EVALUATION OF OPTIMUM FIBER LENGTH OF BAMBOO FIBER REINFORCED CONCRETE

JEREMY CHONG ZHINENG

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering.

__
(Supervisor’s Signature)

Full Name : DR. CHIN SIEW CHOO
Position : SENIOR LECTURER
Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : JEREMY CHONG ZHINENG
ID Number : AA14216
Date : 11 JUNE 2018
EVALUATION OF OPTIMUM FIBER LENGTH OF BAMBOO FIBER REINFORCED CONCRETE

JEREMY CHONG ZHINENG

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2018
ACKNOWLEDGEMENTS

A very great gratitude and appreciation expressed to all those who make a part to the successful cease of this project with title ‘Evaluation of optimum fibre length of bamboo fibre reinforced concrete’ which involved either directly or indirectly.

First and foremost, I have to thank my beloved family for their endless love, supports and encouragement throughout the execution of my final year project. Precious advice and motivation are given by them to drive me to success on this project.

Special gratitude is dedicated to my supervisor, Dr Chin Siew Choo for her continuous support, helps, encouragement and useful guidance which I need the most. I would like to give special thanks to her for having trust and believe on me to finish this project excellently. Even through, this project is still in preliminary stage, with her efforts and positive encouragement, I have managed to achieve gold medal as an added value to this research in Creation, Innovation, Technology and Research Exposition (CITREX 2018) and silver medal in International Festival Innovation On Green Technology (i-FINOG) 2018 organised by Universiti Malaysia Pahang.

Besides that, the succession of conducting experimental works as well as operating machineries cannot be achieved without the help from the lab technicians and staffs from Concrete Laboratory of Faculty Civil Engineering and Earth Resources. Therefore, I would like to acknowledge and thank all of them.

Last but not least, I also want to thanks my entire friends who always at my side during this Final Year Project for their ideas and support about the project and as well as helping me in completing it. Their assistance and care are deeply appreciated.
ABSTRACT

This research deals with the experimental study of the behavior of bamboo fiber with different fiber lengths and to study its effect as fiber reinforcing material. The species of bamboo that used throughout this experiment are the same species which is *Gigantochloa scortechinii* or commonly known as buluh semantan. The raw bamboo is delivered from the bamboo grove in Raub, Pahang which supplied by the local. The extractions of fiber are done based on the combined technique of chemical and mechanical using only 10% of w/v of sodium Hydroxide throughout the treatment process. In order to determine the bamboo physical and mechanical properties, a series of physical and mechanical test are done throughout this experiment and the composite samples are being mechanically tested in 3, 7, 14, and 28 days. The tests that has been conducted are bamboo water absorption test, compression and flexural tests. A total of 15 samples of concrete cubes and beams respectively are prepared including the control samples of 3 for each experiment groups for mechanical test. The cube sample and beam sample size used in this research are 100 mm x 100 mm x 100 mm and 100 mm x 100 mm x 500 mm respectively. Based on the results, it shows that the bamboo fiber in overall has only little contribution towards the improvement of concrete strength but significantly enhanced the concrete beam flexural strength which maximum up to 15%. The increase of fiber length leads to the increment of flexural strength but when it exceeds 38 mm, the performance decreased. Hence, it can be concluded that the optimum length for bamboo fiber reinforced concrete is 38mm.
ABSTRAK

Laporan kajian ini membincang tentang kelakuan serat buluh dengan panjang serat yang berlainan dan mengkaji kegunaannya sebagai bahan tetulang serat. Spesies buluh yang digunakan sepanjang eksperimen ini adalah spesies yang sama iaitu Gigantochloa scortechinii atau biasa dikenali sebagai buluh semantan. Buluh mentah didapati dari dusun buluh di Raub, Pahang yang dibekalkan oleh petani tempatan. Pengekstrakan serat dilakukan berdasarkan teknik gabungan kimia dan mekanikal dengan menggunakan hanya 10% w / v Natrium Hidroksida (NaOH) sepanjang proses rawatan. Untuk menentukan ciri fizikal dan mekanikal buluh, ujian fizikal dan mekanikal telah dilakukan sepanjang kajian ini dan sampel komposit telah diuji secara mekanikal dalam 3, 7, 14, dan 28 hari. Ujian yang dijalankan adalah ujian penyerapan air buluh, ujian mampatan dan ujian lenturan. Sejumlah 15 sampel kiub dan rasuk konkrit masing-masing disediakan termasuk 3 sampel kawalan bagi setiap kumpulan eksperimen untuk ujian mekanikal. Sampel kiub dan sampel rasuk yang digunakan dalam kajian ini adalah 100 mm x 100 mm x 100 mm dan 100 mm x 100 mm x 500 mm masing-masing. Berdasarkan hasilnya, ia menunjukkan bahawa serat buluh secara keseluruhannya hanya memberikan sedikit sumbangan terhadap penambahbaikan kekuatan konkrit tetapi peningkatan kekuatan lenturan rasuk konkrit boleh sampai sehingga 15%. Peningkatan dalam kepanjangan serat buluh membawa kepada kenaikan kekuatan lenturan konkrit tetapi apabila ia melebihi 38mm, prestasi ia menurun. Oleh itu, dapat disimpulkan bahawa penemuan kami menunjukkan bahawa kepanjangan optimum untuk konkrit bertetulang serat buluh ialah 38 mm.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Research Background 1
1.2 Problem Statement 2
1.3 Research Objective 4
1.4 Scope of Work 4
1.5 Significance of Study 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6
2.2 Natural Fibre 6
2.3 Bamboo 9
2.4 Anatomical Structure and Morphology of Bamboo 11
CHAPTER 3 METHODOLOGY 29

3.1 Introduction 29

3.2 Materials 31
 3.2.1 Ordinary Portland Cement 31
 3.2.2 Coarse Aggregates 31
 3.2.3 Fine Aggregates 32
 3.2.4 Water 33

3.3 Bamboo Fibre 33
 3.3.1 Preparation of Bamboo Fibre 33
 3.3.2 Characterization of Bamboo fibre 37

3.4 Formwork 38

3.5 Concrete Mix Design 39

3.6 Concrete Mixing, Casting and Curing 40

3.7 Water Absorption Test 42
CHAPTER 3 LABORATORY TESTING
3.8 Laboratory Testing
3.8.1 Slump Test
3.8.2 Compression Test
3.8.3 Flexural Test

CHAPTER 4 RESULT AND DISCUSSION
4.1 Introduction
4.2 Physical Testing
4.2.1 Water Absorption Test
4.2.2 Slump Test
4.3 Mechanical Testing
4.3.1 Compression Test
4.3.2 Flexural Test

CHAPTER 5 CONCLUSION AND RECOMMENDATION
5.1 Introduction
5.2 Conclusion
5.3 Recommendations

REFERENCES

APPENDIX
A Mix Design For Concrete Grade 30
LIST OF TABLES

Table 2.1: Mechanical properties of natural fiber 8
Table 2.2: Chemical composition of common lignocellulose fibres 13
Table 2.3: 28 days compressive strength result of bamboo fibre reinforced concrete 17
Table 2.4: Mechanical and physical properties of bamboo fibre 18
Table 3.1: Design mix proportion 39
Table 3.2: Samples prepared for water absorption test 42
Table 4.1: Percentage by weight of water absorbed by bamboo after 15 days 49
Table 4.2: Percentage by weight of water absorbed by bamboo after 30 days 49
Table 4.3: Percentage of thickness increased after 15 days 51
Table 4.4: Percentage of thickness increased after 30 days 52
Table 4.5: Slump value for each concrete mix 53
Table 4.6: Compressive Strength of cube samples with 3, 7, 14 and 28 days 56
Table 4.7: Summary of concrete cube compressive strength, f_{cu} 57
Table 4.8: Flexural Strength of beam samples with 3, 7, 14 and 28 days 60
Table 4.9: Summary of concrete beam flexural strength 61
LIST OF FIGURES

Figure 2.1: Classification of natural fiber 7
Figure 2.2: Bamboo 9
Figure 2.3: a) bamboo culm, b) cross-section of bamboo culm, c) vascular bundle, d) fibre strand, e) elementary fibres, f) model of polylamellae structure of bamboo 12
Figure 2.4: Mechanical behaviour of fiber in concrete 25
Figure 2.5: Surface image of 8mm fibre pull out from reinforced composites 26
Figure 2.6: Surface image of 15mm fibre pull out from reinforced composites 27
Figure 3.1: Research methodology flow chart 30
Figure 3.2: Orang Kuat brand ordinary portland cement 31
Figure 3.3: Crushed granite 32
Figure 3.4: Air dried sand 32
Figure 3.5: Spliting of bamboo culm 34
Figure 3.6: Bamboo culm cleaved into splits 34
Figure 3.7: Alkaline retting process 35
Figure 3.8: Roll milling process 36
Figure 3.9: Neutralization of bamboo fibers 36
Figure 3.10: Measuring the PH value of bamboo fibre 37
Figure 3.11: Vernier calliper 38
Figure 3.12: Beam formwork 38
Figure 3.13: Cube formwork 39
Figure 3.14: Concrete mixer 40
Figure 3.15: Fibre disperse in concrete mixer 41
Figure 3.16: Bamboo samples immersed in water curing tank 43
Figure 3.17: Blowing tamping rod for compaction 44
Figure 3.18: Slump test 44
Figure 3.19: Universal testing machine 45
Figure 3.20: Flexural test machine 47
Figure 4.1: Weight changed after 15 days 50
Figure 4.2: Weight changed after 30 days 50
Figure 4.3: Changed in thickness after 15 days 52
Figure 4.4: Changed in thickness after 30 days 53
Figure 4.5: Slump Test for Control Mix 54
Figure 4.6: Slump Test for Fibre Concrete Mix 54
Figure 4.7: Comparison of Slump Value for each mix 55
Figure 4.8: Graph of average compressive strength against fibre length 57
Figure 4.9: Failure pattern of normal structural concrete cube 58
Figure 4.10: Failure pattern of bamboo fibre reinforced concrete cube 59
Figure 4.11: Graph of average flexural strength against fibre length 62
Figure 4.12: Failure pattern of normal structural beam 63
Figure 4.13: Fibre bridging inside the concrete 63
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Average distance between line of fracture and the nearest support measured on the tension surface of the beam</td>
</tr>
<tr>
<td>A</td>
<td>Average cross-sectional area of the specimen</td>
</tr>
<tr>
<td>b</td>
<td>Average width of specimen</td>
</tr>
<tr>
<td>d</td>
<td>Average depth of specimen</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of specimen</td>
</tr>
<tr>
<td>f_c</td>
<td>Compressive strength of concrete specimen</td>
</tr>
<tr>
<td>L</td>
<td>Length of specimen</td>
</tr>
<tr>
<td>P</td>
<td>Maximum load applied</td>
</tr>
<tr>
<td>R</td>
<td>Flexure strength</td>
</tr>
<tr>
<td>T</td>
<td>Tensile strength</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ASTM American standard testing methods
BFC Bamboo fibre cotton
BS British standard
CAN Chemical assisted natural
CMT Compressive moulding technique
FRC Fibre reinforced concrete
N Normality
OPC Ordinary Portland cement
RMT Roller mill technique
SFRC Steel fibre reinforced concrete
TFA Trifluoroacetic acid
CHAPTER 1

INTRODUCTION

1.1 Research Background

Concrete has the benefits such as low costs, high in availability, able to support for large compressive loads is now being the most common material used in construction. However, the normal concrete itself is low in tensile strength, ductility, and low resistance to cracking (Compendex, Elsevier and Services-usa, 2016). Micro cracks are always found in internal of concrete and because of the propagation of such micro cracks, the concrete experience in poor tensile strength as it making concrete become more brittle in fraction. In normal structural concrete and other similar brittle material, structural crack or called micro crack was already developed before any loading applied which is due to drying shrinkage or other causes of volume change happens to the concrete. Hence, to overcome these problems, the alternate ways such as fibre reinforced concreting method has been used. Fibre reinforced concrete is composite concrete that contained fibres, whether in orderly or randomly distributed manner in the cement matrix. Its efficiency of fibre to transfer the stress between the matrix is highly depended on the type of fibre, geometry of fibre, fibre volume and its distribution, mixing and compaction techniques of concrete as well and the size and shape of the aggregates used in the mix would define fibre reinforced concrete properties.

The used of fibres in the concrete mix as a reinforcing material was first recorded with Egyptians mixing straw and hairs of animal in the concrete as a reinforcing material for fixing of bricks in walls (Mahesh and Kavitha, 2016). After decades of research and improvement, steel fibre and synthetic fibre are now widely used as the fibre reinforced material in concrete. However, although high tensile strength of steel are used to complement the low tensile strength problem of concrete, but due to its high in cost and high energy consumption in manufacturing process making the use of steel to be limited
(C. Zhang et al., 2013). Thus, in response to the global warming issues and due to the global concern and emphasising on sustainable society especially for developing country, a more suitable material replacement with a lower cost, environmental friendly and also less energy consuming is needed. (Brindha et al., 2017).

While in current era of industrialization, as people are now tending to give more and more attention to the non-polluting materials and manufacturing process with less energy requirements (Zhang, Pan and Yang, 2012). A lot of research had made and found that there are many useable natural fibres which can work as reinforcement material such as sisal, jute, coir, kenaf, oil palm fibre, sugarcane and others (Ramaswamy, Ahuja and Krishnamoorthy, 1983). However, by addressing all these problems, bamboo was found by contained great potential to become one of the useful material as fibre reinforcement in concrete that can use in constructions with low cost implementation as bamboo is natural, cheap, widely available (Ahmad et al., 2014) and its having mechanical properties such as high tensile strength and high strength to weight ratio which had made bamboo a natural engineering material itself (Mehra et al., 2016).

In this research, mechanical performance of bamboo fibre reinforced concrete are studied through a series of compression and flexural tests. Comparative test was made to find out the impact of the bamboo fibre towards the concrete’s mechanical performance by acquiring the aspect ratio of bamboo fibre compare with plain concrete.

1.2 Problem Statement

Fibre reinforced concrete, which now is a common used construction material. Steel fibre are the most popular to be used in the concrete due to its ability to strengthen its concrete mechanical properties and control cracks development. Although addition of steel fibre in concrete can reduce micro cracks development but through a long period, various if action can corrode the steel causing it to lose of strength and bonding capability in concrete and this lead to the insight on the usage of organic and inorganic fibres which are eco-friendly and economic.

Main reason for people to start considering adding natural fibres in the concrete is due to the extremely high cost steel fibre. (Zhang, Huang and Chen, 2013). Other than high cost of raw material and the production itself, the production of steel fibre required a lot of
energy consumption and the process itself contribute significant of greenhouse gases emission, eventually enhanced global warming process and leads to global concern on this issue (Mehra et al., 2016).

Nowadays, people are more concern being in term of sustainability in various aspects. World Commission on Environment and Development (WCED) defined the meaning of sustainability as meeting the needs of the present without compromising the ability of future generations to meet their own needs (Onuaguluchi and Banthia, 2016). Increasing of world population and the pressure associated with the built environment has become one major problem that the mankind is facing. Significant waste generation, energy and material consumption were found as the aftereffect of high demands for building infrastructure by the industry. Therefore, the selection of materials used in construction became more important as it will directly affect to the environment issue raised. Therefore, the reasons for doing research on natural fibre has become a vital part to enhance the sustainability of material used in construction and reduce the impact to the environment.

According to the studies on natural fibres and steel fibres, natural plant fibres was found to be much more in term of renewable, eco-friendly, economical and very low in production cost (Phong et al., 2011). For this research, bamboo fibre had been chosen to be studied as it has high strength to weight ratio and some of its engineering properties of material itself might able be able to use as alternative reinforcing material other than steel and synthetic fibre considering also the cost and availability issue. Hence, a study on bamboo fibres with different proportions of fibre-cement ratio and aspect ratio of are being compared with respect to plain concrete to understand its behaviour and mechanical effect in concrete.
REFERENCES

