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ABSTRACT 

 

Heat treatment by heating furnace has limited the capability of heat treatment processes 

to control the desired heating volume and products’ sizes. This study introduced a heat 

treatment process using light heat sourced from a spot-type halogen lamp, with the aim 

of clarifying the thermal phenomenon of aluminium (Al) foam. Here, the temperature and 

deformation of Al foam were observed experimentally. In addition, thermal analysis was 

conducted numerically using a uniform heating model by neglecting the energy 

consumption of the blowing agent and deformation and thermal conductivity of Al. The 

experimental results revealed that the precursor initially formed at almost the same time 

as the phase change. The numerical results almost corresponded with the experimental 

results until the melting point of Al, after which a slight disagreement was observed. 

Moreover, the phase transformation appeared slightly earlier as a result of neglecting the 

deformation of Al foam and energy consumption of the blowing agent. Although the 

formation of Al foam cannot be expressed perfectly using the proposed uniform heating 

model, a qualitative phenomenon of such formation was successfully explained. In the 

future, the effects of deformation and energy consumption of the blowing agent and the 

thermal conductivity of Al can be considered in the proposed uniform heating model. 
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NOMENCLATURE 

 

𝑄 input heat per second per unit area [J/s ∙ m2] 

𝐴 top surface area of precursor [m2] 

𝑇 temperature of precursor [K] 

𝑇0 temperature of surrounding wall [K] 

𝜀 absorption or emission coefficient [-] 

𝜎 Stefan-Boltzmann’s constant [W/m2∙ K4] 

𝐴′ one lateral surface of precursor [m2] 

𝛼𝑚,ℎ mean heat transfer coefficient of horizontal plane [W/m2∙ K4] 

𝑇𝑤 temperature of precursor surface [K] 

𝑇∞ atmospheric temperature [K] 

𝛼𝑚,𝑣 mean heat transfer coefficient of vertical plane [W/m2∙ K4] 

𝐿𝑎 latent heat [J/kg] 
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𝑓𝑠 solid phase ratio [-] 

𝑐 specific heat [J/kg ∙ K] 

𝜌 density [kg/m3] 

𝑉 volume [m3] 

 

INTRODUCTION 

 

Aluminium (Al) foam is well known for its excellent properties such as its lightweight by 

the low density, noise reduction, and high shock absorption rate, making it an increasingly 

interesting topic for exploration [1 – 3]. For more than 60 decades, various application 

attempts on Al foam in the industrial field were made, especially in the automotive sector. 

Nonetheless, technical elements ascertaining the cost, size limitation, and so on prevented 

the smooth applicability of Al foam in the automotive sector. One of the most important 

processes in the fabrication of Al foam is heat treatment [1 – 5], typically conducted with 

the use of a heating furnace that consumes a large amount of the heat source to be able to 

heat the furnace spaces completely. Additionally, time consumption becomes 

considerably longer due to the mandatory procedure of preheating the furnace; thus, 

controlling the desired heating volume exerted to the material being heated becomes 

difficult. Moreover, since the size of the material being formed mainly depends on the 

capacity of the furnace, the manufacturing capability is limited in size and quantity. This 

study introduces a new heat treatment process using light heat sourced from a halogen 

lamp. The advantage of this method lies in the reduction of energy consumption where a 

smaller heat volume is required in a shorter time and at a lower cost. This method also 

permits the observation of the fabrication behaviour of Al foam by using a video camera 

during the heat treatment process, which is commonly unattainable under the usage of a 

heating furnace due to the existence of its surrounding wall. 

Furthermore, clarifying the occurrence of a thermal phenomenon during the heat 

treatment process is challenging as the process involves complicated events such as heat 

transfer, deformation, and a chemical reaction [6, 7]. Although there has been an ample 

number of Al foam analysis conducted in the recent years [8, 9], most of these were 

merely adapted to the final product of Al foam because making a detailed description of 

the thermal analysis during the formation process is difficult. Nonetheless, as such a 

phenomenon should be essentially clarified, this study provides an attempt to elucidate 

the thermal analysis of Al foam. Of the existing Al foam fabrication methods in the field 

of metal foam, the precursor method is employed in this study [10]. Normally, Al foam 

can be deformed by a blowing agent that should be mixed into the base material prior to 

the conduct of heat treatment process. The blowing agent in precursor released hydrogen 

gas as soon as Al melts [11], which depends on the temperature and holding time [12]. 

Hydrogen gas produced from the Al foam surface during the heating process caused the 

Al foam to shrink after certain time and temperature. Moreover, the hydrogen gas that 

released from the thermal decomposition shrink together with the Al metal during the 

cooling phase, after the heating process. Thus, optimal time and heat condition are highly 

required to prevent such shrinking of Al foam. Up to the present, only a primitive value 

has been used in previous studies [13, 14] such as input heat value, distance between the 

lamp and material, and heating time. 

Herein, the thermal phenomenon during the light heating process in Al foam is 

clarified in order to predict the optimal time and heat condition. A spot-type halogen lamp 

is used as the light heat source. During the experiment, the temperature and deformation 

of Al foam are observed by means of a thermocouple and a video camera, respectively. 
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The thermal phenomenon is then clarified in detail based on the thermal analysis with a 

uniform heating model, which is a model that neglects the energy consumption of the 

blowing agent as well as the deformation and thermal conductivity of the material. The 

thermal analysis of this model is numerically simulated so as to clarify the thermal 

phenomenon of Al foam during the light heating process. This way, the optimal time and 

heat condition in various situations can also be predicted. 

 

METHODOLOGY 

 

Experimental Setup  

 

Figure 1 shows a schematic illustration of the experimental setup for the heat treatment 

process in this study. The setup mainly consisted of a heating section, a controller part, 

and a measurement system. The heating section included a halogen lamp as the heat 

source, an elliptical reflector to concentrate light onto the test piece, and a cooling system 

to prevent the increase in temperature of the setup equipment in the heating section. The 

halogen lamp exhibited a maximum power supply of 2 kW with a single phase of 100 V 

and current of 20 A. During the experiment, the voltage and current were set at 54 V and 

9.0 A, respectively. The elliptical reflector was specially coated with gold to intensively 

gather the light source onto the test piece, to increase the reflection ratio, and maintain 

high energy efficiency. The focus range of the elliptical reflector was 45 to 50 mm. Thus, 

the top surface of the test piece was set at 50 mm from the bottom of the elliptical 

reflector. The cooling system was supplied with water at a rate of approximately 1 L/min. 

For the controller part, a voltage transformer was employed to adjust the voltage, while a 

current meter was used to read the current value. For the measurement system, a K-type 

thermocouple was used to measure the temperature of the test piece. Simultaneously, 

deformation of the Al foam was recorded with a video camera. The recorded movie was 

then analysed through image analysis using ImageJ software.  

 

  

 
 

  

Figure 1. Schematic illustration of the experimental setup 

 

An Al–Si–Cu alloy ADC12, as defined in Japanese Industrial Standard (JIS), die-

casting plate was used as the base material. The chemical composition of the ADC12 used 
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is presented in Table 1. The solidus and liquidus temperatures of the alloy were 515℃ 

and 580℃, respectively. In this study, the friction stir welding (FSW) of the precursor 

method was employed to fabricate the Al foam [15].  

 

 

Table 1. Chemical composition of ADC12 used in the present study. 

 

Element Si Fe Cu Mn Mg Zn Ni Sn Al 

mass % 10.14 0.82 1.72 0.27 0.18 0.56 0.04 0.02 Bal. 

 

Figure 2 shows the schematic illustration of the precursor fabrication and the 

principle of foam formation for this study. TiH2 (< 45 μm, 1 mass %) <45 μm, 1 mass % 

and Al2O3 (~ 1 μm, 5 mass % ~1 μm, 5 mass % ) were used as the blowing and 

stabilisation agents, respectively. On one hand, TiH2 released hydrogen gas by thermal 

decomposition at 480 ℃ for 180 min [11]. Conversely, Al2O3 increased the Al viscosity 

in order to keep the thickness of the Al foam’s cavity wall [16]. The test sample was 

prepared using the mulch pass process where the blowing and stabilisation agents were 

initially sandwiched by two Al plates before they were mixed together along with multiple 

lines using a high-speed rotating tool. Here, both the blowing and stabilisation agents can 

be considered to be homogeneously distributed in the material [17]. Subsequently, the 

sample was cut into small pieces of precursor in 15 mm × 15 mm × 6 

mm. 15 mm × 15 mm × 6 mm At the centre of the bottom surface of the precursor, a 

hole was drilled in order to insert the thermocouple for temperature measurement. The 

hole dimension diameter and depth were 1.01.0 and 3.0 m 3.0 m, respectively.  

 

 

 

 

 
 

 

 

Figure 2. Schematic illustration of (a) precursor fabrication  

and (b) principle of foam formation. 

 

Theoretical Principle 

 

The spot-type halogen lamp used in this study was aimed at rapidly and uniformly 

increasing the temperature of the precursor as the heated object. However, this heating 
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process involves complicated events such as heat transfer, deformation, and chemical 

reaction [18]. Therefore, the present study elucidates on the thermal phenomenon in the 

subsequent texts.  

 

 
 

Figure 3. Illustration of the uniform heating model. 

 

Here, it was assumed that the thermal conductivity of Al is extremely high and 

that of the heated object is extremely thin. As such, the internal thermal distribution of 

the heated object can be neglected, and hence, the temperature of the whole object is 

instantly constant. Moreover, the energy consumption of the blowing agent and 

deformation were neglected in this study as well. Even with the observable growing 

cavity, formulating the blowing agent is difficult, as the resulting equation is a function 

of pressure and verbosity of expansion. As an option, this matter is considered in a future 

experiment using an x-ray system. The heated object was then placed on a ceramic plate, 

as shown in the Figure 1 and 2, to eliminate the effects of thermal loss. Thus, transporting 

heat energy in the uniform heating model mainly consisted of radiation by light or high 

temperature, convection, and phase transfer, as illustrated in Figure 3. 

For the radiation term, the temperature of the heated object was raised by exposing 

the light of the halogen lamp to the top surface of the object. The emission coefficient, 

which is an important value in the radiation, was generally equal to the absorption 

coefficient. This absorption coefficient represents the absorption ratio of the light energy 

of the heated object. When heat loss from the surface of the heated object is much smaller 

than the area of the surrounding wall, the emitted heat amount is given by Stefan–

Boltzmann’s law. Because the heat amount was proportional to the emission or absorption 

coefficient and the fourth power of differential temperature in this law, the radiation term 

can be expressed by: 

 

εAQ-Aσε(T4-T0
4)-4A'σε(T4-T0

4). (1) 

 

Due to the presence of temperature difference in this study, there is a need to 

consider convection occurrence. Here, the heat amount of convection that is expressed by 

the heat amount per unit area is determined by Newton’s law of cooling. The density of 

the air around the heated object is changed depending on the heating or cooling conditions 

in the atmosphere, during which the fluid motion normally caused by gravity is called 

natural convection. The deformation is neglected by assuming that the shape of the heated 

object is consistent. Thus, the phenomenon can be classified into two types, namely, 

horizontal and vertical heat transfer planes. The horizontal heat transfer plane represents 

the heat transfer phenomenon at the top surface of the heated object, whereas the vertical 

heat transfer plane represents four lateral surfaces of the heated object. Consequently, the 

convection term can be expressed by: 

Radiation 

Convection 
Phase  
transformation 

Light energy 
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−𝐴𝛼𝑚,ℎ(𝑇𝑤 − 𝑇∞) − 4𝐴′𝛼𝑚,𝑣(𝑇𝑤 − 𝑇∞). (2) 

 

Finally, the thermal energy of the heated object is absorbed or emitted when the 

phase of the material changes from a solid into liquid condition, also called latent heat. 

As the object is heated by the halogen lamp, the effects of heat absorption due to the latent 

heat can be considered when the temperature is above the melting point. In this study, the 

latent heat must be converted into an energy changing rate since it is normally a material’s 

property value. In order to express the energy changing rate, the solid phase ratio is 

employed. This solid-phase ratio is a proportion of the solid phase and the liquid phase, 

as determined by the condition figure by the principle of lever [19]. Specifically, latent 

heat multiplied by the solid phase ratio indicates the energy changing rate of the latent 

heat. Therefore, the equation of latent term is expressed by  

 

-Lam(dfs dT⁄ )(dT dt⁄ ). (3) 

 

This term only appears when the temperature of a material is higher than the Al 

melting point. The condition that expresses the relation of energy conservation during the 

phase transfer is described by: 

 

Lam-∫ Lam(df
s
dT⁄ )dt

t2

t1

>0. 
(4) 

 

From these terms and energy conservation law, the equation of uniform heating 

model that indicates the time changing rate of temperature is described by: 

 

ρcV(dT dt⁄ )=εAQ-Aσε(T4-T0
4)-4A'σε(T4-T0

4) 

−𝐴𝛼𝑚,ℎ(𝑇𝑤 − 𝑇∞) − 4𝐴′𝛼𝑚,𝑣(𝑇𝑤 − 𝑇∞) − 𝐿𝑎𝑚(𝑑𝑓𝑠 𝑑𝑇⁄ )(𝑑𝑇 𝑑𝑡⁄ ). 
(5) 

 

RESULTS AND DISCUSSION 

 

Experimental Results 

 

Heat treatment was applied to the precursor at the current of 9.0 A, during which 

deformation of the Al foam was recorded by means of a video camera. The recorded video 

movie was then converted into images of every 5 s interval. Figure 4 shows the sample 

images of foam formation of the precursor at the (a) starting time, (b) starting time of 

foam formation, i.e., 50 s, (c) in the middle of deformation, i.e., 90 s, and (d) finishing 

time of foam formation.  

From the selected images in the 5 s interval, the projected area of the precursor 

was determined using ImageJ software. The results of the projected area were compared 

with the temperature of the precursor measured by the thermocouple, as shown in Figure 

5. 
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Figure 4. Foam formation of precursor at (a) 0, (b) 50, (c) 90 and (d) 120 s during light 

heating. 

 

 
 

Figure 5. Temperature increase rate vs. change of precursor shape. 

 

The figure clearly demonstrates that precursor formation started almost 

simultaneously with the phase change, as initially indicated in Figure 4(b), i.e., at 

approximately 50 s. Normally, the temperature of the blowing process during the thermal 

decomposition is lower than the melting point of ADC12. Therefore, the blowing agent 

already gained sufficient energy to blow before the matrix material melted. On the 

contrary, the stiff Al solid restricted the blowing process, thereby preventing the 

expansion of the blowing agent particles. Hence, only after the stiff ADC12 solid’s 

melting did the blowing agent expanded successfully, as shown in Figure 4(c) and 4(d). 

More specifically, the stiff Al solid began melting after it received energy from the light 

gathered by the elliptical mirror on top of the surface of the precursor. Note that at this 

time, the internal precursor presented a temperature gradient. Therefore, the precursor 
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started to foam only at the upper side of the precursor whereas the lower side of the 

precursor maintained its original shape, as can be confirmed in Figure 4(c). Generally 

speaking, the coefficient of Al thermal conductivity is high; thus, the temperature gradient 

for such a small piece of the precursor can be ignored. Nonetheless, the higher the input 

energy to the precursor, the harder it is to neglect the effects of the temperature gradient. 

 

Numerical Results 

 

The input heat value was calculated from the numerical focus area and power of the 

halogen lamp. Here, the voltage and current were set at 54 V and 9.0 A, respectively, 

whose product equates to the electrical power of 486 W. This power was then divided by 

the focus area of light with 18-mm of diameter, to provide an input heat value of 3.7 ×105 

W/m2  3.7×10
5
 W/m2 . The absorption coefficient was 4.5, as determined from the 

preliminary experiment. On one hand, the other values, such as specific heat, density, the 

volume of precursor, temperature of surrounding wall, and atmospheric temperature, 

were held constant [20, 21]. Conversely, the initial values of temperature and melting 

point of Al were substituted by the value obtained from the experiment. All these values 

were substituted into Eq. (5), to obtain the temperature of the precursor. These numerical 

results were then compared with the experimental results as depicted in Figure 6. 

 

 
 

Figure 6. Comparison of experimental and numerical results for precursor. 

 

As can be seen, the numerical results were nearly in agreement with the 

experimental results until the melting point of Al at approximately 50 s. Nonetheless, the 

numerical results also demonstrated slight disagreement with the experimental results 

after the melting point of Al has been crossed. Moreover, based on the numerical results, 

the melting point of Al appeared slightly earlier than in the experimental results, which 

could be attributed to the fact that deformation of the Al foam and energy consumption 

of the blowing agent were neglected, as stated in the preceding texts. In actuality, the 

energy consumption of the blowing agent should be considered in order to express the 

changing phenomenon of the particles of the blowing agent into the cavity. In addition, 
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the thermal conductivity of Al foam depends on the porosity and cavity size. Wang et al. 

[9] found that the effect of thermal conductivity decreases with increasing porosity and 

cavity size. Therefore, assuming greater thermal conductivity by the gas release of the 

blowing agent and by the growth of the cavity by the heat treatment is difficult. With 

respect to the numerical results, the precursor temperature after the melting point of Al 

may slightly decrease if the energy consumption of the blowing agent is taken into 

consideration. This way, an agreement between the numerical and experimental results 

could be attained.  

Figure 7 shows the relation between the numerical temperature and the 

dependence of each term against the input heat by the halogen lamp in the uniform heating 

model. That is, this figure expresses the proportion of the lighter side in Eq. (6).  

 

εAQ=ρcV(dT dt⁄ )+Aσε(T4-T0
4)+4A'σε(T4-T0

4) 

+Aαm,h(Tw-T∞)+4A'αm,v(Tw-T∞)+Lam(df
s
dT⁄ )(dT dt⁄ ) 

(6) 

 

Figure 7. The relation between numerical temperature and dependence of each term  

on the uniform heating model. 

 

From this figure, the sensible heat term was found to mainly occupy the proportion 

of Eq. (6) in the beginning. However, the dependence of the sensible heat term was found 

to decrease by the other terms, i.e., convection, radiation, and latent heat, with increasing 

time. This can be attributed to the fact that the radiation term and the convection term 

depend on the temperature difference between the precursor temperature and the 

atmospheric temperature. Especially in this study, the radiation effect was lager because 

the precursor was only heated by the light of a halogen lamp. Moreover, the term of latent 

heat appeared only after the temperature reached the melting point of Al. Nonetheless, it 

gave larger effects to the change of temperature, as compared to the other terms. On such 

basis, the precursor temperature could not be raised by the effect of the latent heat term. 

In actuality, the real phenomenon of latent heat was asymptotic, but a step-change was 

seen in the figure since the numerical results used the difference method.  
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Overall, it was discovered herein that the formation of Al foam cannot be 

expressed perfectly using the proposed uniform heating model. Rather, in the future, the 

effects of deformation and energy consumption of the blowing agent should be considered 

in the proposed uniform heating model. Nevertheless, this study successfully provided an 

explanation of the qualitative phenomenon of Al foam formation. It is also worth noting 

to consider the thermal conductivity of Al in identifying the thermal gradient inside the 

Al foam, given a high input heat value. 

 

CONCLUSION 

 

The present work introduced a new heat treatment process using light heat sourced from 

a spot-type halogen lamp to clarify the thermal phenomenon of Al foam, mainly through 

experimental and numerical investigations using the uniform heating model. Based on the 

experimental results, the formation of the precursor most likely initiated at almost the 

same time as the phase change. A comparison of the experiment and numerical results 

revealed that the higher the input energy to the precursor, the harder it is to neglect the 

effects of temperature gradient because the internal precursor would present the 

temperature gradient. 

Accordingly, the numerical results almost corresponded with the experimental 

results up to the melting point of the Al. After the melting point, the numerical values 

slightly disagreed with the experimental results. More specifically, the melting point of 

Al in the numerical results appeared at a slightly earlier time than in the experiments, 

which could be explained by the fact that the deformation of Al foam and the energy 

consumption of the blowing agent were neglected in the uniform heating method. 

Moreover, with a longer time, the dependence of the sensible heat term was decreased by 

the other terms, mainly due to the dependence of the radiation term and the convection 

term on the temperature difference. The latent heat term appeared only after the 

temperature reached the melting point of Al; nonetheless, it gave larger effects on the 

change of temperature than the other terms. Conclusively, although the formation of Al 

foam cannot be expressed perfectly with the proposed uniform heating model, the model 

successfully explained a qualitative phenomenon of the formation. 
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