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ABSTRACT

Multilayer Perceptron Network (MLP) has a better prediction 
performance compared to other networks since the structure of 
the MLP is suitable for training processes in solving prediction 
problems. However, to the best of our knowledge, there is no rule 
of thumb in determining the number of hidden nodes within the 
MLP structure. Researchers normally test with various numbers 
of hidden nodes to obtain the lowest square error value for 
optimal prediction results since none of the approaches has yet to 
be claimed as the best practice. Thus, the aim of this study is to 
determine the best MLP network by varying the number of hidden 
nodes of developed networks to predict cycle time for producing 
a new audio product on a production line. The networks were 
trained and validated through 100 sets of production lots from a 
selected audio manufacturer. As a result, the 3-2-1 MLP network 
was the best network based on the lowest square error value 
compared to the 3-1-1 and 3-3-1 networks. The 3-2-1 predicted 
the best cycle time of 5 seconds to produce a new audio product. 
Hence, the prediction result could facilitate production planners 
in managing assembly processes on the production line.
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INTRODUCTION

Artificial Neural Network (ANN) is a brain metaphor method (Wilson & 
Sharda, 1992) and a non-linear data driven to solve prediction problems 
through a learning process (Kumar, 2013). A learning process in ANN is 
conducted through a network structure to solve prediction problems. A 
network is an arrangement of interrelated connections in a system (Ahmarofi, 
Ramli, & Abidin, 2017; Al-Nuaimi & Abdullah, 2017). The network for 
ANN model is classified into two major structures which are feed-forward 
multilayer perceptron (MLP) and recurrent network (Kumar, 2013). However, 
the MLP network has shown superior capability in solving prediction problems 
compared to the recurrent network due to the MLP having well-structured 
layers for reaching a desired target (Esfe, Afrand, Wongwises, Naderi, Asadi, 
Rostami, & Akbari, 2015; Samarasinghe, 2016; Priambodo & Ahmad, 2018).

In the structure of an MLP network, input is transferred from input 
layer to output layer through a hidden layer (Haykin, 2009; Kumar, 2013). 
The transmission of input from one layer to another is through a connection 
which is termed as a neuron (Azadeh, Kosar, Shoushtari, & Ebrahim, 2014). 
The structure of an MLP network is illustrated in Figure 1 as follows.

Figure 1. Network structure of feed-forward multilayer perceptron.
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where,

a is the number of input nodes at the input layer where                              
b is the number of hidden nodes at the hidden layer where 
c is the number of output nodes at the output layer where 

Each of the layers comprises several nodes. A node is a processing 
centre of input for each layer (Samarasinghe, 2016). The input at the node 
is processed through Backpropagation (BP) learning algorithm. The BP 
algorithm is suitable to train data in the MLP network since BP is a supervised 
learning method that has the capability of mapping an input to an output 
(Dzakiyullah, 2015; Ibrahim, Shamsuddin, & Qasem, 2015; Turban, Sharda, 
& Delen, 2011). Moreover, various numbers of hidden nodes within an MLP 
network has been experimented by researchers to obtain the best network 
for solving prediction problems. However, none of the approaches has been 
claimed as the best practice. 

In order to develop the MLP network, a case problem based on a real 
company situation was examined in this studyr. The company is a global 
business manufacturer for audio products to meet customer requirements in 
the latest technology. The company was facing an issue with the uncertain 
cycle time of new audio products. Consequently, the completion time of the 
new products was affected as the production site was unable to fulfil customer 
delivery requirements on time.

The objective of this study is to determine the best MLP network to 
predict the cycle time of a new audio product through the establishment of 
single input, hidden and output layers while the number of hidden nodes, b, 
varies based on small datasets, which is 100 datasets. Previous work related to 
cycle time and variations in the number of hidden nodes in an ANN model are 
discussed in the literature review section. This is followed by the methodology 
of the study, related results, the conclusion and future work.

LITERATURE REVIEW

In a production system, cycle time is the time needed to process a product with 
a specific task on a production line (Ahmarofi, Abidin, & Ramli, 2017a; Seth, 
Seth, & Dhariwal, 2017). Therefore, the determination of cycle time is crucial 
to avoid the postponement of a job’s completion time, also known as tardiness 
(Schafer, Chankov, & Bendul, 2016). 
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Nevertheless, the uncertainty of cycle time which is dependent on: the 
number of manpower, material preparation and machine capacity are difficult 
to predict (Ahmarofi et al., 2017b). From previous studies, the prediction 
problem is solved through three main predictive methods which are regression 
analysis, decision trees and ANN (Jamil & Shaharanee, 2015). It has been 
found that the regression analysis method showed low performance for data 
mining processes (Carbonneau, Vahidov, & Laframble, 2007; Turban et al., 
2011) while decision tree is only best implemented when the number of 
classes are low (Wang, 2007) and for classification purposes (Chien, Wang, 
& Cheng, 2007). However, in many cases, ANN has proven its capability in 
solving prediction problems due to its capability to assimilate the relationship 
between input and output (Azadeh et al., 2014; Haykin, 2009; Mehrjerdi & 
Aliheidary, 2014). Several researchers have implemented the MLP in their 
studies and have successfully solved prediction problems in production 
operations (Karam, Centobelli, Doriana, Addona, & Teti, 2016; Poonia, Soni, 
& Khanam, 2016; Vrabel, Mankova, & Beno, 2016).

Moreover, the number of hidden nodes has been investigated by 
researchers in their studies to find the optimal MLP structure. In a study 
by Wanas, Auda, Kamel, and Karray (1998), they claimed that the best 
performance of a network was when the number of hidden nodes was equal 
to the logarithm of number for training sample. The results showed that the 
higher the number of hidden nodes, the better the performance of the network. 
They found that 15 hidden nodes showed almost similar performance with 
11 hidden nodes for a 2000 sample data. However, the recommendation by 
Wanas et al. (1998) differed from Turban et al. (2011) as the latter posited that 
the number of hidden nodes could be set based on the result of the summation 
between the numbers of input with output nodes and divided by two.

Despite this, Leung, Lam, Ling and Tam (2003) highlighted that a large 
network may have some of its connections redundant. Besides, the authors 
suggested that the number of hidden nodes should be chosen manually starting 
from a small number and then increased gradually if the learning performance 
in terms of fitness value was not acceptable. Based on their experiment to 
predict sunspots, the optimal number of hidden nodes was six for 288 datasets. 
On the other hand, even though both of these studies used the same datasets 
as Zhang (2003), their findings contradicted. It was found that the optimal 
number of hidden nodes was four instead of six.

Furthermore, Huang, Chen, and Siew (2006) emphasized that the 
number of hidden nodes should be selected at random through trial and error. 
The results showed that 100 hidden nodes had better performance than 200 
nodes for 15000 data without interrupting the learning process. Their finding 
was supported by Feng, Huang Ling, and Gay (2009). In their study based on 
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the same method as Huang et al. (2006), Feng et al. (2009) found that 21 nodes 
was the optimal hidden node number for 209 datasets. 

Based on recent studies, to the best of our knowledge, no method 
has been claimed as the best practice in determining the number of hidden 
nodes as related studies determined the number of hidden nodes through 
trial and error. For example, in the study by Esfe et al. (2015) in predicting 
thermal conductivity, they found that a network with two hidden layers and 
five neurons in each layer had the lowest error and highest fitting coefficient 
for 30 datasets. Moreover, in the study by Lekamalage, Song, Huang, Cui, 
and Liang (2017) in experimenting with the image classification of 24300 
samples, there were two hidden layers with the first hidden node consisting 
of 200 nodes, while the second hidden layer which consisted of 3000 nodes 
was found to have better testing accuracy. Besides, in a study by Zhang (2017) 
in recognizing and predicting mental disease based on 10000 datasets, the 
best mean square error value was recorded when the number of hidden nodes 
increased from eight to 16 nodes. Furthermore, in a study by Zhang, Zuo, 
Gao, and Zhao (2017) to recognize the image of 1000 digital instruments, they 
found that 18 hidden nodes was the optimal number of hidden nodes. 

Therefore, it has been noted that there is no rule of thumb in determining 
the number of hidden nodes based on the researchers’ experiments with various 
numbers of hidden nodes for optimal results. This finding is aligned with 
Turban et al. (2011) as they observed that the determination of the number 
of hidden nodes was rather tricky. Despite this, the suggestion by Turban et 
al. (2011) is more practical for small datasets as considered in this research 
to obtain the best MLP structure for predicting the best cycle time and this is 
elaborated in the following section.

METHODOLOGY

This section describes the case study, data collection and development of the 
MLP.

Case Study

A manufacturer of audio products was selected as a case company. The cycle 
time of a new product on the production line of the company was difficult 
to determine as it was dependent on: the number of manpower, material 
preparation time and machine breakdown rate. Thus, the best cycle time was 
predicted based on 100 datasets of pre-production test run. 
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Data Collection

The data recorded in the production daily report was collected from the 
manufacturer. The data was recorded at the production site from production 
lot n = 1 until n = 100 based on the 100 lots of pre-production test of a new 
audio product. The number of manpower (manpowern), waiting time material 
(materialn), and machine breakdown rate (machinen) were considered as input 
to predict cycle time (cyclen). 

Development of MLP Network Structure

The development of the MLP network was based on the number of input node-
the number of hidden node-the number of output node, a-b-c. Subsequently, 
the connection weights were varied for each of the MLP network to find the 
best network based on the smallest square error value. Thus, the development 
of the MLP network based on the ANN method is elaborated in Figure 2 as 
follows.

Figure 2. Flowchart for development of the a-b-c MLP network.
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With reference to Figure 2, the parameters of manpowern, materialn, 
machinen, and cyclen are transformed to a small value in the interval of [0, 1] 
through MIN-MAX equation, hence the ANN learning process is smooth. The 
formulation of MIN-MAX equation to transform input and output parameters 
is expressed in Equations 1, 2 and 3:

          
   (1)

where,

                               = the transformation value for input, i.e., manpower, 
                                     material and machine,
               = the original value for input,
                = the minimum value for input,
                = the maximum value for input. 

            
 (2)

where,

                                = the transformation value for cycle, 
                  = the original value for output,
                   = the minimum value for output,
                    = the maximum value for output. 

Subsequently, the feed-forward MLP network is developed for predicting 
the cycle time of a new audio product. In this research, the structures of the 
MLP network are established by varying the number of hidden nodes based on 
the suggestion by Turban et al. (2011) that the number of hidden nodes could 
be set as follows: 

             (3)
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                                                                                              (𝟏𝟏) 

 

 

𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                      (𝟐𝟐) 

 

 

𝒉𝒉𝒉𝒉𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒊𝒊 + 𝒋𝒋𝒕𝒕𝒊𝒊𝒊𝒊
𝟐𝟐                                                                                                                                             (𝟑𝟑) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒃𝒃 = ∑𝒘𝒘𝒕𝒕𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑨𝑨

𝒕𝒕=𝟏𝟏
                                                                                                   (4) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒄𝒄 = ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒕𝒕𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                          (6) 

 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                              (𝟏𝟏) 

 

 

𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                      (𝟐𝟐) 

 

 

𝒉𝒉𝒉𝒉𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒊𝒊 + 𝒋𝒋𝒕𝒕𝒊𝒊𝒊𝒊
𝟐𝟐                                                                                                                                             (𝟑𝟑) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒃𝒃 = ∑𝒘𝒘𝒕𝒕𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑨𝑨

𝒕𝒕=𝟏𝟏
                                                                                                   (4) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒄𝒄 = ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒕𝒕𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                          (6) 

 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                              (𝟏𝟏) 

 

 

𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                      (𝟐𝟐) 

 

 

𝒉𝒉𝒉𝒉𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒊𝒊 + 𝒋𝒋𝒕𝒕𝒊𝒊𝒊𝒊
𝟐𝟐                                                                                                                                             (𝟑𝟑) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒃𝒃 = ∑𝒘𝒘𝒕𝒕𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑨𝑨

𝒕𝒕=𝟏𝟏
                                                                                                   (4) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒄𝒄 = ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒕𝒕𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                          (6) 
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where,

hhidden = the total number of hidden nodes where h = 1,2, ...H,    
iin = the total number of input nodes where i = 1,2, ..., I,
jout = the total number of output nodes where j = 1,2, ..., J.

Since the total number of input nodes is three, i.e., manpowern, 
materialn, machinen, and the total number of output node is one, i.e., cyclen, 
the total number of hidden nodes is set to two nodes, i.e., 3-2-1. However, two 
network structures are also developed at this stage, which are the 3-1-1 and 
3-3-1 networks to explore the best MLP network in predicting the cycle time.

Furthermore, BP learning algorithm is established to guide the networks 
during the learning process in predicting cycle time. The learning process of 
BP is initialized with connection weight, w, as a relative strength. The relative 
strength of input-hidden neuron and hidden-output neuron (Figure 1) is 
represented by wab and wbc, respectively. However, the value of connection 
weights is initially set to a random value as recommended by Samarasinghe 
(2016) since there is no restriction of formulating connection weights. The 
initialized connection weights are subsequently inserted into the summation 
function (Equation 4) and sigmoid function (Equation 5). Summation function 
is a weighted sum of connection weights and transformed parameters while 
sigmoid function is a non-linear function to convert the summation function 
value into an S-shaped interval [0, 1]. The formulations of summation function 
and sigmoid function for hidden nodes and output nodes are expressed as 
follows: 

            
 (4)

where,

sumb  = the weighted sum of bth hidden nodes of connection weights 
              and transformed values,  
wbc  = the connection weights for the ath input nodes and bth hidden 
              nodes,
sigb  = the transformed value of input.

             (5)

 

9 
 

transformed parameters while sigmoid function is a non-linear function to convert the summation 

function value into an S-shaped interval [0, 1]. The formulations of summation function and sigmoid 

function for hidden nodes and output nodes are expressed as follows:  

𝒔𝒔𝒔𝒔𝒔𝒔𝒃𝒃

= ∑𝒘𝒘𝒂𝒂𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔𝒊𝒊𝒊𝒊𝒕𝒕𝒂𝒂𝒊𝒊𝒔𝒔𝒕𝒕𝒕𝒕𝒕𝒕𝒔𝒔𝒕𝒕𝒕𝒕

𝑨𝑨

𝒂𝒂=𝟏𝟏
                                                                                                             (4) 

where, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 = the weighted sum of bth hidden nodes of connection weights and transformed values,   

𝑤𝑤𝑎𝑎𝑏𝑏 = the connection weights for the ath input nodes and bth hidden nodes, 

𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = the transformed value of input. 

𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏 = 1
(1 + 𝑒𝑒𝑡𝑡𝑠𝑠𝑡𝑡𝑏𝑏)                                                                                                                                     (5) 

where,   

𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏 = the sigmoid value of bth hidden nodes, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 = the weighted sum of bth hidden nodes, 

e = the base of natural logarithm, i.e., 2.71828. 

𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄

= ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒔𝒔𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                                   (6) 

where, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 = the weighted sum of cth output nodes of connection weight and transformed value, 

𝑤𝑤𝑏𝑏𝑐𝑐 = the connection weight for the bth hidden nodes and cth output nodes, 

𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏 = the sigmoid value of bth hidden nodes. 

𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐 = 1
(1 + 𝑒𝑒𝑡𝑡𝑠𝑠𝑡𝑡𝑐𝑐)                                                                                                                                      (7) 

where,   

𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐 = the sigmoid value of cth output nodes, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 = the weighted sum of cth output nodes, 

e = the base of natural logarithm, i.e., 2.71828. 

Moreover, the learning rate and momentum rate are randomly set to the value within the interval [0,1] as 

recommended by Shiang (2009) and Turban et al., (2011). There is no restriction on the selection of 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                              (𝟏𝟏) 

 

 

𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒎𝒎 − 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊

                                                                                      (𝟐𝟐) 

 

 

𝒉𝒉𝒉𝒉𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒊𝒊 + 𝒋𝒋𝒕𝒕𝒊𝒊𝒊𝒊
𝟐𝟐                                                                                                                                             (𝟑𝟑) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒃𝒃 = ∑𝒘𝒘𝒕𝒕𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑨𝑨

𝒕𝒕=𝟏𝟏
                                                                                                   (4) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒄𝒄 = ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒕𝒕𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                          (6) 

 



9

Journal of ICT, 19, No. 1 (January) 2020, pp: 1-19

where,  

sigb    =  the sigmoid value of bth hidden nodes,
sumb   =  the weighted sum of bth hidden nodes,
e       =  the base of natural logarithm, i.e., 2.71828.

             (6)

where,

sumc =  the weighted sum of cth output nodes of connection weight and 
transformed value,

wbc    =  the connection weight for the bth hidden nodes and cth output 
nodes,

sigb  =  the sigmoid value of bth hidden nodes.

             (7)

where, 
 

sigc   = the sigmoid value of cth output nodes,
sumc = the weighted sum of cth output nodes,
e       = the base of natural logarithm, i.e., 2.71828.

Moreover, the learning rate and momentum rate are randomly set to the 
value within the interval [0,1] as recommended by Shiang (2009) and Turban 
et al. (2011). There is no restriction on the selection of suitable values for 
both the learning rates as it is commonly based on experiments with various 
different values. 

Subsequently, related data is allocated between training and validation 
sets to train and validate the three structures of the MLP network, respectively. 
At this stage, 80 percent of the data are allocated for training set while 20 
percent of the remaining data are allocated for validation set. By assigning 
more percentage of data for the training set, the MLP network would provide 
better prediction results since the more the data is being trained, the stronger 
its predictive relationship during the learning process as recommended by 
Ahmarofi et al., (2017b).

 

9 
 

transformed parameters while sigmoid function is a non-linear function to convert the summation 

function value into an S-shaped interval [0, 1]. The formulations of summation function and sigmoid 

function for hidden nodes and output nodes are expressed as follows:  

𝒔𝒔𝒔𝒔𝒔𝒔𝒃𝒃

= ∑𝒘𝒘𝒂𝒂𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔𝒊𝒊𝒊𝒊𝒕𝒕𝒂𝒂𝒊𝒊𝒔𝒔𝒕𝒕𝒕𝒕𝒕𝒕𝒔𝒔𝒕𝒕𝒕𝒕

𝑨𝑨

𝒂𝒂=𝟏𝟏
                                                                                                             (4) 

where, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 = the weighted sum of bth hidden nodes of connection weights and transformed values,   

𝑤𝑤𝑎𝑎𝑏𝑏 = the connection weights for the ath input nodes and bth hidden nodes, 

𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = the transformed value of input. 

𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏 = 1
(1 + 𝑒𝑒𝑡𝑡𝑠𝑠𝑡𝑡𝑏𝑏)                                                                                                                                     (5) 

where,   

𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏 = the sigmoid value of bth hidden nodes, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 = the weighted sum of bth hidden nodes, 

e = the base of natural logarithm, i.e., 2.71828. 

𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄

= ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒔𝒔𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                                   (6) 

where, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 = the weighted sum of cth output nodes of connection weight and transformed value, 

𝑤𝑤𝑏𝑏𝑐𝑐 = the connection weight for the bth hidden nodes and cth output nodes, 

𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏 = the sigmoid value of bth hidden nodes. 

𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐 = 1
(1 + 𝑒𝑒𝑡𝑡𝑠𝑠𝑡𝑡𝑐𝑐)                                                                                                                                      (7) 
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𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐 = the sigmoid value of cth output nodes, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 = the weighted sum of cth output nodes, 

e = the base of natural logarithm, i.e., 2.71828. 

Moreover, the learning rate and momentum rate are randomly set to the value within the interval [0,1] as 

recommended by Shiang (2009) and Turban et al., (2011). There is no restriction on the selection of 

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊 − 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊𝒊𝒊
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𝒕𝒕=𝟏𝟏
                                                                                                   (4) 

 

𝒕𝒕𝒊𝒊𝒕𝒕𝒄𝒄 = ∑𝒘𝒘𝒃𝒃𝒄𝒄𝒕𝒕𝒊𝒊𝒔𝒔𝒃𝒃
𝑩𝑩

𝒃𝒃=𝟏𝟏
                                                                                                                          (6) 
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Consequently, the learning process is run through BP learning algorithm 
within the MLP network to predict cycle time. The best predicted cycle time 
in producing the new audio speaker is obtained based on the smallest square 
error. The square error is calculated based on Equation 8:

             (8)

where,  

Ec     =  the square error of oth iteration,
sigc     =  the sigmoid value of cth output node i.e. the MLP  
                          network output value,
outputtransformed =   the transformed value of output i.e. desired output value.

Consequently, the development of the MLP networks, i.e., 3-1-1, 3-2-
1 and 3-3-1, with the established BP learning algorithm are presented in 
the following: Figure 3, Figure 4 and Figure 5, respectively, by varying the 
number of hidden nodes based on Equation 3 to explore the best MLP network 
in predicting cycle time.

Figure 3. Structure of the MLP for the 3-1-1 network.
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where,   
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Consequently, the development of the MLP networks, i.e., 3-1-1, 3-2-1 and 3-3-1, with the established BP 

learning algorithm are presented in the following: Figure 3, Figure 4 and Figure 5, respectively, by 

varying the number of hidden nodes based on Equation (3) to explore the best MLP network in predicting 

cycle time. 
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Figure 3. Structure of the MLP for the 3-1-1 network. 
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Figure 4. Structure of the MLP for the 3-2-1 network. 
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Figure 4. Structure of the MLP for the 3-2-1 network.

Figure 5. Structure of the MLP for the 3-3-1 network.
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Figure 4. Structure of the MLP for the 3-2-1 network. 
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Figure 5. Structure of the MLP for the 3-3-1 network. 

As a result, the equation of the predicted cycle time is expressed as follows: 
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𝑨𝑨

𝒂𝒂=𝟏𝟏

+ ∑[𝒘𝒘𝒂𝒂𝒑𝒑]𝒐𝒐
𝑩𝑩

𝒂𝒂=𝟏𝟏
𝒕𝒕𝒑𝒑𝒔𝒔𝒂𝒂                                                                                (𝟗𝟗) 

where, 

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = the predicted output value, 

[𝑤𝑤𝑎𝑎𝑎𝑎]𝑜𝑜 = the final connection weight for ath input node and bth hidden node of oth iteration, 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝 = the transformed value of input, 

[𝑤𝑤𝑎𝑎𝑝𝑝]𝑜𝑜 = the final connection weight for bth hidden node and cth output node of oth iteration, 

𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎 = the sigmoid function value of bth hidden node. 

RESULTS AND DISCUSSION 

Three sets of experiments were conducted for the developed MLP networks, i.e., 3-1-1, 3-2-1, and 3-3-1. 

Besides, the established BP learning algorithm was implemented to investigate the three different MLP 
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As a result, the equation of the predicted cycle time is expressed in Equation 
9:

             (9)

where,

ypredict   = the predicted output value,
[wab]o   = the final connection weight for ath input node and bth 
                          hidden node of oth iteration,
inputtransforme  = the transformed value of input,
[wbc]o   = the final connection weight for bth hidden node and cth 
                         output node of oth iteration,
sigb   = the sigmoid function value of bth hidden node.

RESULTS AND DISCUSSION

Three sets of experiments were conducted for the developed MLP networks, 
i.e., 3-1-1, 3-2-1, and 3-3-1. Besides, the established BP learning algorithm 
was implemented to investigate the three different MLP networks on their 
error values in terms of square error function, Eo, i.e., between the output value 
of the network and the desired output of cycle time. The value for connection 
weights between ath input nodes and bth hidden nodes, wab, and bth hidden 
nodes to cth output nodes, wbc, were set to random values since the initial value 
of connection weights have no restriction in a learning process. Therefore, 0.1, 
0.3, 0.5, 0.7, 0.9, 1 and 1.5 were randomly selected as the values of connection 
weights, i.e., wab and wbc in this research.

In addition, the value of learning rate, ε, and momentum rate, µ, were 
set within the range of 0.1 to 1.0 during the learning process since both 
parameters were commonly based on iterative experiments and no heuristic 
method had been claimed as the best one. Thus, the value of ε and µ were set 
to 0.2 and 0.5, respectively, for all experiments. Furthermore, the data from 
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Figure 5. Structure of the MLP for the 3-3-1 network. 

As a result, the equation of the predicted cycle time is expressed as follows: 
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where, 

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = the predicted output value, 

[𝑤𝑤𝑎𝑎𝑎𝑎]𝑜𝑜 = the final connection weight for ath input node and bth hidden node of oth iteration, 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝 = the transformed value of input, 

[𝑤𝑤𝑎𝑎𝑝𝑝]𝑜𝑜 = the final connection weight for bth hidden node and cth output node of oth iteration, 

𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎 = the sigmoid function value of bth hidden node. 

RESULTS AND DISCUSSION 

Three sets of experiments were conducted for the developed MLP networks, i.e., 3-1-1, 3-2-1, and 3-3-1. 

Besides, the established BP learning algorithm was implemented to investigate the three different MLP 
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production lot n = 1 until n = 100 was separated into 80 % (80 production lots) 
and 20 % (20 production lots) between the training set, train, and validation 
set, valid, for each of the MLP network based on the work by Ahmarofi et al. 
(2017b) as the paper successfully predicted the completion time of producing 
a new audio product. The more the data was assigned for training processes, 
the stronger its predictive link as recommended by Turban et al. (2011) and 
Jamil and Shaharanee (2015). Finally, the iteration of learning process, o, for 
each of the developed MLP network was terminated once the result of square 
error, Eo, provided the smallest error value.

The values of final Eo for the first experiment of the 3-1-1 network are 
presented in Table 1 as follows:

Table 1

The Eo of the 3-1-1 Network 

MLP 
network

Connection 
weight

Learning 
rate

Momentum 
rate

Separation 
of data from 
production 
lot number

Iteration Square 
error

a-b-c wab wbc ε µ train valid o Eo

3-1-1 
network

0.1 0.1

0.2 0.5 80% 20%

58 0.0164
0.3 0.3 60 0.0373
0.5 0.5 61 0.0671
0.7 0.7 59 0.0934
0.9 0.9 63 0.1898
1 1 67 0.0676

1.5 1.5 74 0.0786

From Table 1, the smallest Eo for the 3-1-1 MLP network is 0.0164 
during the 58th iteration of the learning process which is obtained through the 
input-hidden node connection weight, wab = 0.1 and the hidden-output node 
connection weight, wbc = 0.1. 

The values of final Eo for the second experiment of the 3-2-1 network 
are presented in Table 2 as follows:
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 Table 2

The Eo of the 3-2-1 Network 

MLP 
network

Connection 
weight

Learning 
rate

Momentum 
rate

Separation 
of data from 
production 
lot number

Iteration Square 
error

a-b-c wab wbc ε µ train valid o Eo

3-2-1 
network

0.1 0.1

0.2 0.5 80% 20%

65 0.0367
0.3 0.3 65 0.0354
0.5 0.5 66 0.0589
0.7 0.7 78 0.0743
0.9 0.9 56 0.0945
1 1 45 0.0234

1.5 1.5 78 0.0156

Based on the results in Table 2, the smallest Ero for the 3-2-1 MLP 
network is 0.0156 during the 78th iteration of the learning process as obtained 
with wab = 1.5 and wbc = 1.5. 

The values of the final Eo for the third experiment of the 3-3-1 MLP 
network are presented in Table 3 as follows:

Table 3

The Eo of the 3-3-1 Network 

MLP 
network

Connection 
weight

Learning 
rate

Momentum 
rate

Separation 
of data from 
production 
lot number

Iteration Square 
error

a-b-c wab wbc ε µ train valid o Eo

3-3-1 
network

0.1 0.1

0.2 0.5 80% 20%

49 0.0290
0.3 0.3 58 0.0458
0.5 0.5 66 0.0786
0.7 0.7 74 0.0456
0.9 0.9 50 0.0234
1 1 48 0.0453

1.5 1.5 84 0.0734

From Table 3, the smallest Eo for the 3-3-1 MLP network is 0.0234 
during the 50th iteration of the learning process which resulted from wab = 0.9 
and wbc = 0.9. 
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Based on the results in Table 1, Table 2 and Table 3, the smallest value 
of Eo is 0.0156 which is obtained from the 3-2-1 network with wij = 100, wjk 
= 100 during the iteration, o = 78 as described in Table 2. Thus, the 3-2-1 
network is the best MLP network based on the smallest Eo value, i.e., 0.0156 
for predicting cycle time compared to the 3-1-1 and 3-3-1 networks. 

Therefore, the 3-2-1 MLP network is selected for predicting the cycle 
time of the new audio product on the semiautomatic production line. Thus, 
the equation of predicted cycle time during the 121st production lot based 
on Equation (9) with the respective final connection weights during the 78th 
iteration is expressed as follows:
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CONCLUSION AND FUTURE WORK

The aim of this study was to find the best MLP network by varying the number 
of hidden nodes. Based on previous studies, it has been found that there is no 
rule of thumb in determining the number of hidden nodes. However, the best 
MLP structure was determined through variations in the number of hidden 
nodes as suggested by Turban et al. (2011) as it was more practical for small 
datasets as was considered in this research. Hence, three MLP networks were 
established with different numbers of hidden nodes, i.e., 3-1-1, 3-2-1, 3-3-1 
and subsequently experimented through a developed BP learning algorithm. 
The 3-2-1 network was found to be the best network based on the smallest 
value of square error, i.e., 0.0156 with a connection weight of 100 during 
the 78th iteration. The 3-2-1 as the best MLP network is aligned with the 
suggestion by Turban et al. (2011). Therefore, the 3-2-1 network was selected 
with a cycle time of 5 seconds for producing a new audio product. For future 
work, the number of hidden nodes for the MLP structure could be determined 
by integrating ANN with other artificial intelligence (AI) methods such as 
Evolutionary Algorithm and Ant Colony Algorithm instead of at random since 
AI is currently gaining much attention from researchers.
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