In situ growth of g-C₃N₄ on TiO₂ nanotube arrays: Construction of heterostructures for improved photocatalysis properties

Lan Ching Sim^a, Kai Sheng Koh^b, Kah Hon Leong^b, Yik Heng Chin^b, Azrina Abd Aziz^c, Pichiah Saravanan^d

^aDepartment of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long 9, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia

^bDepartment of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia

^cFaculty of Civil Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Gambang, Kuantan, Pahang, Malaysia

^dDepartment of Environmental Science and Engineering, Indian Institute of Technology(ISM), Dhanbad, Dhanbad, 826004, Jharkhand, India

ABSTRACT

In this work, we successfully constructed g-C₃N₄/TNTs heterostructures via in situ growth of g-C₃N₄ on the surface of TiO₂ nanotube arrays (TNTs). Varying concentrations of urea precursor were adopted to prepare the binary composites for the photodegradation of methylene blue (MB). Advanced microscopic and spectroscopic approaches such as FESEM, PL-Raman, UV-vis DRS, XRD and etc examined the topography, structural and optical properties attributed to the presence of $g-C_3N_4$ in the heterostructures. The morphological analysis showed that the in-situ growth of $g-C_3N_4$ onto the surface of TNTs significantly increased the wall thickness of the nanotubes. The least band energy of 1.8 eV was obtained by g-C₃N₄/TNTs (1.5 g) due to the formation of an impurity energy level induced by the presence of g-C₃N₄. The electron transfer between the heterojunction of g-C₃N₄ and TNTs was revealed by the quenching of PL emission intensity. When the urea content was optimized at 1.0 g, the build-in electric field at the interface of g-C₃N₄/TNTs stimulated the electrons transfer and prolonged lifetime of carriers, thus enhancing the degradation efficiency by 1.25 times higher than that of pure TNTs. However, the aggregation of $g-C_3N_4$ as a result of increasing urea content (1.5–2.0 g) reduced the interfacial adhesion at the heterojunction between the g-C₃N₄ and TNTs, thus dominating its excellent optical and charge separation properties and diminishing the degradation efficiency of MB.

KEYWORDS

Aromatic compounds; Degradation; Electric fields; Heterojunctions; Metabolism; Nanotubes; Titanium dioxide; Topography; Urea

DOI: https://doi.org/10.1016/j.jece.2019.103611

ACKNOWLEDGEMENT

This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2019/TK10/UTAR/02/5).