Through Survey	80

	3.8.2 Questionnaires	82
	3.8.3 Exposure Assessment	90
	3.8.4 Neurobehavioral Health Measurement	96
	3.8.5 Workplace Health Promotion Programme	104
	3.9 Data Analysis	116
	3.10 Report Writing	118
	3.11 Quality Control of Data	118
	3 12 Study Ethics	120
	3.13 Study Limitations	121
4	WORKPLACE ASSESSMENT OF NAPHTHA EXPOSU	RE
	IN A TYRE MANUFACTURING INDUSTRY	123
	4.1 Abstract	124
	4.2 Introduction	125
	4.3 Materials and Methods	127
	4.4 Results	130
	4.5 Discussion	142
	4.6 Conclusion	150
5	NAPHTHA EXPOSURE, NEUROBEHAVIORAL	
	PERFORMANCE, KNOWLEDGE, ATTITUDE AND	
	PRACTICES AMONG TYRE FACTORY WORKERS	151
	5.1 Abstract	152
	5.2 Introduction	153
	5.3 Materials and Methods	155
	5.4 Results	160
	5.5 Discussion	169
	5.6 Conclusion	173
6	DEVELOPMENT OF A WORKPLACE HEALTH	
	PROMOTION PACKAGE FOR COMMUNICATING	
	RISK OF NAPHTHA EXPOSURE	175
	6.1 Abstract	175
	6.2 Introduction	177
	6.3 Materials and Methods	179
	6.4 Results	185
	6.5 Discussion	194
	6.6 Conclusion	200
7	THE EFFECTS OF HEALTH PROMOTION	
	PROGRAMME ON THE KNOWLEDGE, ATTITUDE	
	AND PRACTICE OF WORKERS EAPOSED	202
	IONAPHINA 7.1 Abstract	202
	7.1 ADSIFACE	203
	7.2 introduction	204
	7.5 Materials and Methods	200
	1.4 Kesuits	209
	7.5 Discussion	223
	7.0 Conclusion	228

-

8	SUMMARY, CONCLUSION AND RECOMMENDAT	TIONS
	8.1 Summary	230
	8.1.1 Study Background	230
	8.1.2 Study area	231
	8.1.3 Study sample	231
	8.1.4 Exposure assessment	233
	8.1.5 Neurobehavioral assessment	234
	8.1.6 Development of an Intervention Programme	236
	8.2 Conclusion	238
	8.3 Recommendations	241
RE	FERENCES	244
AP	PENDICES	258
BIG	BIODATA OF STUDENT 3	
LIS	LIST OF PUBLICATIONS 323	

F

LIST OF T	ABLES
-----------	-------

Table		Page
2.1	Category of industrial solvents	20
2.2	Composition of Naphtha	. 21
2.3	Exposure limits for naphtha and its composition	32
2.4	Examples of human neurotoxicity causes by solvent exposure	37
2.5	Cognitive function deficits associated with solvents exposure in human	51
2.6	Benefits of workplace health promotion	60
3.1	Specific item of knowledge, attitude and practice (KAP) questionnaire	84
3.2	Scoring for KAP questionnaire	86
3.3	Locations of monitoring stations in the industry	92
3.4	Summary of Neurobehavioral Core Test Battery (NCTB) method	98
4.1	Application of naphtha in several work units	134
4.2	Hazard rating for naphtha	135
4.3	Magnitude and exposure ratings for naphtha	135
4.4	Working condition of respondent	136
4.5	Perception on naphtha exposure in the workplace	138
4.6	Monitoring stations in the tyre manufacturing industry	139
4.7	Volatile organic compound (VOC) concentrations at various locations in the tyre manufacturing industry	140
4.8	Comparing VOC concentrations between work stations in the tyre manufacturing industry	140
4.9	Screening of the organic solvents in the sample of liquid naphtha	141
4.10	Xylene concentrations in the tyre manufacturing industry	141

4.11	Exposure limits for selected organic solvents	149
5.1	Domain tested in the NCTB	156
5.2	Background information and exposure profile of the respondents	162
5.3	Comparison of neurobehavioral scores between the exposed and unexposed groups	164
5.4	Correlation between personal air naphtha concentrations with each of NCTB item scores	165
5.5	Scores of knowledge, attitude and practice in relation to naphtha among the exposed respondents	165
5.6	Factors influencing the memory functional domain of the NCTB among the exposed respondents	167
5.7	Factors influencing the motor functional domain of the NCTB among the exposed respondents	168
5.8	Factors influencing the mean total neurobehavioral scores among the exposed respondents	169
6.1	Comparison of VOC concentrations between 2 tyre manufacturing industries	186
6.2	Comparison of VOC concentration between 2 similar work processes (Pocket)	186
6.3	Comparison of VOC concentration between 4 similar work processes (Repair)	186
6.4	Comparison of VOC concentration between 3 similar work processes (Making)	187
6.5	Prevalence of neurobehavioral impairment among the exposed respondents	187
7.1	Specific and general areas under knowledge, attitude and practice domains	206
7.2	Prevalence of poor knowledge, attitude and practice among the exposed respondents	210
7.3	Correlation between practice and knowledge of hazard, knowledge of hazard control, and attitude	217
7.4	Factors influencing the practice scores among the exposed respondents	217

Ŗ

7.5	Factors (attitude) influencing the practice scores among the exposed respondents	218
7.6	Factors (knowledge of hazard control) influencing the practice scores among the exposed respondents	219
7.7	Comparison of the KAP scores after various interventions	220
7.8	Comparison of the KAP scores between 4 time frames using "bonferroni" method for multiple comparisons	222

٠

LIST OF FIGURES

Figure		Page
1.1	Conceptual framework of the study	10
2.1	Nervous system organization	35
2.2	Anatomy of nervous system	36
2.3	Reaction of 2,5-hexanedione with protein	41
2.4	The PRECEDE-PROCEED Model	63
3.1	Flow chart of sampling method	74
3.2	Flow chart of sampling strategy	78
3.3	Naphtha used in tyre manufacturing process	81
3.4	Portable VOC Monitor PGM-7600 (MiniRAE 2000)	91
3.5	Automatic Sampling Pump ASP-2000 (SampleRAE)	91
3.6	Flow chart for the identification of organic solvents in naphtha	93
3.7	Personal air sampling pump with calibrator	95
3.8	Flow chart of determination of personal air naphtha concentration	95
3.9	Tests of NCTB	97
3.10	Flow chart for the determination of the NCTB score	101
3.11	Interactive lecture	112
3.12	Data analysis using Statistical Package for Sociál Science (SPSS) Software	116
6.1	Scores of knowledge on hazard related to neurobehavioral performance among the exposed respondents	188
6.2	Scores of knowledge on hazard control related to neurobehavioral performance among the exposed respondents	189
6.3	Scores of attitude on hazard and hazard control related to neurobehavioral performance among the exposed respondents	. 189

,

6.4	Scores of practices on PPE and others related to neurobehavioral performance among the exposed respondents	190
7.1	Distribution of poor knowledge on hazard among the exposed group	211
7.2	Distribution of poor knowledge on hazard control among the exposed group	212
7.3	Distribution of poor attitude on hazard among the exposed group	213
7.4	Distribution of poor attitude on control hazard among the exposed group	214
7.5	Distribution of poor practice on personal protective equipment (PPE) among exposed group	215
7.6	Distribution of poor practice of other practices among exposed Group	216

•

.

LIST OF APPENDICES

Appendix P		Page
3.1	Instruments for data collection	258
3.2	Background questionnaire	260
3.3	KAP questionnaire	266
3.4	Individual air naphtha analysis	272
3.5	NIOSH Manual Analytical Methods for air naphtha	274
3.6	Neurobehavioral Core Test Battery (NCTB) forms	281
3.7	Approval letter from the ethics committee	292
3.8	Consent form	294
4.1	Hazard rating	300
4.2	Work unit description	301
4.3	Health effects of chemicals hazardous to health	301
4.4	Duration rating	302
4.5	Degree of chemical release or presence	302
4.6	Degree of chemical absorbed or contacted	303
4.7	Degree of physical activities and breathing rate	304
4.8	Magnitude rating	304
4.9	Assessment of existing control measures	305
4.10	Exposure rating	306
4.11	Conclusion of assessment	306
8.1	Flow chart of tyre manufacturing processes	308
8.2	Schematic diagram of tyre manufacturing process	309
8.3	Structure of tyre	. 310
8.4	Application of naphtha in the making and spraying process	311

8.5	Job description of the exposed group	313
8.6	Reliability of Neurobehavioral Core Test Battery (NCTB) scores	314
8.7	Topics and Issues Included in the Workplace Health Promotion Package	315
8.8	Pamphlets and Video	316

.

LIST OF ABBREVIATIONS

ACGIH	American Conference of Governmental Industrial Hygienist
ADDIE	Analysis, Design, Develop, Implement, Evaluate
ANCOVA	Analysis of Covariance
С	ceiling value should not be exceeded at any time
CAS	Chemical Abstract Service
CHRA	Chemical Health Risk Assessment
CI	Confidence interval
CNS	Central nervous system
DOSH	Department of Occupational Safety and Health
EPA	Environmental Protection Agency
ER	exposure rating
GC/FID	gas chromatography with flame ionization detector
GC/MS	Gas Chromatography Mass Spectrometry
GLR	General Linear regression
HR	hazard rating
IDLH	Immediately dangerous to life and health concentrations
IQR	Interquartile Range
KAP	Knowledge, attitude and practice
MLR	Multiple linear regression
MR	magnitude rating
MSDS	Material Safety Data Sheet
NCTB	Neurobehavioral Core Test Battery
NGOs	Non-governmental organizations
NIOSH	National Institute of Occupational Safety and Health

OEL Occupational exposure limits

OSHA Occupational Safety and Health Act

- PID Photo-Ionization Detector
- PPE personal protective equipment
- PRECEDE Predisposing, Reinforcing, Enabling Constructs in Educational/Environmental Diagnosis and Evaluation
- PROCEED Policy, Regulatory, and Organizational Constructs in Educational and Environmental Development
- O&A question and answer

REL Recommended Exposure Limit

- RR risk rating
- SD Standard deviation
- SLR Simple linear regression
- SPSS Statistical Package for Social Sciences
- STEL short term exposure limit
- TLV Threshold Limit Values
- TNA Training needs analysis
- TWA time-weighted average
- UHA Urinary hyppuric acid
- UMHA Urinary methyl hyppuric acid
- VOC Volatile organic compound
- WHO World Health Organization
- WHP Workplace Health Promotion

CHAPTER 1

INTRODUCTION

Organic solvents are liquid substances at normal temperature and pressure. They are extensively used in many industries to dissolve organic chemicals such as oil, fat, resin, rubber, plastic and wax. Organic solvents such as methanol, acetone, isopropyl alcohol, toluene, petroleum benzin, n-hexane and xylene are widely used in several industries for painting, chemical analysis, wiping, degreasing, printing, gluing, solvent manufacturing, paint manufacturing and dry cleaning (NIOSH/JICA, 2003). These organic solvents are commonly used as mixtures rather than as an individual chemical. For example, in tyre manufacturing industry, naphtha which is a petroleum distillate containing principally aliphatic hydrocarbons is widely used as an adhesive, segregative and cleansing agent. It is made up of organic solvents mixture such as hexane, benzene and ethylbenzene (MSDS, 2006). However, these organic solvents have been listed as chemicals that are hazardous to health under the Occupational Safety and Health (Use and Standards of Exposure Chemicals Hazardous to Health) Regulations 2000 (OSHA, 2008).

Although the lipid solubility property of organic solvents plays an important role in the industrial setting, it does not work in human body. Their high lipophylicity property makes it accessible to different tissues and organs containing lipids such as the brain and nerve cells. Numerous epidemiological studies have documented occupational exposure to organic solvents caused neurobehavioral and neurological impairments (Ovid MEDLINE, 2008). Chronic toxicity of organic solvent exposure to the central nervous system includes syncope, mental disorder, ataxia and brain atrophy while the effect on peripheral nerve results in polyneuropathy. Symptoms of neurotoxicity include muscle weakness, loss of sensation and motor control, tremors, memory loss, extreme fatigue, dizziness, sleep disturbances, depression, pain and/or numbness of the extremities, lightheadedness, loss of interest in hobbies, and confusion.

Attention has been given on the need to identify neurotoxic effects of the brain as early as possible to avoid permanent damages of continuing exposures because repeated exposures to solvents may cause cumulative and irreversible damages to the nervous system. Cross-sectional studies supported the hypothesis that occupational, long-term solvent exposures may cause adverse effects on the central nervous system at exposure levels below the accepted threshold limit values (Mikkelsen, 1997). Therefore, an early detection of neurotoxicity is important in occupational health to prevent neurotoxic illnesses in the working populations. The Neurobehavioral Core Test Battery (NCTB) is one of the most common methods used to investigate the specific functions of the nervous system. It is shown to be sensitive to neurotoxic damage such as reduction in memory and learning ability, decrease in attention, and alteration of behaviour due to the exposures to toxic solvents in the workplace (WHO, 1986). Moreover, the previous local studies also noted significant results of those functional domains tested using this method to detect early abnormalities of neurobehavioral impairment among workers exposed to organic solvents such as toluene, xylene, naphtha and benzene in various industries (Zailina et al., 2005a; 2005b; 2005c; and Mazalisah *et al.*, 2006). Apart from that, symptoms such as poor attention, drowsiness, memory problems, mood changes, and impaired fine motor performance may interfere with job tasks resulting in costly injuries and loss of productivity.

Studies on petroleum distillates like naphtha and its health effects are not commonly carried out like the other solvents such as benzene, toluene, xylene and hexane either in developed or developing countries. Most of the studies emphasized on the individual organic solvents namely benzene, toluene, xylene, ethanol and others. Studies on the solvent mixtures are rare because of the difficulties in terms of understanding its mechanism of action. There are limited number of studies on naphtha; studies are mainly conducted in shoe making industry and glove manufacturing industry.

In line with those issues, this study is aimed to assess the risk of organic solvent (naphtha) exposure towards the neurobehavioral impairment among workers in tyre manufacturing industry. As demand for tyre products are increasing, there will be more plants set up and more workers employed, hence there will be more potentially exposed to this organic solvent hazard. Therefore, the study on the prevalence of neurobehavioral effects and understanding on their risk factors will be definitely beneficial towards contributing effective intervention strategies for workers in this industry to sustain the productivity as well as better quality of work life.

3

Since organic solvent poisoning is one of the compensated illnesses listed under the Employees' Social Security Act 1969, it is important for workers who potentially come into contact with organic solvents to know and understand the associated risks and the safe work procedures to reduce the risk. To fulfil this need, the Malaysian Standard of Occupational Safety and Health Management Systems – Part 1: Requirements (MS 1722: Part 1: 2005) has been developed to provide requirements on occupational safety and health (OSH) management system and a basis for the development of a sustainable safety and health culture in the organization. Risk management has become a concern of management systems. It provides the framework for the process of identifying hazards, assessing associated risks, taking actions to mitigate risks, and reviewing the outcome by monitoring the effectiveness.

Therefore, this study is aimed to develop a Workplace Health Promotion Programme to communicate the risks associated with naphtha exposure among workers in order to increase their awareness on safety and health in the work culture. This contribution to Occupational Safety and Health Management System approach can assist organizations of this industry to successfully manage the related risks as well as their safety and health prevention programme as prevention is the best antidote. Furthermore, this is a good effort to practice the worker "right-to-know" principle. It is supplemented by providing a manual on safe handling of organic solvents at the workplace which has been developed to provide guidelines especially for employers to assist them on the management of safe and healthy working environment.

1.1 Problem Statement

Volatile organic solvents have become the early focus of human neurobehavioral toxicology during 1980s. Their neurotoxic properties have always been recognized even in setting exposure standards in the workplace (Weiss & Elsner, 1996). Many studies demonstrated the association between neurobehavioral effects and the low-level exposure to organic solvents among workers (Tsai et al., 1997; Kishi et al., 2000). They also revealed that the neurobehavioral effects were linked to the long-term exposure of organic solvents like xylene and mixed organic solvents (Hooisma et al., 1994; Colvin et al., 1993). To date, the neurotoxic effects of exposure to organic solvent mixtures have become an increasing concern. Related studies were done among the shipyard painters (Lee et al., 2005; Ruüten et al., 1994). In other studies, it was found that workers who use organic solvent mixtures in paint and varnish production industry have experienced the neurological manifestation (Indulski et al., 1996).

In organic solvents group, components of petroleum distillate are not constant. Some kinds of organic solvents derived from this distillation might contain small amount of benzene, toluene and n-hexane which cannot be neglected. It was reported that workers who used the organic solvents from this group such as petroleum benzene containing n-hexane suffered from difficulty in walking due to polyneuropathy (Takeuchi et al., 1975).

The central nervous system is vulnerable to neurotoxic effects at lower levels of exposure than the peripheral nervous system (Ladefoged et al., 1995). In fact,

5