PHYTOREMEDIATION: TREATING EUTHROPHIC LAKE AT KotaSAS LAKESIDE, KUANTAN BY AQUATIC MACROPHYTES

J Muhammad Haziq1, I Farah Amalina1, AR Abdul Syukor1, S Sulaiman1, Md Nurul Islam Siddique2 and SXR Woon1

1Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia.

2Faculty of Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia.

*Corresponding author: syukor@ump.edu.my; abdsyukor@gmail.com

Abstract. This investigation was embraced ex-situ to investigate the capability of the submerged plants' water hyacinth (Eichornia crassipes) and water lettuce (Pistia stratiotes L.) as phytoremediation aquatic macrophytes for nutrients removal from a eutrophic lake situated at KotaSAS Lakeside surrounded by residential area as the risk of algae bloom can be avoided. The present of mankind activities such as sewage runoff and agricultural towards water bodies, the eutrophication process being speed up. The capability of these plants to evacuate certain parameters not just supplements while additionally including BOD5, COD, TSS, Turbidity, and heavy metals. The technique for investigation of lake water was alluded by Standard Method for Examination of Water and Wastewater. Water lettuce displayed extraordinary nitrate removal effectiveness up to 94% however this plant species shrivelled from week 2 of the examination because of an absence of nitrate supply and caused an expansion in phosphorus concentration. Then, water hyacinth indicates relentless evacuation productivity with a normal of 82% for nitrate and phosphorus. Other than that, water hyacinth indicates 88% and 72% of TSS and turbidity expulsion effectiveness which can improve the clarity of lake water. With this accomplishment gained in phytoremediation innovation utilizing water hyacinth, it is of most significance for this innovation to be executed in bigger scales in the future.

1. Introduction
Eutrophication can be defined as a process of the aggressive growth of algae on the surface of water, as caused by excessive richness nutrients through surface runoffs that carry down by fertilized agricultural areas, sewage form cites, and industrial waste [9]. All the water bodies will undergo eutrophication naturally, but it is slow. Cultural eutrophication is the involvement of mankind activities such as urbanization, industrialization and intensifying agricultural production which


Ugya AY, ITS and TSM 2016 The Role Of Phytoremediation In Remediation Of Industrial Waste, 10.20959/wjpr20161275.

Acknowledgments

The authors are appreciative to Universiti Malaysia Pahang (UMP), the Faculty of Civil Engineering and Earth Resources (FKASA) and Kota Sultan Ahmad Shah (KotaSAS) Bandar Baru Kuantan for their support. This a contemporary investigation was made conceivable by a given from the, UMP Post Graduate Research Grant Scheme (PGRS) Vote no: PGRS190317