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In the present study, bioplastic films were developed using the different ratio of keratin extracted from
chicken feathers and cellulose. Firstly, bioplastic (K-60) was developed from the keratin, extracted from
the chicken feathers using an alkaline agent (NaOH), and mixed with PVA/glycerol to synthesize protein-
based bioplastic. Further, microcrystalline cellulose (2%) was used as an additive to K-60 bioplastic to
develop an improved bioplastic (KC-60). The results of functional group analysis using FT-IR, showed
the conformational arrangements of the keratin protein have mostly amides I–III and OAH groups in
the bioplastic reinforced with microcrystalline cellulose and showed the substantial hydrogen bonding.
The scanning electron microscopy analysis suggested the appropriate morphologies without edge, holes
and cavities. The X-Ray diffraction analysis suggested the strong crystalline characteristics of synthesized
bioplastic. Finally, the thermogravimetric analysis of K-60 and KC-60, showed the greater cross-linking
efficiency between cellulose and keratin at higher temperature. Therefore, the results presented the
development of keratin-based bioplastics with high structural strength and morphology good crys-
tallinity which can be used in biomedical applications and manufacturing of food containers and others.
� 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays in the bioplastic, the plastic derivatives procured
from the biomasses have gained worthy interest to develop food
packaging materials and biomedical products (Shah et al. 2019;
Nayak et al. 2019). However, due to expansive process of bioplastic
synthesis created some barrier to develop it on large scale. How-
ever, the bioplastic production resolve the environmental- issues
by means of the renewable and biodegradable resources of a com-
monly used material (Sharma et al., 2017; McLellan et al. 2019).

Globally, the chicken feathers are the foremost common waste
material produced in poultry slaughterhouses and it consist of
90% of keratin which is used as a natural source for commercial
applications (Sharma et al. 2019; Sharma and Kumar 2019).

The keratin protein has a major structure which provides the
outer covering in most of mammals, birds, and reptiles in the form
of hairs, wool, feathers horns and nails. It is an organic, biodegrad-
able polymer where the biodegradation is due to strong covalent
bonds and its prolonged cross-linking within its structure
(Kumawat et al., 2018; Vasconcelos and Cavaco-Paulo, 2013;
Sharma et al., 2017). The protein structure is mainly stabilized by
hydrophobic interactions and a three-dimensional macromolecu-
lar network, reinforced by hydrogen and disulphide bonds. It also
exhibits a high capacity in the thermosetting amendment due to
the denaturation of the protein which is favorable for a wide vari-
ety materials (Sharma and Gupta, 2016). Therefore, the production
of biodegradable materials using proteins could be a promising
way for a variety of material based applications (Dou et al.,
2015). Cellulose is a naturally abundant material, can reduce pro-
duction costs and enhance the mechanical properties, biodegrad-
ability and thermal stability of the polymers (Herrera et al.,
2015; Karande et al., 2014). Cellulose can be obtained from a wide
variety of sources such as plants, algae, marine creatures and bac-
teria (Chen et al., 2011; Iwatake et al., 2008). DeMesquita et al
(2010) reported that the manufacturing of cellulosic materials into
micro and also nano dimensions which reinforce the lowmolecular
weight, high crystallinity, biodegradability and renewability (de
Mesquita et al., 2010). Microcrystalline cellulose is produced from
natural cellulose through a combination of mechanical and chem-
ical processing (Lu et al., 2008; Mathew et al., 2005; Kumar et al.
2015). The degree of crystallinity typically ranges from 55 to 80
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%, depends on the source of the cellulose as well as processing vari-
ables such as the reaction temperature and duration, the drying
(Chuayjuljit et al., 2010; Haafiz et al., 2013). Therefore, MCC has
great potential for use as a biodegradable filler in polymer compos-
ites (Suvachittanont and Ratanapan, 2013; Arjmandi et al., 2015).

The interaction between fibre particles and polymer matrix
could improve the properties of the biocomposite (Lubis et al.,
2016). Therefore, cellulose filler was added to examine the
improvement of the produced bioplastic properties. Enhancing cel-
lulose filler has assured to be the most favorable materials to use as
a major component (Husain et al. 2018; Siagian and Tarigan, 2016).
The interactions between keratin and MCC film matrix supported
themain role in enhancing the result of keratin bioplastic. Thus, this
interaction mainly attributed to the strong hydrogen bonding
between the keratin andMCC (Lubis et al., 2016;Wang et al., 2006).

This study aimed to develop a bioplastic using a different pro-
portion of chicken feather extracted keratin and cellulose. Firstly,
bioplastic (K-60) was developed from the keratin, extracted from
the chicken feather using an alkaline agent (NaOH), and mixed
with PVA/glycerol to synthesize protein-based bioplastic. Further,
microcrystalline cellulose (2%) was used as an additive to K-60 bio-
plastic to develop an improved bioplastic (KC-60) The bioplastic
developed characterize using different techniques to saw the dif-
ferences among the both.
2. Materials and methods

2.1. Materials

For the extraction of keratin, chicken feather was procured from
(Balok Poultry Farm Sdn. Bhd. Kuantan, Malaysia). Sodium hydrox-
ide, hydrochloric acid, Glycerol, 99.5%, Polyvinyl Alcohol and
microcrystalline cellulose were purchased from (Sigma-Aldrich,
Kuala Lumpur, Malaysia).

2.2. Keratin extraction from chicken feather

Keratin protein solution was prepared in the chemical engineer-
ing lab at University Malaysia Pahang by cleaning feathers accord-
ing to previously studied methods (Sharma et al., 2017a). The 50 g
of cleaned, dried and blended chicken feathers were added in 1 L of
sodium hydroxide (1 N) solution in a conical flask. The solution
was incubated at 50 �C under continuous shaking for five hours,
After that, the solution was filtered by stainless steel filter and cen-
trifuged at 10,000 rpm for 10 min (Bao et al., 2011; Sharma et al.,
2017a). The keratin solution was carefully collected and stored
for the synthesis of bioplastic.

2.3. Synthesis of keratin-based bioplastic

PVA powder (15 g) was dissolved in 100 ml of milli Q water and
stirred at 80 �C for one hour. The first sample, the keratin (K-60)
was mixed with 10% of glycerol and 30% of PVA solution at 60 �C.
The second sample, cellulose (2%) was added to the total weight
of the bioplastic (K-60) and stirred at 60 �C. Then, the both mix-
tures were poured in glass petri plates having a diameter of
20 cm and desiccated in oven at 60 �C for 24 h. Later, both films;
(K-60) and (KC-60) were separated from glass petri plates and
stored for the further analysis.

2.4. Characterization

2.4.1. Fourier transform infrared spectroscopy (FTIR)
The K-60 and KC-60 films were investigated using the program

FTIR Spectrum Software. The FTIR spectra of Perkin-Elmer Model
1000 series equipment was used and supplied with an Attenuated
Total Reflectance accessory (ATR). Powdered-form samples weigh-
ing about 1–2 mg were placed on the FTIR spectroscopy test area.
The spectrum for each sample was recorded with 40 scans in the
frequency range from 4000 to 500 cm�1 with a resolution of
4 cm�1.
2.4.2. Scanning electron microscopy (SEM)
The scanning of the surface morphologies of K-60 and KC-60

films were studied at 30 s of acquisition time and accelerating volt-
age of 15.0 kV. The identification of the molecular structure of the
samples was analyzed in a Hitachi’s Tabletop Electron microscope
TM3030 Plus.
2.4.3. X-ray diffraction (XRD)
The crystallinity of K-60 and KC-60 films were determined

using Rigaku Miniflex-II X-ray Diffractometer system (XPERT-3)
with copper K-a radiation (X = 1.54060 Å) and generator settings
at 45 kV and 40 mA. At the rate 0.0217�/min, the data within the
scattering angles range of 5� to 50� were recorded. The essential
spacing resulted from the position of the peak in the XRD diagram
has resulted according to the Bragg’s equation:

nk ¼ 2dsinh

Where: n is an integer, k is the wavelength of the electrons, d is the
spacing of the crystals planes and h is the scattering angle.
2.4.4. Thermo gravimetric analysis (TGA)
TGA analysis of the samples were conducted utilizing a Mettler

Toledo Thermal Analyzer instrument air and nitrogen atmosphere.
From room temperature, the samples were gradually heated to
800 �C at the rate of 10 �C /min and flow rate of 20 ml/min. The
mass loss within the differential thermal analysis profile was
recorded as a function of temperature
3. Results and discussion

3.1. FTIR

FTIR spectra of K-60 and KC-60 shown in Fig. 1. Both films
showed a decline in the spectrum intensity of C-O (1000–
1260 cm�1) and the stretching bands CAH (2800–2950 cm�1) were
found. Besides this, KC-60 showed OAH (3300–3400 cm�1)
stretching vibration bands broader than the K-60. The conforma-
tional changes in the protein were examined by amides I–III
(Ramakrishnan et al., 2018; Sharma et al., 2017b; Sharma et al.,
2017c). The absorption bands corresponds to amide I i.e. carbonyl
stretching vibration at 1600–1700 cm�1, amide II for NAH bending
and CAN stretching at 1400–1580 cm�1, and amide III for C@O,
CAN stretching and NAH bending at 1257 cm�1 were studied in
the samples (Ramakrishnan et al., 2018; Yue et al., 2012; Sharma
et al., 2016). The absorption bands at 1095 cm�1 and 1033 cm�1

were attributed to the symmetric and asymmetric S@O stretching
vibration respectively. The sharp peak at 1034 cm�1 indicated an
elevated content of cysteine-S-sulfonated residues in the samples
(Shavandi et al., 2017). However, the peak at 2940 cm�1 is similar
in both the samples, due to hydroxyl groups which can form more
hydrogen bonds, and add to the total hydrogen bonded peptides
groups. The other alteration in characteristic absorption bands fre-
quency and intensity possibly indicated the role of cellulose as a
strengthening filler in the bioplastic networks (Lubis et al., 2016).



Fig. 1. FT-IR spectrum of synthesised bioplastics.
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3.2. SEM

SEM micrographs of the (Fig. 2) K-60 and KC-60 showed a fluc-
tuating and continuous structure, with better compatible morphol-
ogy with no cavities, edges, and holes. Thus, confirmed the superior
bonding among components, which was attributed to the exis-
tence of chemical interactions between keratin and cellulose. The
cellulose assisted to make a homogenous mixture. It showed no
separation and single-phase morphology which was observed in
related reports (Lubis et al., 2016; Yue et al., 2012; Sharma et al.,
2018). SEM analysis on the structure of the specimen showed the
mildness at the unified surface of the bioplastic indicates the
cross-linked structures. This is evident from their smooth surface
morphology with cracks, indicating its resilient nature. The dark
color showed carbon background onto which sample was mounted
and light color corresponds to the samples of bioplastic made.
Fig. 2. SEM images of syn
However, KC-60 have small cracks than the K-60, which is possibly
due to the formation of large number of intermolecular bondings
(Aluigi et al., 2008).
3.3. XRD

The XRD patterns of K-60 and KC-60 are shown in Fig. 3. K-60
showed primary peaks at 2h = 19�, 23�, 41� and KC-60 displays
2h = 19�, 32�, 41�, 45�, 66�, which coincide with earlier reported
(Lubis et al., 2016; Priyaah et al., 2017). The change to upper angle
specified a decrease in the subsequent interlayer spacing, which
implies that the mixed constituent had an arranged structure.
The K-60 has the higher intensity of shifted peaks. The KC-60 com-
posite showed the typical peaks which are ascribed to that the cel-
lulose filler has hydrogen bond interaction with the residual
functional groups. The inclusion of the cellulose leads to the
decline in the intensity. However, the strong crystalline character-
istic was showed and the d-spacing of both bioplastic film indi-
cated that the blends have a well-arranged structure (Harkins
et al., 2014). Fig. 3 indicated that bioplastic K-60 is amorphous in
nature while the crystallinity increased after the addition of MCC
as evident from the sharp peaks appeared in the KC-60.
3.4. TGA

The TGA curves in Fig. 4 showed three stages of weight loss for
both samples. In the first stage, the mass loss (less than 10 wt%)
occurs between room temperature and 100 �C, due to evaporation
of absorbed moisture (Sharma et al., 2017a). In the second stage,
the samples decomposed rapidly at 160 to 230 �C, with a mass loss
of 20 to 40 wt% due to the decomposition of glycerol and PVA, as
confirmed by the previous study (Ullah et al., 2011). At the last
stage, decomposition of the keratin protein occurs at temperatures
higher than 260 �C. At all temperature ranges, less mass loss was
observed in the KC-60 as compared with K-60, which showed an
improvement of thermal stability for the cross-linked film. The
enhanced thermal stability is probably attributed to the formation
of strong amine (–CH = N–) bonds formed which indicate that the
interactions between KC-60 with increasing temperature are
thesised bioplastics.



Fig. 3. X-ray diffractogram of synthesised bioplastics.

Fig. 4. TGA graph of synthesised bioplastics.
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greater than these of K-60, probably due to the higher cross-linking
efficiency of cellulose upon heating (Siqueira et al., 2010).

4. Conclusions

In summary, the synthetic natural-based bioplastic was suc-
cessfully developed using the extracted keratin from chicken feath-
ers and microcrystalline cellulose. Although the conducted analysis
showed excellent characteristics of bioplastic (K-60), the desired
improvement was noticed in the presence of cellulose. FTIR spectra
showed that the absorbent peaks appeared in the films indicating
that they sustain the macromolecular structure of the chicken
feather keratin, extracted and there are possible hydrogen bonds
between keratin protein and cellulose. Moreover, the good surface
morphology, high crystallinity, and thermal properties were pro-
ven with SEM, XRD and TGA analysis. Conclusively, the developed
keratin-based bioplastic has a promising future in various indus-
trial applications.
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