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ABSTRACT

Bootstrap is a resampling procedure for estimating the distributions of statistics based on independent observations. 
Basically, bootstrapping has been established for the use of parameter estimation of linear data. Thus, the used of 
bootstrap in confidence interval of the concentration parameter, κ in von Mises distribution which fitted the circular data 
is discussed in this paper. The von Mises distribution is the ’natural’ analogue on the circle of the Normal distribution on 
the real line and widely used to describe circular variables. The distribution has two parameters, namely mean direction, 
µ and concentration parameter, κ, respectively. The confidence interval based on the calibration bootstrap method will 
be compared with the existing method, confidence interval based on the asymptotic to the distribution of . Simulation 
studies were conducted to examine the empirical performance of the confidence intervals. Numerical results suggest 
the superiority of the proposed method based on measures of coverage probability and expected length. The confidence 
intervals were illustrated using daily wind direction data recorded at maximum wind speed for seven stations in Malaysia. 
From point estimates of the concentration parameter and the respective confidence interval, we note that the method 
works well for a wide range of  κ values. This study suggests that the method of obtaining the confidence intervals can 
be applied with ease and provides good estimates. 
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ABSTRAK

Kaedah pembutstrapan adalah proses persampelan semula data bagi menganggarkan taburan statistik berdasarkan 
pemerhatian bebas. Kebelakangan ini, kaedah pembutstrapan telah digunakan secara meluas untuk menganggar 
parameter data linear. Oleh itu, dalam kajian ini, kami menggunakan kaedah pembutstrapan dalam membina selang 
keyakinan terhadap parameter menumpu, κ bagi taburan von Mises. Taburan von Mises dikenali sebagai taburan normal 
membulat dan ia merupakan taburan yang menyerupai taburan normal seperti yang biasa digunakan dalam statistik 
linear. Taburan ini mempunyai dua parameter, iaitu min berarah, μ dan parameter menumpu, κ. Selang keyakinan 
berdasarkan kaedah pembutstrapan penentukuran akan dibandingkan dengan kaedah sedia ada, selang keyakinan 
berdasarkan asimptotik . Kajian simulasi dan penilaian bagi saiz selang dan kebarangkalian menumpu telah dijalankan 
bagi menilai ketepatan empirik selang keyakinan tersebut. Kaedah ini diilustrasikan menggunakan data arah angin harian 
yang dirakamkan pada kelajuan angin maksimum bagi tujuh stesen di Malaysia. Titik penganggaran bagi parameter 
menumpu dan selang keyakinan, masing-masing menunjukkan kaedah pembutstrapan penentukuran ini berfungsi dengan 
baik untuk pelbagai nilai κ. Kajian ini menunjukkan bahawa kaedah mendapatkan selang keyakinan boleh digunakan 
dengan mudah dan memberikan anggaran yang baik.

Kata kunci: Parameter menumpu; pemboleh ubah membulat; pembutstrapan penentukuran; taburan von Mises

INTRODUCTION

Statistical data can be classified according to their 
distributional topologies. A linear data set can be 
represented on a straight line and for circular data, they can 
be represented by the circumference of a unit circle. For 
circular data, they are commonly measured in the range of 
[0°, 360°) degrees or [0, 2π) radian. It is worthwhile to note 
that statistical theories for straight line and circle are very 
different from one to another because the circle is a closed 
curve. Circular or directional data can be found in the area 

of meteorology such as wind direction. Additionally, such 
data can be found in other fields such as in movement 
coordination (Stock et al. 2018), solar radiation (Polo et al. 
2018), biology and physics (Fitak et al. 2018), hydrology 
(Yan et al. 2016) and remote sensing (Kucwaj et al. 2017).
 Commonly used distribution to describe circular 
random variable is the von Mises distribution. The density 
function is given as

  (1)
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where 0 ≤ μ < 2π and 0 < κ < ∞ are the parameters. I0(κ)   
is the modified Bessel function of order zero and can be 
defined as,

         
  (2)

 Approximate solution of the concentration parameter, 
 can be obtained by the maximum likelihood estimation 

(Best & Fisher 1981) which was defined as follows, 

  (3)

where .

 This is a continuous probability distribution and as κ  
approaches 0, the distribution converges to the uniform 
distribution. Meanwhile, as κ increase the distribution 
converges to the point distribution concentrated in the 
direction µ. Thus, it will approach the normal distribution 

with the mean μ0 and variance  (Fisher 1993; Mardia 

1972). Since then, von Mises distribution can also be called 
as Circular Normal Distribution as it has the similarities 
with the normal distribution on the real line (Fisher 1993). 
The approximation of concentration parameter, κ to the 
normal distribution has been tested earlier through the 
simulation study (Moslim et al. 2017).
 In data analysis, confidence interval is often used 
as they combine both point estimate and hypothesis 
testing into a single inferential statement. In other 
words, confidence interval gives an estimated range of 
values which is likely to include an unknown population 
parameter with a specified probability within that interval. 
A number of studies were done to approximate confidence 
interval for the concentration parameter of von Mises 
distribution including those using bootstrap (Hassan et 
al. 2014; Khanabsakdi 1996; Stephens 1969). However, 
some methods may not have good coverage accuracy of the 
confidence interval if size of data is small (Fisher 1993).
In this paper, we propose calibration bootstrap for the 
concentration parameter of von Mises distribution. It is 
assumed that the method will have an improvement on the 
coverage probability and robust against data distribution. 
Simulation studies will be carried out for the proposed 
method and compared with the standard approach 
using asymptotic distribution of . Their performance is 
examined using coverage probability and expected length 
values (Hassan et al. 2014, 2012; Letson & McCullough 
1998).

ASYMPTOTIC DISTRIBUTION OF    

Confidence interval based on the distribution of  is 
normally distributed with mean and variance as follows 
(Jammalamadaka & SenGupta 2001):

          
  (4)

 Then, the 95% confidence interval for the concentration 
parameter,κ can be found as follows:
         
  (5)

where

 , ,   and 

.

CALIBRATION BOOTSTRAP 

Bootstrap method is a computer-based technique for 
making certain kind of statistical inferences which can 
simplify the often-intricate calculations of traditional 
statistical theory (Efron 1979). This method was introduced 
as a nonparametric device for estimating standard errors 
and biases.
 One early method of obtaining confidence interval for 
concentration parameter is using the percentile bootstrap 
method (Fisher 1993). This approach is further improved 
using bootstrap-t (Hassan et al. 2014). However, the 
bootstrap-t method only limits to the second order accuracy 
and the algorithm can be numerically unstable. Thus, 
to ensure good coverage accuracy and overall expected 
length, we propose a calibration bootstrap method which 
improves to the third-order accuracy (DiCiccio & Efron 
1996).
 Calibration is a bootstrap resampling technique that 
performs a second bootstrap loop. Let 
          
  (6)

 Once the value of   is obtained and if the procedure 
is calibrated correctly, the value of  λ = α  is achieved. Let
          
  (7)

the bootstrap estimate of p(λ) where ”*” refers to the 
bootstrap sampling and  is fixed. Generate a number of 
bootstrap samples then compute  for each one and record 
the proportion of times that . By using the same 
bootstrap samples, the process is repeated for a range of 
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λ values that includes the nominal value α. The value of λ 
that satisfy   is denoted by .
 The following steps describe the calibration bootstrap 
method: 
1. Generate n values of θi from the VM(μ,κ) where 0 ≤ 

θ < 2π and i = 1, 2, …, n.
2. Estimate the bootstrap parameter for the bootstrap 

samples from (1) and label it as .
3. Repeat step (1) and (2) to obtain B bootstrap parameter 

estimates;  where b = 1, 2, K, B.
4. For each bootstrap samples, compute a λ-level 

confidence point  for a range of values of  λ.

5. Get the value of   for each λ. 

6. Find the value of  λ that satisfy p(λ) = α.

SIMULATION STUDY

 Simulation study were conducted for three different 
sample sizes, n = 30, 50 and 100 with four values of 
concentration parameter, κ = 2, 4, 6 and 8. Without loss of 
generality, the mean direction value will be assumed as 0. 
The significance level for the asymptotic distribution of  
is set at  α = 0.05 meanwhile for the calibration bootstrap 
method is α = 0.01. This has been evaluated previously to 
be the suitable value of α to get the probability of 0.95. The 
number of bootstrap replications, B for each simulation is 
set at 100 (Efron & Tibshirani 1993).
 Let s be the number of simulation studies and it was 
repeated for 1020 times. Two indicators to determine the 
best method in constructing intervals were calculated as 
follows:

coverage probability , where m is the number of 

true value that fall within the confidence interval and 
expected length = upper limit - lower limit.

 Coverage probability is the proportion number 
that the confidence interval contains the true value of 
concentration parameter for each method. The confidence 
level considered in this study is 95%. Thus, the best result 
is measured through the coverage probability value that 
is close to 0.95. Expected length is the class size of a 
confidence interval. It is another indicator to determine the 
best method of constructing the confidence interval. The 
best and efficient method will give the shortest expected 
length.

RESULTS AND DISCUSSION

Tables 1 and 2 show the coverage probability and expected 
length for all values of concentration parameter, κ and 
sample sizes, n for each method, respectively. Each method 
is labelled as follows: 

M1 - asymptotic distribution of  , and 
M2 - calibration bootstrap

From the results as displayed in Table 1, with the exception 
of n = 30, as we increase the values of , the coverage 
probability using M2 outperforms the M1 method.
 From the result in Table 2, the expected length of 
the confidence interval for both methods decreases as the 
sample size increases. It is worthwhile to note that the 
expected length increases as the concentration parameter 
increases. With the exception of n = 30, the expected 
length of M1 and M2 are very close to each other with M1 
consistently smaller.
 Based on the two measures, we note that the two 
methods are comparable. However, coverage probability 
is often used to measure performance of the confidence 
interval (Letson & McCullough 1998. In this case, based 
on coverage probability, M2 is the superior method or in 

TABLE 2. Expected length for concentration parameter, κ = 2, 4, 6, 8 and sample sizes, n = 30, 50, 100

n 30 50 100
Method M1 M2 M1 M2 M1 M2

κ

2 1.9327 2.5214 1.4333 1.7356 0.9903 1.1369
4 4.1183 5.5207 3.0595 3.7399 2.1200 2.4098
6 6.1525 8.3145 4.7402 5.8648 3.2872 3.7858
8 8.5748 11.5521 6.4970 7.9670 4.3865 5.1279

TABLE 1. Coverage probability for concentration parameter, κ = 2, 4, 6, 8 and sample sizes,  n = 30, 50, 100

n 30 50 100
Method M1 M2 M1 M2 M1 M2

κ

2 0.97 0.93 0.97 0.94 0.96 0.95
4 0.96 0.92 0.98 0.94 0.94 0.95
6 0.97 0.92 0.96 0.94 0.94 0.95
8 0.96 0.92 0.95 0.94 0.95 0.95
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other words, calibration bootstrap is a superior method.
 As mentioned earlier, calibration bootstrap could 
provide good approximation for confidence interval. 
Although calibration bootstrap is computationally intensive, 
this can be easily overcome with the advancement of 
technology and supercomputing facilities (Lv et al. 2017). 
Most importantly, the convergence rate is faster compared 
to other uncalibrated method (Loh 1991). Furthermore, 
calibration bootstrap is distribution-free and thus adds 
to the simplicity of method (DiCiccio & Efron 1996). In 
contrast, for confidence interval based on the asymptotic 
distribution of , one needs to check on the assumption of 
normality.

ILLUSTRATIVE EXAMPLE

As an illustration of the proposed method, daily wind 
direction data (in radian) recorded at maximum wind 
speed (in m/s) for seven stations in Malaysia were 
considered. These data were collected at the year of 
2008 at an altitude of 2.3 m to 37.8 m. A total of 70 data 
points was obtained from each station during the northeast 
monsoon (November to March). For the peninsular 
Malaysia, the stations are located at west coast and east 
coast regions. For the west coast region, the stations 
are located at Alor Setar, Kuala Lumpur International 
Airport (KLIA), Melaka and Senai meanwhile for the 
east coast region, the stations are located at Kuala 
Terengganu and Kota Bharu as shown in Figure 1. One 
station located at east Malaysia which is Kota Kinabalu 
was considered as well. All data were obtained from 
Malaysian Meteorological Department. 
 Satari et al. (2015) analysed the characteristics of 
Malaysian wind direction that was recorded at maximum 
wind speed for the years of 1999 to 2008. Those data 
described nicely with the von Mises distribution. Thus, 
we test the suitability of all stations to the von Mises 
distribution by plotting the goodness of fit based on 
quartiles using Oriana software. Due to the limited space, 

Figure 2 shows the goodness of fit plot to the von Mises 
distribution based on quantiles for the wind direction data 
at Kuala Terengganu station. From the figure, it can be 
seen that the wind direction data of all seven stations fits 
well to the von Mises distribution.
 Table 3 shows the upper limit, lower limit and 
expected length for the calibration bootstrap method 
from the stations located at west coast region, east 
coast region and east Malaysia. For each station, the 
concentration parameter,  was calculated. It can be 
seen that, the concentration parameter value for the 
east coast region was higher than the west coast region. 
In the west coast region, Melaka recorded the highest 
concentration parameter than other stations. Similarly, 
Kuala Terengganu recorded the highest concentration 
parameter than other stations at east coast region. Thus, 
the wind direction at both stations is less scattered and 
less dispersed. It is worthwhile to note that, Kota Kinabalu 
had the lowest concentration parameter suggesting that 
the wind direction at east Malaysia was more scattered 
and more dispersed during the northeast monsoon.

FIGURE 1. Malaysia Map (source: ms.wikipedia.org/wiki/Fail:Malaysia_location_map.svg)

FIGURE 2. Goodness of fit plot to the von Mises             
distribution of wind direction data
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CONCLUSION

This article proposed calibration bootstrap method in 
constructing the confidence interval of the concentration 
parameter for the von Mises distribution. The method 
is derived and compared to the asymptotic distribution 
of . The performances were evaluated via simulation 
study for various values of sample size and concentration 
parameter. The coverage probability value is more 
influenced in measuring the performance of confidence 
interval. Consequently, calibration bootstrap performs 
better result compared to the other method. The methods 
were tested using real data set and the results aligned with 
the simulation results.
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TABLE 3. Confidence Interval (CI) for wind direction data recorded at maximum wind speed 

Region Station
Confidence interval Expected length

M1 M2 M1 M2

West Coast, 
Peninsular 
Malaysia

Alor Setar 0.9533 (0.5644,1.3421) (0.6532,1.4959) 0.7777 0.8427

KLIA 0.9879 (0.5946,1.3812) (0.5810,1.4967) 0.7866 0.9157

Melaka 1.7617 (1.2344,2.2890) (1.3272,2.3907) 1.0547 1.0635

Senai 1.5844 (1.0939,2.0748) (1.1853,2.2280) 0.9809 1.0427

East Coast, 
Peninsular 
Malaysia

Kuala Terengganu 9.0689 (6.1523,11.9856) (7.4815,13.6182) 5.8333 6.1367

Kota Bharu 5.1690 (3.5490,6.7889) (3.7628,7.4614) 3.2399 3.6986

East Malaysia Kota Kinabalu 0.8214 (0.4477,1.1950) (0.4879,1.2922) 0.7473 0.8042
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