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Abstract. Homogenous Charge Compression Ignition (HCCI) is an alternative combustion 
concept for in reciprocating engines which offers significant benefits in terms of its high 
efficiency and low emissions. HCCI is the most commonly used name for the auto-ignition of 
various fuels and one of the most promising alternatives to SI and CI combustion. This study 
focus on the ignition reactions of low and high octane number of fuel blends through 
comprehensive simulation.  This study was carried out by using n-heptane as a base fuel and 
toluene as a sub fuel use as a fuel mixture in this simulation. Furthermore, for numerical 
analysis, MATLAB Software has been used to design simplified model of reaction mechanism 
for n-heptane. The simplified model has been discussed in this study. The highest value of 
hydroxyl radicals OH was achieved at approximately 0.23 at NTF 10 (Toluene mixture 10%) 
and the line decreased until 0 This value is gradually decreased when the mixture of toluene 
(NTF) as sub fuel is elevated until NTF60 Due to the content percentage of toluene added 10% 
consecutively, HCHO production increased as well. It is because HCHO consumes OH and at 
the same time affects the amount of OH. By doing this method (mixing n-heptane with 
toluene), the ignition delay of the fuel becomes longer is described. It is also shows that the 
simplified model constructed with a consideration of the property of reaction happen in n-
heptane (base fuel) added with toluene (sub fuel) in which OH reproduction and fuel + OH 
reaction plays important role. The purpose of this study is to figure out the reaction mechanism 
of compression ignition at Low Temperature Oxidation (LTO) and design the simplified model 
of reaction mechanism for n-heptane + toluene (NTF). 

Keywords. Low temperature oxidation; Homogenous Charge Compression Ignition (HCCI); 
Toluene; n-heptane; Graphical User Interface (GUI) 

1. Introduction 
Nowadays, we see that hydrocarbon fuels are an essential source of energy used for transportation in 
our daily life. The combustion models for these fuels are used to predict the performance of internal 
combustion engines. With these combustion models, engines can be designed to improved efficiency 
and reduced emissions in system. Combustion, also known as burning, is the basic chemical process of 
releasing energy from a fuel and air mixture. In an internal combustion engine, the ignition and 
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combustion of the fuel occurs within the engine itself. The internal combustion engine is an engine 
that uses the explosive combustion of fuel to push or move a piston within the cylinder engine [1].  

Homogeneous Charge Compression Ignition (HCCI) engine is a promising alternative with high 
thermal efficiency and ultra-low emission characteristics to the existing internal combustion engines. 
HCCI combustion is the process in which a homogeneous mixture is auto-ignited through 
compression. HCCI has the potential to reduce both particulate matter and NOx emissions while 
maintaining the fuel efficiency [2]. Recent research has shown that the use of two fuels with different 
reactivity (such as gasoline and diesel) can help solve some of the difficulties of controlling HCCI 
ignition and burn rates [3]. RCCI or Reactivity Controlled Compression Ignition has been 
demonstrated to provide highly efficient, low emissions operation over wide load and speed ranges [4, 
5]. 

The oxidation of normal n-heptane (nC7H16) already has been subject of many experiments and 
model of the studies. But still most of the studies were carried out under High Temperature Oxidation 
(HTO) and very few to the Low Temperature Oxidation (LTO) of the n-heptane especially regarding 
the characterization reaction products [6]. Low temperature oxidation (LTO) of hydrocarbons is of 
importance for the development of diesel and homogenous charge compression ignition (HCCI) 
engines, as this particular chemistry triggers auto-ignition phenomena. Low Temperature Oxidation is 
a reaction which occurs at or below room temperature (usually 500K-1000K). The first modelling 
studies of the oxidation of n-heptane were carried out in the late of 1970s and in the 1980s by Coats 
and Williams where only for high temperature oxidation [6, 7]. In 1989, Westbrook has proposed the 
first detailed kinetic accounting for the low and high temperature oxidation of n-heptane [8, 9]. Since 
then, several of low and high temperature of this species has been introduced.  

This study objectives focuses on ignition mechanism’s reaction of compression ignition at Low 
Temperature Oxidation (LTO) by develop the simplified model of reaction mechanism of fuel 
mixture, and numerical simulation by using MATLAB software where the ignition behaviour of n-
heptane changing with the fuel mixing ratio. Recently, many research focused on simplified model of 
PRF [10-13], with most of them concentrating on experiment of ignition timing or high-temperature 
oxidation reaction, but less in the low-temperature oxidation reaction. Because of that, in this study we 
tried to focus on middle product from low-temperature oxidation and bring reaction mechanism. Low 
temperature oxidation (LTO) of hydrocarbons is of importance for the development of diesel and 
homogenous charge compression ignition (HCCI) engines, as this particular chemistry triggers auto-
ignition phenomena. A Low Temperature Oxidation (LTO) region is highly depending on complicated 
chemical reaction mechanism as well as ignition delay and also for reaction pathway of both base fuel 
and sub fuel. In this project, by developing a simplified model of the reaction mechanism of fuel 
mixture (base fuel and sub fuel), the analysis of the reaction mechanism of the fuel mixture in low 
temperature oxidation becomes easier in term of time effective because it can minimize the time by 
doing this concept of analysis. 

There are two-stage of heat generation from ignition mechanism of hydrocarbons. Relatively, 
around 700K there is small heat generation called "Cool Ignition" while around 1000K, there is a large 
heat generation as main combustion flame called "Hot Ignition". This Hot ignition is dominated and 
influenced by the Cool Ignition. This phenomenon is showed in figure 1.  
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Figure 1. Observed pressure (a), temperature (b) and rate of heat release (c) in n-heptane fueled HCCI 

engine.(�= 0.43, intake gas temperature = 413K) [15]. 
 

Heat generation for low temperature oxidation and thermal ignition preparation period has 
significant influence to the time when the temperature reached for the occurrence of hot flame. In 
addition, by supplying �� reactant into H2O2 presence reaction can accelerate the generation of hot 
flame. Therefore, to understand and control low temperature oxidation reaction that has dominated 
cool flame that cause the hot flame as the main combustion becoming important task in realizing 
HCC1 engine. Figure 2 shows schematic diagram of the low temperature oxidation reaction in 
hydrocarbon fuel [6]. 
 

 
Figure 2. General Oxidation Scheme for hydrocarbon [15]. 

 
For the numerical simulation, it use the MATLAB software for the numerical analysis which by 

creating the Graphical User Interface (GUI) using this software. The design GUI simulation program 
consist of assumed parameters input, calculation output and data calculation.  

2. Methodology 
In the present study, the simulation models were compared or validated by the experimental results 
that were conducted on a four stroke single cylinder diesel engine (displacement 541 cm3, 
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compression ratio 18.0) which was maintained the standard speed at 600 RPM and externally driven 
by an electric motor for constant speed operation regardless of internal power generation [6]. The 
methodology of this study been constructed from two main process. First, are the modelling process 
and the numerical procedure by using the MATLAB Software. A simplified model will be created in 
translated to MATLAB Software. In MATLAB Software, GUI methods will be used. After run the 
simulation the result will be translated into summary graph than can be plotted in Excel file. All results 
from executed simulation will be translated to compare with experimental result obtained from Adnin 
et al. [6] because this study using the same fuels and parameters in the simulation model. 

For PRF and NTF, iso-octane and toluene was selected. Within PRF fuel, iso-octane (1. iCg) and 
Toluene (1.C6H6C) has high knocking resistance with octane number 100 and 110 respectively, while 
n-heptane (1.nC7h) with low knocking resistance has 0 octane number. Toluene is a typical high 
octane number fuels that reduce ignition activity of n-heptane when mixed, but some different 
behaviours between these fuels on the ignition control [14]. 

The design GUI simulation program consist of assumed parameters input, calculation output and 
data calculation. The simulation is run by different percentage of NTF. NTF is the fuel with a mixture 
of toluene and n-heptane. First, to start the simulation, run the program and setup the parameters by 
input the value of initial condition of each parameter. Then, the program will stimulate the calculation 
of the modelled evolution of chemical composition in Low Temperature Oxidation (LTO) and the 
result will be displayed in a graph. 

 
2.1 Discussion with simplified model 
The low temperature oxidation mechanism of hydrocarbons consists of complicated reactions such as 
H-abstraction, O2-addition, isomerization, second O2-addition, decomposition and branching passes. 
The oxidation mechanism of mixture of n-heptane (base fuel) and iso-octane or toluene (second fuel) 
is expressed in a summarized manner as below; 
  
                                             ��7�16+�� � ����+ ������+	
�� �	���
�                             (1) 
 
�����������������������������������������������8�18 (	 �6�5��3)+�� �����+ ������+	
�� �	���t                  (2) 
 
Where ��,� can be expressed as the reproduction index of OH from base or second fuel, and ��,� , the 
reproduction yield of chain terminating intermediate represented by HCHO from base or second fuel. 
Other products are represented as an unreactive during the course of low temperature reaction.. 
Differential equations time evolution of relevant species can be described as;  
 
��������������������������������������������������������������������������������
��������������������������������������������������������������������(3) 
   
                                                        �[�������]�
=���[�������][��]                                         (4) 
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�������������"����������������#������$��������������������������(6) 
 

From the equation (3) until (6), where kb,s is the rate constant of base or second fuel with OH 
product, and � expressed as a aldehyde. From the equation, it can be translated into a form in which 
the independent variable which is percentage consumption of base fuel, known as x, which are below 
[6]: 
 
��������������������������������������������������������%��� &�%���'!�'� � ����������������������������������������������������������(7) 

 
����������������������������������������������������%#��� �����%���'�&(��'!�'�� � �����������������������������������������(8) 
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From the previous equation, ys is the remaining amount of second fuel (relative to initial amount of 
base fuel and so forth), yald is the accumulated amount of aldehyde, and yOH is the amount of OH 
product, &1= ��/�� and &2= �#/��, where &1 is the ratio of rate constant between second fuel with 
OH and base fuel with OH, and &2 is the ration of rate constant between aldehyde with OH and base 
fuel with OH. The �� of low octane number of fuel is necessarily exceeding unity, but �� may differ. 
The OH concentration increases with repetition of the reaction chain when initial overall OH 
reproduction index is over unity. The slope of OH increase gradually reduces and finally the chain 
system is terminated that according to decrease in fuel and increase in the OH consuming aldehyde. 
The point of termination is represented by the overall OH reproduction index = 1 [6]. The parameters 
used for NTF (n-heptane and toluene mixture) are ����=5, ��=2, ��=0, ��=1.6, and ��=0. It is a part 
of which was assumed by overlooking the toluene oxidation mechanism [12]. 

 
2.2 Basic steps for numerical procedure 

2.1.1. Creating Graphical User Interface (GUI). Figure 3 shows the steps for run the GUI. 

 
Figure 3.Steps for run the GUI. 

2.1.2. Validation. To further validate the applicability of the developed reaction mechanism for auto-
ignition combustion, numerical simulations were performed and compared against the HCCI engine 
experiments. The numerical simulation was able to capture elements of HCCI combustion of n-
heptane and toluene mixture fuel, particularly the LTO. 

In addition, figure 4 shows that the total comparison of results between the model calculation, 
simulation (CHEMKIN) experimental and GUI result for validation purposes Meanwhile for 
validation with Adnin et al experimental result, the n-heptane and toluene consumption been compared 
as shows in figure 4. The figure show the margin error is below 9% for n-heptane consumption and 
15% for toluene consumption. 
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Figure 4. Comparison between simplified model with experimental results. 

It is shows that the simplified results for toluene and n-heptane patterns are similar to GUI results. 
There are differences because of the parameters that been considered are different. It is because the 
GUI results are focusing on the LTO which a lot of parameters or condition doesn’t have much impact 
on that situation.  

Statistical analysis is conducted to study the variability and stability of raw data. The margin error 
between the simulation data and experimental result is below 5% during validation. Muthanna in [16] 
mentioned that 30 data points could gain 18 degrees of freedom and 16.7% uncertainty for checking 
the capability of the process. It is based on the Wheeler’s Graph (2004). 

 
3. Results and discussion 
The aim of this study is focuses on ignition mechanism’s reaction at Low Temperature Oxidation 
(LTO) by using simulation modelling and numerical simulation. The result of this simplified model is 
plotted into “Fraction to Initial n-heptane” versus “n-heptane Consumption x” and also all results will 
be summarised in one graph (figure 5).  

These calculations show that the toluene consumption (yt) is less than n-heptane consumption, the 
effect of reducing n-heptane consumption is less than in toluene, and aldehyde production (yald) 
increases with decreasing toluene content. Interaction between the mixture of fuel components (n-
heptane + toluene) will be resulting decrease in n-heptane consumption because of competition 
between n-heptane with OH and toluene with OH reaction rate. Toluene is typical high octane number 
fuels that reduce the ignition activity of n-heptane when mixed [15]. 



ICMER 2019

IOP Conf. Series: Materials Science and Engineering 788 (2020) 012058

IOP Publishing

doi:10.1088/1757-899X/788/1/012058

7

 
 
 
 
 
 

 
Fig. 5. Comparison in final composition of OH in LTO from various percentages of NTF. 

 
Figure 5 shows a comparison of OH production graph for NTF fuels from a different percentage of 

toluene. From the graph, it can be observed that by increasing toluene percentage, OH production 
become decrease as predicted by toluene character. Adnin et al. in [15] mentioned that OH as the 
middle product that propagates high temperature oxidation decrease by increasing toluene percentage. 
 

 
Figure 6. Fuel consumption and formaldehyde production at the end of low temperature chain 

reaction in NTF. 
 

From figure 6, it shows that the high percentage of toluene, the chain reaction does not start from 
the beginning, so that low temperature oxidation (LTO) heat release does not occur. To summarize the 
mixing effect of high octane number of fuel to n-heptane ignition property, toluene acts as a simple 
dilution agent, since the toluene-OH reaction rate is slow and OH production index is very low as 
mentioned by Adnin et al in [15]. Fuel consumption decreases with increasing of toluene/n-heptane 
ratio although it is weak. It is because toluene has lower rate constant with OH, so that toluene barely 
interrupts the OH reproducing chain reaction of n-heptane as stated by Adnin et al in [15]. The 
reaction mechanism is quietly complicated but already been approved through many research. In the 
previous study, there are a 26 reactions and 25 species mechanism for n-heptane which has been 
derived from two detailed mechanisms for developed by Lawrence Livermore National Laboratory 
(LLNL) mentioned by Adnin et al in [15]. Figure 7 are the results from [15] shows the comparison 
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between CHEMKIN and experimental result run by Adnin et al. Meanwhile figure 8 shows the other 
results that compares between simpolified model calculation and CHEMKIN result based on [15] 
parameters. 
 

 
Figure 7. Graph comparison between simulation (CHEMKIN) and experimental results [15]. 

 

 
Figure 8. Graph comparison between simplified model calculation and simulation (CHEMKIN). 

[15]  
Figure 9. Graph comparison between model calculation, simulation (CHEMKIN), experimental and 

GUI results. 
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In figure 9, it shows the comparison between result in [15] (CHEMKIN, Simplified Model and 
Experimental) with GUI results. Graph shows the GUI pattern is more similar to the experimental 
result compare to CHEMKIN and it’s expected because CHEMKIN input of parameter and 
consideration is greater than the GUI. 
 
4. Conclusion 
From the result simulation, it can be concluded that the amount of toluene content becomes decreasing 
with the increasing of n-heptane consumption, and the aldehyde production also increases with the 
decreasing of toluene content. Moreover, the increasing of toluene percentage has big influence in OH 
production. It is because OH production becomes decrease as predicted by toluene character and OH 
as the middle product that propagates high temperature oxidation decrease by increasing toluene 
percentage. It also can be concluded that the GUI can be use as a tools for describing the ignition 
mechanism’s reaction at LTO but more parameter settings required for more precise results. 

In the future works, there are some improvements need to be considered in order to ensure the 
success of this project with less errors during simulation. During setup the parameters of this program 
simulation, there is some calculation errors that have been shown in the graph. In order to solve this 
problem, to learn more about MATLAB software such as loop calculation, MATLAB Simulink or 
other software which can calculate based on the simplified model equations. Other than that, for 
further research, we can consider other parameters such as temperature and pressure in the model 
calculation to improve the data calculation. Also, it can be referenced for comparison between fuel 
combustion simulation and fuel combustion experiment.  
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