Growth of LiNi_{0.5}Mn_{1.5}O₄ crystals on reduced graphene oxide sheets for high energy and power density charge storage

V. Gajraj^a, R. Jose^b, C. R. Mariappan^a

^a Department of Physics, National Institute of Technology, Kurukshetra, Haryana, 136 119, India
^b Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia

ABSTRACT

Spinel-type lithium manganates are actively considered to develop cost-effective energy/charge storage devices. In this article, we show the growth of LiNi_{0.5}Mn_{1.5}O₄ nanocrystals on reduced graphene oxide (rGO) sheets, which offer impressive improvements in their charge storage capability than that can be achieved using bare LiNi_{0.5}Mn_{1.5}O₄ nanocrystals. X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electron microscopy techniques are employed to demonstrate the embedment of LiNi_{0.5}Mn_{1.5}O₄ particles on rGO sheets. As a single electrode, LiNi_{0.5}Mn_{1.5}O₄-rGO composite electrode deliver ~3-fold enhanced charge storability (~572 F g⁻¹/~175 mA h g⁻¹ at 3.75 A g⁻¹) in 5 M LiNO₃ electrolyte than the bare LiNi_{0.5}Mn_{1.5}O₄ electrode. The electrochemical charge storage processes are investigated via the Dunn's approach. The major charge storage mechanism of the samples is diffusion controlled at slow scan rate. A practical hybrid battery – supercapacitor device is fabricated in the LiNi_{0.5}Mn_{1.5}O₄-rGO//activated carbon configuration, which deliver energy density in the 60 – 23 Wh kg⁻¹ range at a power density in the 1.2–13 kW kg⁻¹ range with an output voltage of 0–2.0 V, excellent cycling stability, and rate capability.

KEYWORDS

Supercapacitors; Lithium ion capacitors; Asymmetric supercapacitors; Energy storage materials; Psuedocapacitors

ACKNOWLEDGEMENTS

The financial support from SERB-DST, Government of India (grant no. <u>SERB/F/5418/2014-15</u>) is gratefully acknowledged for this work. VG thanks UGC-RGNF, Government of India for providing a research fellowship. RJ acknowledges the Flagship Leap 3 research grant (RDU 172201) of Universiti Malaysia Pahang.