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Abstract. Bioethanol is a liquid fuel that can be produced from various raw materials. The first 
generation of bioethanol which are starch and sugar has begun to decline as these materials are 

considered to be the food sources for human as well as animals. However, the rise of production 

of bioethanol from the second generation which are the lignocellulosic materials has been proven 

to give a lot of benefits to mankind instead. Various technologies were studied in order to design 

an optimal processing route for bioethanol production from lignocellulosic biomass. A 

superstructure on the available process technologies which include the three main technologies, 

the pretreatment, sugar conversion, separation and purification was first developed before 

screening it down to a final superstructure. All of the data have been used in this study were 

collected from open literature and followed by the selection and development of the models 

required in order to solve the generic models and problems by using an optimization software, 

the Generic Algebraic Modelling System (GAMS). The optimization results indicate that the 
optimal processing route in producing bioethanol from lignocellulosic biomass include the 

technologies of steam explosion, dilute acid followed by fermentation, beer and dehydration of 

ethanol on zeolite for each process interval with maximum yield of 2238.4 kg/h.  

 

 
1. Introduction 

As the global energy demand keep increasing, the shortage of energy will be a global threat to mankind. 

The presence of bioethanol can be considered as an important renewable fuel to replace fossil fuels and 

it is also the most used liquid biofuel in the world. Along with the growth of modernization and 
industrialization, the demand of bioethanol also has shoot up. In fact, ethanol has long been considered 

as a suitable alternative to fossil fuels either as a sole fuel in cars with dedicated engines or as an additive 

in fuel blends with no engine modification requirement when mixed up to 30% [1]. Over the years, the 
ethanol produced from biomass also has become an increasingly popular alternative to gasoline [2]. As 

stated by Demirbas [3], unlike gasoline, ethanol is an oxygenated fuel that contains 35% oxygen, which 

reduces particulate and NOx emissions from combustion.  
Bioethanol can be produced from various raw materials. Sugar and starch based materials such as 

sugarcane and grains are two groups of raw materials usually used as the main resources for ethanol 

production while the second group is lignocellulosic materials representing the most viable option for 

production of ethanol [1]. Due to the agro-ecological conditions, North American and European are the 
countries that mainly produced bioethanol from starchy materials. Meanwhile, in Brazil, sugarcane is 

the main feedstock used for bioethanol production. However, in the subsequent years, sugar and starch 

based materials are not preferable anymore in producing bioethanol as these materials are considered to 
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be the source of food. This has led researchers to find another alternative, which are the lignocellulosic 

materials that are much more promising as feedstock taking into account the viability as well as the cost 

needed to utilize the feedstock. In many developing countries, food-related feedstock is preferably 
replaced by non-food raw materials such as sweet sorghum or cassava [4]. Other lignocellulosic 

materials include agricultural residues or crops such as sugarcane bagasse, corn stover and rice husks.  

In general, lignocellulosic biomass can be converted into ethanol through two types of conversion, 
namely biochemical and thermochemical. Biochemical conversion of biomass involves the technologies 

of pretreatment followed by hydrolysis to convert the feedstock to simple sugars before these sugars are 

being fermented to bioethanol. Meanwhile, thermochemical conversion of biomass includes biomass 

gasification to syngas which are mainly CO and H2 that can be further synthesized into a wide range of 
different fuels and chemicals under different catalysts and operating conditions [5]. However, with 

abundance of technologies available to produce ethanol, the concern of finding the best process route is 

very significant to produce a high quality fuel grade ethanol. Therefore, in this study, various process 
technologies available in biochemical conversion were studied in order to synthesis and design an 

optimal processing route of producing bioethanol from corn stover feedstock through an optimization 

software, GAMS [6].  

 
2. Materials and Method 

 

2.1. Construction of Systematic Approach for Synthesis of Bioethanol Production 
The systematic approach comprises of five main steps and the flow chart of the overall process is shown 

in figure 1 where the computer-aided support tools are integrated with the workflow in order to deal 

with the complexity of the synthesis problem. Each step presented in the framework is explained in the 
following section.  

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Figure 1. A systematic approach for synthesis of bioethanol production from lignocellulosic biomass. 
2.1.1. Step 1: Problem Definition. The objective of the optimization problem is to find the optimal 

process topology for producing bioethanol through biochemical route. Various alternatives and 

technologies were listed before finalizing the best process to be used in the production of bioethanol.  
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2.1.2. Step 2: Superstructure Development. In this section, the superstructure was developed by listing 

all the available routes exist in producing bioethanol. The pretreatment methods, sugar conversion 

technologies as well as separation and purification methods were the factors to be considered in the 
selection of the process technologies and superstructure development. A prior screening process should 

be performed for the identification of the technologies to be located in the superstructure and the 

interconnections between the technological alternatives which defined by the experts. If the data and 
information for feasible technology was not available, the technology was discarded from the 

superstructure representation. Each processing step in the superstructure consists of one or more 

intervals that represented a block. The generic block incorporates generic models to represent alternative 

processing steps and a simple block used to represent the activities of processing technologies [7-8]. 
Depending on the step and process technology employed, process intervals can be characterized by a 

simple process flowsheets of different structure or represented as a series of unit operations which 

consist of flow mixing, utility dosage, reaction, waste separation, product separation and flow division 
as shown in figure 2. Table 1 summarizes the available technologies for each conversion step involves 

biochemical processing routes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of the generic process interval. 

 

Table 1. Available technologies for conversion of corn stover. 

Conversion step Process Technology References 

Pretreatment Steam Explosion [9] 

Controlled pH  

Dilute Acid 

Ammonia Fiber Explosion  

Ammonia Recycling Percolation 

Lime 

Hydrolysis  Dilute Acid [3] 
 Fermentation Concentrated Acid 

Separation Beer column [10] 

Purification Dehydration of ethanol on zeolite (Rect+Zeo) [11] 

Dehydration of ethanol on glycerol (Glycer) [12] 

Dehydration of ethanol on ethylene (Ethyl) [13] 

Dehydration of ethanol on ionic liquids (ILs)  [14] 

Dehydration of ethanol on silica (Rect+Sil) [15] 
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2.1.3. Step 3: Data Collection. For data collection, significant data and information for each possible 

technology were collected from different resources. All of these data and information then were stored 

and saved in Microsoft Excel as a database. All relevant information on raw materials as well as the 
process intervals were also collected. The data and parameters required for the generic data for the 

intervals include reaction conversion, utility consumption, and split fraction, which are identified by 

input-output information. The data were obtained from open literature including experimental and pilot 
plant studies. 

 

2.1.4. Step 4: Model Selection and Development. After defining superstructure and collecting related 

data, the next task is the selection and development of models describing each of the element of the 
superstructure as well as the models required for the calculation of the selected objective function (i.e 

maximum yield) and the performance criteria. In this case, objective function is to obtain maximum 

product yield as given in equation (1).  
 

𝑌𝑖𝑒𝑙𝑑 = ∑ 𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡

𝑖,𝑘𝑘

 (1) 

 
The process models used in this paper are adapted from [7] as presented in the Appendix. Sets of 

generic equations representing a sequence of processing tasks, which are mixing, reaction, waste 

removal and product separation, as well as utility consumption were modelled for each interval in the 
superstructure. Multiple inlets and outlets from the interval were allowed, including recycle streams 

from downstream intervals and bypasses.  

 
2.1.5. Step 5: Optimization Problem Formulation and Solution. In this last step, the equations, constraint 

and logical are generally expressed as Mixed Integer Linear Programming (MILP) problem. The 

optimization problem was solved by employing solver from an optimization software, GAMS. The 

inputs to the solver were the generic model and an input file with all the necessary problem data such as 
the raw materials, feed composition, component and model parameters. The outputs from the 

optimization were the optimal values of the objective function, the corresponding optimization variables 

and all other process variables. 
 

3. Results and Discussions 

The conversion of lignocellulosic biomass to bioethanol in the biochemical conversion platform may go 

through multiple routes with different available technologies that have different economic 
performances. In this case study, it is desired to produce 99.5% pure bioethanol from corn stover.  The 

feedstock composition is presented in table 2. It is assumed that the hydrolytic enzymes were purchased 

from commercial suppliers.  
 

Table 2. The feed composition.  

Component   % Dry Basis 

Lignin  16 

Xylan  16 

Arabinan  2 

Galactan  1 

Cellulose  31 

Water  24 

Ash  10 

 

The objective of the optimization problem is to find the optimal process topology for producing 

bioethanol through biochemical route that gives the highest bioethanol yield. The superstructure was 
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constructed based on the available of data and information for all viable options of process topology for 

the bioethanol production from corn stover as shown in figure 3. As can be seen in figure 3, the 

bioethanol processing network superstructure are composed of 1 raw material (corn stover) 17 process 
intervals represent different technologies structured in 5 processing steps and 1 product (bioethanol). 

Also, 34 components and 3 utilities are considered in this problem. 

 

Figure 3. Superstructure of available raw materials and processing routes. 
 

The optimization problem was formulated as MILP and solved using CPLEX/GAMS using GAMS 

version 23.9.5 [6] to identify an optimal processing route. The case study was performed using a 
standard computer, equipped with 2.40 GHz Intel (R) Core™ i5-6200U. The superstructure features 

987,938 number of variables, and 1,644,456 number of equations as presented in table 3. 

  

Table 3. Statistics optimization problem for bioethanol production process 

Number of variables 987,938 

Number of equations 1,644,456 

Problem type MILP 

Solver GAMS/CPLEX 

Execution time 0.249 seconds 

 
Results for the selected process topology are given in table 4. It is found that steam explosion 

(STEX) has been selected for the pretreatment step. In STEX process, high-pressure saturated steam is 

added in which it initiates the hydrolysis reaction. Pressure is then suddenly reduced, exposing the 

feedstock to an explosive decompression which opens the biomass structure, thus, increasing the 
accessibility of the enzyme [16]. Meanwhile, for hydrolysis, the results on GAMS showed that the 

optimized process technology was dilute acid. According to Alvira et al. [17], this method does not only 

solubilize the hemicellulose which is mainly xylan, but it also converts the solubilized hemicellulose to 
fermentable sugars. The process route then continued with fermentation and separation before being 

purified to fuel grade ethanol. In this last step, the optimized route based on GAMS was rectification 

with zeolite. Abdeen et al. [11] stated that zeolites are proven to be efficient in removing the water from 

ethanol-water azeotrope due to their small pore size of less than 0.3nm which allows only water to 
adsorb to the inner large surface area of zeolite. Based on the optimization results obtained from GAMS, 

the maximum yield that can be achieved for the selected process technologies is 2238.4 kg/h. The 

optimal processing route is shown in figure 4. 
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Table 4. Mass flow for the selected process technologies. 

Process Technology Mass Flow (kg/hr) 

STEX 5175.4 

DILA 5175.4 

FERM-ETOH 6790.0 

FILTR 8090.0 

BEER 6896.1 

RECT+ZEO 2314.8 

FEUL GR ETOH 2238.8 

 

Figure4. An optimal processing route for bioethanol production from corn stover –highlighted the 
selected process technologies. 

  

4. Conclusion 

Based on the results obtained, the selected processing route for pretreatment, hydrolysis, separation and 
purification process interval were steam explosion, dilute acid followed by fermentation, beer and 

dehydration of ethanol on zeolite respectively with maximum yield of 2238.4 kg/h. The superstructure-

based optimization methodology has been shown to be a useful decision support tool for early stage 
synthesis and design of bioethanol production from lignocellulosic biomass by screening a number of 

process technologies.  
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Appendix 

 

𝐹𝑖,𝑘𝑘
𝑚𝑖𝑥 =  𝐹𝑖,𝑘𝑘

𝑖𝑛 + 𝜎𝑖,𝑘𝑘𝐶𝑈𝑖,𝑘𝑘 (A.1) 

𝐶𝑈𝑖,𝑘𝑘 =  ∑(𝜇𝑖,𝑖𝑖,𝑘𝑘 ∙

𝑖𝑖

𝐹𝑖,𝑘𝑘
𝑖𝑛 ) 

(A.2) 

𝐹𝑖,𝑘𝑘
𝑅 = 𝐹𝑖,𝑘𝑘

𝑚𝑖𝑥 + ∑ (𝛾𝑖,𝑘𝑘,𝑟𝑟 ∙ 𝜃𝑟𝑒𝑎𝑐𝑡,𝑘𝑘,𝑟𝑟 ∙ 𝐹𝑟𝑒𝑎𝑐𝑡,𝑘𝑘
𝑚𝑖𝑥 ∙

𝑀𝑊𝑖

𝑀𝑊𝑟𝑒𝑎𝑐𝑡
)

𝑟𝑟,𝑟𝑒𝑎𝑐𝑡

 
(A.3) 

𝑊𝑖,𝑘𝑘 = 𝐹𝑖,𝑘𝑘
𝑅 ∙ 𝑆𝑊𝑖,𝑘𝑘 (A.4) 

𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡 = 𝐹𝑖,𝑘𝑘

𝑅 ∙ (1 − 𝑆𝑊𝑖,𝑘𝑘) (A.5) 

𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡1 = 𝐹𝑖,𝑘𝑘

𝑜𝑢𝑡 ∙ 𝑆𝑃𝑟𝑖,𝑘𝑘 (A.6) 

𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡2 = 𝐹𝑖,𝑘𝑘

𝑜𝑢𝑡 ∙ (1 − 𝑆𝑃𝑟𝑖,𝑘𝑘) (A.7) 
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𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡1 = ∑ 𝐹𝑖,𝑘,𝑘𝑘

1

𝑘𝑘

 
(A.8) 

𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡2 = ∑ 𝐹𝑖,𝑘,𝑘𝑘

2

𝑘𝑘

 (A.9) 

𝐹𝑖,𝑘𝑘
𝑖𝑛 = ∑(𝐹𝑖,𝑘,𝑘𝑘

1

𝑘

+ 𝐹𝑖,𝑘,𝑘𝑘
2 ) (A.10) 

𝐹𝑖,𝑘,𝑘𝑘
1 = 𝐹𝑖,𝑘𝑘

𝑜𝑢𝑡1 ∙ 𝜉𝑘,𝑘𝑘
𝑃 ∙ 𝑆𝑀1𝑘,𝑘𝑘 (A.11) 

𝐹𝑖,𝑘,𝑘𝑘
2 = 𝐹𝑖,𝑘𝑘

𝑜𝑢𝑡2  ∙ 𝜉𝑘,𝑘𝑘
𝑆 ∙ 𝑆𝑀2𝑘,𝑘𝑘 (A.12) 

𝐹𝑖,𝑘𝑘
𝑜𝑢𝑡 = ∅𝑖,𝑘𝑘 ∙ 𝑦𝑘𝑘 (A.13) 

0 ≤ 𝑓𝑖,𝑘𝑘 ≤  𝑦𝑘𝑘 ∙ 𝑀 (A.14) 

∑ 𝑦𝑘𝑘 ≤ 1

𝑘𝑘

 (A.15) 
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