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Abstract. Similar to petroleum industry, major energy consumption in oleochemical plants is 

also dominated by separation process in order to obtain purified oleochemical cuts. Combination 

of the distillation column with heat pumping system has emerged as one of the most popular 

techniques in heat integration. Although heat pumping technology has been proven to be 

effective in petroleum separation, the research on this technology in oleochemical separation has 

not yet been discovered. Hence, it would be appealing to investigate the feasibility of integrating 

heat pump technology with distillation units in hopes of reducing energy usage in the separation 

of oleochemical products. In this study, two configurations of heat pumping system, namely 

direct vapor recompression (VRC) and bottom flashing heat pump (BFHP) are simulated in 

Aspen Plus particularly for fractionation of palm kernel oil (PKO) fatty acid. Proper selection of 
thermodynamic package is discussed in detail. Only three major components of PKO-based fatty 

acid are involved in the simulation in order to arrive at simple simulation and easy convergence. 

Simulation results indicates that both configurations of heat pump can be feasibly integrated with 

the distillation column. However, to satisfy the heating and cooling requirement, supply of make-

up utility is necessary. 

1.  Introduction 

Over the past decades, most research in separation processes has emphasized the use of heat integration 

approach which not only provides economic benefits but also reduces the greenhouse gas emissions [1]. 

Principally, the effective separation process involves the supply of heat at an elevated temperature in 

the reboiler and reject the heat at a low temperature in the condenser [2]. Due to the significant 
temperature difference between the reboiler and condenser, the overall thermodynamic efficiency of a 

distillation column is considerably low, which is typically ranging from 5% to 20% [1]. In light of this, 

distillation has become an utmost priority for general improvement in energy efficiency in most 
chemical plants.  

In the history of energy-efficient distillation development, heat integration has been thought of as a 

key factor in reducing the energy consumption in the column. The most promising external heat 

integration approach is the association of heat pumping with distillation unit. The idea of heat-pump 
assisted distillation (HPAD) lies in the fact that available heat sources and heat sinks within the 

distillation process may be used for heat recovery. A heat pump is purposely used in an effort to fully 

utilize the waste heat released from the condenser to assist the evaporation in the reboiler [3]. Of all the 
available systems, vapor recompression (VRC) is the most popularly known HPAD amongst the 

researchers. Application of HPAD system would be beneficial to reduce the associated utility costs, by 

making use of waste heat either from excess vapor at any stages in the stripping section or directly from 
overhead vapor to aid the evaporation process in the reboiler. There are various possible VRC flowcharts 
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can be employed depending on the influencing factors of the process system. Typical VRC 

configurations in distillation process are direct VRC and bottom flashing heat pump (BFHP). 

The research on heat-integrated distillation using HPAD method to date has tended to focus on 
petroleum processes and very few writers have been able to draw on any systematic research into energy-

efficient distillation process in oleochemical plants, let alone the integration of the column with heat 

pumping and other intensified technologies. The main challenges are coming from the limitations in 
familiarity and flexibility of oleochemicals which will lead to a complexity in operation; high degree of 

freedom [4]. Nonetheless, one published literature has successfully developed a model of fatty acid 

fractionation in a dividing wall column (DWC), closely represented by a four-column configuration [5]. 

Though the study requires more works on its design controllability, it offers some important insights 
into integrating the heat integration system to the existing column design.  

This present work attempts to demonstrate that the fractionation of palm-based fatty acid in 

conventional distillation column can be feasibly integrated with the VRC technology. The models are 
developed using Aspen Plus V10 simulator and the thermodynamic package that is well-suited the 

process is selected based on the validation process as explained in the methodology section. 

2.  General process description of fatty acid fractionation 

Fractional distillation of oleochemical fatty acid is commonly carried out by means of sequential 
separation, employing two units of conventional distillation column (CDC) to purify and separate heavy 

cut (C16-C18), medium cut (C12-C14) and light cut (C8-C10) [5]. The process is operated under 

vacuum, most of which ranges from 5 to 80 mbar [6]. Due to its heat sensitive characteristic, the 
chemical decomposition of fatty acids can be avoided if the operating temperature is kept between 180-

250°C [7]. The pressure drop within the column should be retained as low as possible, in such a way 

that the difference between top column pressure and bottom column pressure is 40-60 mbar [7].  

3.  Principle of distillation column with vapor recompression system 

 

3.1.  Direct vapor recompression (VRC) 

As illustrated in figure 1, this configuration eliminates the employment of a condenser, as the vapor 
leaving the top of the column is straight out sent to a compressor. For the purpose of introducing the 

latent heat of condensation into the reboiler, the overhead stream must be compressed to a point where 

the temperature is sufficiently high for an efficient heat exchange [8]. In the compression stage, saturated 
vapor might condense in the compressor. The consequence from this unfavorable situation is that the 

available latent heat cannot be fully utilized to vaporize the liquid stream in the reboiler [9]. Nonetheless, 

condensation of the fluid can be avoided by superheating the stream in a superheater prior to 
compression [8-9]. Large temperature difference indicates high compression ratio, which requires more 

mechanical works [9-10]. For that reason, the VRC is only considered as cost-effective if the 

temperature difference is small [10]. The heat transfers from compressed vapor to bottom product occurs 

through a heat exchanger which operates as a combination of a reboiler and a condenser [11]. In practice, 
partial condensation might take place during heat transfer process. In view of this, the stream must be 

further cooled in a trim condenser to a temperature that will not make it vaporized when its pressure is 

reduced to a column pressure through a throttling valve [9, 12]. The saturated liquid will be then returned 
to the column, whilst the remaining liquid is discharged as distillate [12]. On the other hand, the saturated 

vapor in bottom stream is separated from its liquid in the flash drum and recycle to the column whereas 

the liquid outlet is discharged as bottom product [9, 12]. 
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Figure 1. Typical configuration of distillation column with direct VRC system. 

 
3.2.  Bottom flashing heat pump (BFHP) 

In this heat pump system, the bottom liquid is expanded in a valve to decrease its temperature, bubble 

point and pressure so that it can be heat exchanged with top vapor stream in a heat exchanger [13]. The 

bottom stream is flashed until its dew point temperature is much lower that the top vapor temperature 
[14]. After passing through the heat exchanger, the bottom outlet stream is recompressed in a compressor 

to the column pressure, increasing the temperature as well. Due to that, the stream needs to be air-cooled 

so that it can be recycled to the column. Similar to direct VRC system, the vapor is separated from liquid 
in a flash drum and sent to the column as boil-up, whilst the liquid is discharged as final bottom outlet. 

In the event that the boil-up is not sufficiently produced, a trim reboiler might be needed to supply the 

remaining boil-up. For comparison purposes, the condensed top outlet with similar distillate flow rate 
in the CDC is discharged as a final top product, and the rest is recycled to the column as reflux. Figure 

2 shows the standard configuration of BFHP. 

 

 
Figure 2. Typical configuration of distillation column with BFHP system. 
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4.  Simulation Methodology 

4.1.  Feed data selection 

In this study, the feed was adopted from Othman and Illner [5] which utilizes industrial palm kernel oil 
(PKO) based fatty acid. To ease the simulation process, three major compositions of the fatty acid as 

tabulated in table 1 were used for feed stream input.  

 

Table 1. Major components in PKO based fatty acid. 
     

Component ID (Aspen 

Plus) 

Formula Mass fraction Dipole moments 

(MUP) 

Lauric acid 1-DOD-01 C12H24O2 0.663 2.761 

Myristic acid N-TET-01 C14H28O2 0.227 1.679 

Palmitic acid N-HEX-01 C16H32O2 0.110 1.739 

 

4.2.  Selection of thermodynamic model 
Many researchers and engineers overlook the importance of choosing an appropriate thermodynamic 

model prior to carrying out the process simulation in the process simulator. Improper selection will 

result in a poor performance of the developed process model, or worse, inaccurate result will be 
generated for the overall simulation.  Apparently, there are many thermodynamic models available to 

choose from and the selection method can be facilitated by using a decision tree [15] which provides 

appropriate heuristic for better screening options.  

As can be seen in Table 1, all three major components of PKO based fatty acid possess dipole 
moments (MUP) value larger than zero, so as to indicate that the feed to the distillation column is polar 

fluid. Given that the fatty acid is non-electrolyte system with pressure under 10 bar, it is suggested by 

the decision tree that the suitable models for this study are NRTL, Wilson, UNIQUAC and UNIFAC. 
This is inconsistence with previous studies where the thermodynamic model used in fatty acid 

fractionation were Soave-Redlich-Kwong [5] and Lee-Kesler-Plocker [16]. To determine whether the 

suggestion from the decision tree is the best choice, further validations for the suggested models as well 
as the ones used in the published literatures were thoroughly carried out. The validation process using 

average absolute deviations (AAD) calculations using equation (1) is summarized in table 2. 

 

𝐴𝐴𝐷 =  
∑ |𝑇𝑖

𝑒𝑥𝑝 − 𝑇𝑖
𝑝𝑟𝑒𝑑|𝑛

𝑖

𝑛
                                                                           (1) 

 

The model predictions results were validated against experimental data from National Institute of 
Standards and Technology (NIST) available in the Aspen Plus databank. The binary experimental data 

that could be retrieved from NIST Thermodata Engine (TDE) is only myristic acid/palmitic acid binary 

system. Under these circumstances, analysis for all listed models was also done for myristic and palmitic 
acid system to generate more reliable comparison data. The AAD value for each model indicates how 

much it deviates from the base data. For comparison purposes, the temperature for model predictions 

was extracted at similar liquid mole fraction of experimental data.  

From table 2, it was clearly observed that NRTL, Wilson, UNIQUAC and UNIFAC models acquired 
considerably small differences which is in agreement with the decision tree. UNIQUAC model has the 

lowest AAD value which suggests that it is the most suitable model to be used when involving fatty acid 

components. LK-Plock model, on the other hand, proved the invalidity of previous researches that have 
employed the particular model for fatty acid process simulations. While SRK model deviations was very 

much smaller than that in LK-Plock, it is still not the best one to be used.  
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Table 2. AAD of thermodynamic model predictions from experimental data in Aspen Plus. 
        

Liquid TDE Model prediction, Tpred (K) 

fraction Texp (K) NRTL Wilson UNIQUAC UNIFAC LK-Plock SRK 

0.000 465.150 463.908 463.908 463.908 463.908 457.611 461.960 

0.044 563.149 462.752 462.760 462.751 462.659 455.850 460.728 

0.160 461.148 459.904 459.921 459.917 459.664 452.124 457.772 

0.303 458.147 456.751 456.765 456.790 456.461 448.746 454.605 

0.502 454.145 452.926 452.931 452.983 452.689 445.327 450.866 

0.629 452.145 450.770 450.779 450.829 450.603 443.606 448.795 

0.840 449.644 447.630 447.630 447.654 447.565 441.208 445.769 

1.000 447.143 445.546 445.546 445.546 445.546 439.631 443.751 

AAD  1.3095 1.3038 1.2865 1.4469 8.3209 3.3030 

 

 
4.3.  Base case: Conventional distillation column (CDC) 

The shortcut model in Aspen Plus, DSTWU is usually used to estimate the column performance such as 

number of stages and reflux ratio, which will later be used for rigorous distillation known as RADFRAC. 
The column capacity for PKO based fatty acid fractionation in this simulation study was 9000 kg/hr and 

feed mass compositions were set as tabulated in Table 1. The feed vacuum pressure and temperature 

throughout this work were taken to be 20 mbar and 180°C, respectively. The estimation of reflux ratio 
value was determined using DSTWU results and with reflux ratio value of 0.88, 19 stages were required 

to reach the desired separation. Due to its very low-pressure operation condition, it was assumed that 

there was no pressure drop across the column. A simulative investigation into the performance of two 

VRC configurations was carried with comparison to this base case. In all simulations, the feed was 
introduced to the column at the same condition, and both distillate and bottom product were required as 

saturated liquid at 20 mbar.  

 
4.4.  Distillation column with direct VRC system 

For the purpose of arriving at simple process simulation in the simulator, the degree of freedom must be 

reduced to avoid convergence issues. In this study, the assumption made was that no condensation 
occurs during compression. The overhead outlet of CDC was directly fed to the compressor with an 

outlet pressure of 40 mbar, where the temperature was hot enough to supply required heat for bottom 

liquid heating. The temperature difference was kept within 5-7°C for economical reason. In the heat 

exchanger, compressed vapor exchanged heat with the bottom liquid stream, where the pressure drops 
of shell and tube side were neglected. However, the recovered heat was insufficient to satisfy the heating 

requirement in the reboiler. Thus, a trim reboiler was employed to provide the remaining heat. The 

throttle valve brought back the stream to its column operating pressure and was then subcooled in the 
cooler or trim condenser prior to stream splitting. It is very important to make sure that the stream does 

not vaporize because the reflux stream must return to the column as liquid as well as for comparison 

purposes, the product streams must be discharged as saturated liquid. In the splitter, mass flowrate of 

distillate stream was set to be the same as in base case. A portion of liquid is recycled to the top column 
as reflux. Meanwhile, the heated stream was introduced into the flash drum. The vapor stream was 

returned to the bottom of the column as boilup. The final product of bottom liquid with similar flowrate 

as in the CDC was obtained by manipulating the operating temperature of the flash drum. Figure 3 shows 
the simulated process flow diagram of the system in Aspen Plus. In this simulation, the typical 

RADFRAC column was substituted with a simple RADFRAC absorber without both condenser and 

reboiler.  
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Figure 3: Flowsheet of the direct VRC-assisted distillation column. 

 

4.5.  Distillation column with BFHP system 

In this configuration, the pressure of the bottom liquid was reduced to 8.5 mbar and the temperature was 

decreased to 172.38°C to enable heat exchange with the column top vapor stream. Similarly, make-up 
heat was also required in this system due to insufficient heating duty provided by top column vapor. 

Hence, additional of a trim reboiler in the flowsheet as can be seen in figure 4. The bottom column outlet 

entered the compressor to be recompressed to the column operating pressure before being separated in 
the flash drum. However, a superheater was needed to ensure the stream entering the compressor 

contained maximum amount of vapor for compression, otherwise the system would not be converged. 

The recompressed bottom column outlet stream was cooled and sent to the flash drum. Vapor outlet was 
recycled as boil up and liquid product was discharged as final bottom product. The hot outlet stream of 

the heat exchanger was straight away divided in the splitter as no cooling needed. Liquid reflux returned 

to the column while the other portion of liquid was withdrawn as final distillate product. 

 

 
Figure 4. Flowsheet of the BFHP system. 

5.  Results and discussions 

In reviewing the literature, no study was found on the simulation of oleochemical separation using heat 

pumping scheme. In the current study, comparing the conventional column with two HPAD 
configurations generates significant differences in energy requirement. The simulation process was 

straightforward for the VRC model, however for the BFHP, some manipulations of the variables were 

needed to get the system converged. The process conditions of product streams for all simulations are 
presented in table 3.  
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Table 3. Process conditions of product streams. 
  

 CDC VRC BFHP 

Purity of C12H24O2 in distillate (%) 99.89 99.89 99.78 

Distillate temperature (°C) 181.11 180.40 181.50 

Bottoms temperature (°C) 195.18 195.17 195.17 

Condenser load (kW) 882.27 ‐ ‐ 

Reboiler load (kW) 943.15 ‐ ‐ 

Recovered top vapor heat (kW) ‐ 822.31 882.26 

 *(-) Not applicable 

 
As can be seen from the table, both HPAD configurations recorded high purity of the desired product, 

C12H24O2 in the distillate stream. Product temperatures of integrated columns also showed very minimal 

differences than in the CDC. Meanwhile, the systems proved an excellent performance in recovering 

heat from column overhead vapor to aid in heating process of the liquid in the column bottom stream.  
It is no doubt that an immense amount of energy could be conserved with both HPAD systems. Heat 

pumping technology, though not completely, but reduced more that 80% of reboiler duty and more than 

70% of condenser duty. Table 4 summarises the external heating and cooling duty for direct VRC and 
BFHP arrangements after the elimination of the condenser and reboiler units as compared to 

conventional column. The mechanical work in the compressor is also compared in the table for both 

integrated systems. 

 

Table 4. Summary of relative performance of all simulations.  
    

System CDC Direct VRC BFHP 

Cold utility requirements (kW) 882.27 97.56 285.74 

Hot utility requirements (kW) 943.15 127.21 425.14 

Mechanical work requirements (kW) ‐ 38.95 76.53 

 *(-) Not applicable 

 
In direct VRC case, approximately only 11% of cold utility is required than in the CDC. Further 

cooling was necessary to decrease the vapor fraction of the reflux stream. The hot utility input in this 

system is coming from the trim reboiler which was purposely used to supply auxiliary heat for bottom 

liquid reboiling. Even so, 87% of column top vapor heat could be recovered to provide heat for the 
bottom liquid, which is quite a promising option.  

For BFHP case, if we look closely at the utility requirement values, it is apparent that this system 

requires substantially high external utilities to satisfy the process requirement in comparison to direct 
VRC. The high heating duty was contributed by two equipment as depicted in figure 4. Even though the 

recovered heat using this method was 94%, higher than that in the VRC, the superheating of the bottom 

column outlet has directly escalated the number of hot utility requirements. This situation could not be 
avoided because the vapor content in the stream after exchanging heat was insufficient to undergo 

compression, therefore the need to superheat it until vapor fraction has reached 1.00. Due to this, 364.36 

kW of energy was demanded only for superheating. On the other hand, the cooling duty for the BFHP 

as shown in the table is also considerably high due to an increased temperature after the compression. 
The elimination of overhead condenser and bottom reboiler implies that the amount of external 

cooling utility is significantly decreased thus will be reducing more operation costs. However, it is 

compulsory in heat pumping method to employ a compressor unit. Unlike the conventional operation, 
the HPAD economic feasibility highly depends on the compression ratio value, because as a matter of 

fact, higher compression ratio means more mechanical work. Principally, the operation and capital costs 



1st ProSES Symposium 2019

IOP Conf. Series: Materials Science and Engineering 702 (2019) 012012

IOP Publishing

doi:10.1088/1757-899X/702/1/012012

8

 
 

 

 

 
 

for the implementation of the compressor that is driven by electricity is outrageously expensive. Table 

4 reported that the compression work in the BFHP is obviously higher than that in the direct VRC. Not 

only the BFHP system demanded more external utility supply, but it also consumed more electricity. 
Taken together, the VRC configuration is in favour in this assessment over the BFHP. 

6.  Conclusions 

This study set out to conduct an assessment of heat pumping method in oleochemical fatty acid 
separation. The results of this study indicate that it is technically feasible to integrate the system with 

the process. The performance of the direct VRC configuration is apparently better than the BFHP. 

Although the consumption of external heat source is decreased in the reboiler, along with the reduction 

of condenser and its utility usage, the HPAD additionally employs a compressor that is operated by 
electricity, which is far more expensive than the thermal utility. It is a proof that a systematic analysis 

of the HPAD is necessary from the energetic and economic aspects. There will be certainly a trade-off 

between operational and capital costs to operate the system. Also, it will be more promising if the 
simulation process is thermodynamically correct and one of the ways is to properly select the 

thermodynamic package prior to run the simulation. Further studies, which take the effects of 

thermodynamic measures to the HPAD system into account, involving all components in the feed 

stream, will need to be undertaken. This research will serve as a base for future studies in energy efficient 
oleochemical separation. 
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