A combined weighting for the feature-based method on topological parameters in semantic taxonomy using social media

Ali Muttaleb, Hasan and Noorhuzaimi@Karimah, Mohd Noor and Rassem, Taha H. and Ahmed Muttaleb, Hasan and Hammood, Waleed A. (2020) A combined weighting for the feature-based method on topological parameters in semantic taxonomy using social media. In: 6th International Conference on Software Engineering & Computer Systems (ICSECS 2019), 25-27 September 2019 , Kuantan, Pahang, Malaysia. pp. 1-11., 769. ISSN 1757-8981 (Print); 1757-899X (Online)

[img] Pdf
55. A combined weighting for the feature-based.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy
55.1 A combined weighting for the feature-based.pdf

Download (91kB) | Preview


The textual analysis has become most important task due to the rapid increase of the number of texts that have been continuously generated in several forms such as posts and chats in social media, emails, articles, and news. The management of these texts requires efficient and effective methods, which can handle the linguistic issues that come from the complexity of natural languages. In recent years, the exploitation of semantic features from the lexical sources has been widely investigated by researchers to deal with the issues of “synonymy and ambiguity” in the tasks involved in the Social Media like document clustering. The main challenges of exploiting the lexical knowledge sources such as 1WordNet 3.1 in these tasks are how to integrate the various types of semantic relations for capturing additional semantic evidence, and how to settle the high dimensionality of current semantic representing approaches. In this paper, the proposed weighting of features for a new semantic feature-based method as which combined four things as which is “Synonymy, Hypernym, non-taxonomy, and Glosses”. Therefore, this research proposes a new knowledge-based semantic representation approach for text mining, which can handle the linguistic issues as well as the high dimensionality issue. Thus, the proposed approach consists of two main components: a feature-based method for incorporating the relations in the lexical sources, and a topic-based reduction method to overcome the high dimensionality issue. The proposed method approach will evaluated using WordNet 3.1 in the text clustering and text classification.

Item Type: Conference or Workshop Item (Lecture)
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Component; Text mining; Text classification; Sentiment analysis; Semantic representation; Weighting; Topological parameter; Non-taxonomy
Subjects: Q Science > QA Mathematics > QA76 Computer software
Faculty/Division: Faculty of Computing
Depositing User: Pn. Hazlinda Abd Rahman
Date Deposited: 16 Jun 2020 07:30
Last Modified: 18 Sep 2020 03:31
URI: http://umpir.ump.edu.my/id/eprint/27714
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item