DURABILITY OF LIGHTWEIGHT AGGREGATE CONCRETE CONTAINING OIL PALM ASH (OPA)

WAN NUR AMIERAH BINTI WAN MUSTAFA

B. ENG. (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor’s Signature)
Full Name : KHAIRUNISA MUTHUSAMY
Position : LECTURER / SUPERVISOR
Date : 11TH JUNE 2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at University Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : WAN NUR AMIERAH BINTI WAN MUSTAFA
ID Number : AA14077
Date : 11TH JUNE 2018
DURABILITY OF LIGHTWEIGHT AGGREGATE CONCRETE CONTAINING OIL PALM ASH (OPA)

WAN NUR AMIERAH BINTI WAN MUSTAFA

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2018
ACKNOWLEDGEMENTS

In the name of Allah the Most Gracious, the Most Merciful, Praise to Him the Almighty that in his will and the given strength I am able to complete my progress report for my final year project. With this opportunity given, I would like to deliver my very great appreciation to the Faculty of Civil Engineering and Earth Resources for assisting as a platform and providing me the opportunity to successfully conduct and complete this study. Moreover, I would like to offer my special thanks to my supervisor, Dr. Khairunisa Muthusamy for providing me with her valuable and constructive ideas that, truthfully, a great help that guides me during the planning and development of this study. For she has always concern herself with the progress of my research, the never-ending willingness to spend times and tolerance on reviewing them all. For with her help, I managed to understand and able to present my entire purpose of starting the research in form of this thesis. I would also like to extend my thanks to the technicians of Structural and Material Laboratory, for their help in providing me guidance and resources to finish the project, and friends for working along day and night helping each other out with necessary information that are essential for the completion of this project. Finally, I would like to thank my parents for their never-ending supports, encouragement and understanding throughout my study. For without them, I would not know the meaning of gratitude, patience and trust.
ABSTRAK

Di Malaysia, industri minyak sawit yang telah berkembang pesat sepanjang tahun telah menyebabkan penghasilan sisa dalam kuantiti yang besar dan akan menjejaskan alam sekitar secara negatif. Penghasilan bahan binaan seperti simen dari sumber semulajadi telah menyebabkan banyak penghasilan gas-gas yang tidak perlu secara berlebihan ke udara boleh menyebabkan kesan rumah hijau terhadap alam sekitar. Debu Minyak Kelapa Sawit (OPA) merupakan salah satu jenis sisa industri minyak kelapa sawit – yang boleh didapati dengan mudah, akan digunakan dalam penyelidikan ini bagi membantu dalam mengatasi masalah pencemaran ini secara minor. Ketidaktentuan prestasi bagi kandungan konkrit ringan, peniasatan dari segi ketahanan terhadap serangan asid dan sulfat dan penyerapan air akan dibuat. Lima siri 0%, 10%, 20%, 30% dan 40% kandungan konkrit ringan OPA dengan saiz campuran kiub yang sama (100X100) mm² akan disediakan. Spesimen dengan 0% kandungan OPA akan menjadi spesimen kawalan bagi siasatan ini. Spesimen konkrit ringan ini akan melalui tempoh pengawetan selama 28 hari iaitu selama 7 hari di dalam air dan selebihnya akan dibiarkan terdedah ke udara. Kehilangan berat spesimeen akan diperhatikan berkaitan bagi ujian rintangan asid dan sulfat. Kemerosotan kekuatan akan diperhatikan bagi ujian rintangan asid. Seterusnya, kadar penyerapan air akan diperhatikan bagi ujian penyerapan air. Hasil ketara yang diperolehi menyimpulkan bahawa dengan kandungan OPA yang semakin meningkat, berat spesimen semakin berkurang daripada berat asal dan kekuatan spesimen turut menjadi semakin merosot. Kadar penyerapan air juga semakin meningkat apabila kandungan OPA meningkat. Kesimpulannya, kesar negatif terhadap spesimen terjadi kerana kandungan OPA banyak, serta, melebihi kandungan optimum OPA yang sesuai menggantikan semen.
ABSTRACT

In Malaysia, the industry of palm oil has grown rapidly throughout the years causing an immense production of waste that will surely affect the environment negatively. The production of construction material from natural resources such as cement has produced an excessive amount of unnecessary gas into the air causing a blunt greenhouse effect on the environment. Oil Palm Ash (OPA) as one type of palm oil industrial wastes – can be easily obtained, were used in the research that in order to help in overcoming these problems. In regard of its uncertain performance as a content of lightweight concrete, an investigation in terms of durability against acid and sulphate attacks and water absorption were also made. Five series of 0%, 10%, 20%, 30% and 40% of OPA content lightweight concrete with the same mix proportioning of (100X100) mm² cube size were prepared. The specimen with 0% content of OPA was set as the control specimen of the investigation. These lightweight concrete specimens were then cured for 28 days – 7 days in water and the rest will be air cured. Losses of mass was observed in regard of acid and sulphate resistance test. Strength deterioration in regard of acid resistance test. While, in water absorption rate, the water absorption test were necessarily observed. The distinct result obtained concluded that with the increasing content of OPA, the specimens become susceptible to loss mass as compared to its original mass and deteriorate in strength. The water absorption rate observed also increase as OPA content increases. It is concluded that, all these negative effects on the specimens were only observed when the content of OPA is too much and exceeded the optimum content of OPA.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Background of Research 1

1.2 Problem Statement 2

1.3 Research Objective 3

1.4 Significance of Research 3

1.5 Scope of Research 4

1.6 Layout of Thesis 4

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Palm Oil Industry in Malaysia 7

2.3 Oil Palm Ash (OPA) 10
2.3.1 OPA as Waste 12
2.3.2 OPA Used in Concrete 13
2.4 Palm Oil Boiler Stone (POBS) 15
 2.4.1 POBS as Waste 16
 2.4.2 POBS Used in Concrete 17
2.5 Lightweight Concrete (LWC) 18
 2.5.1 Classification of Lightweight Concrete (LWC) 20
 2.5.2 Advantages of Lightweight Concrete (LWC) 21
2.6 Durability of Concrete 22

CHAPTER 3 METHODOLOGY 23
3.1 Introduction 23
3.2 Raw Material 24
 3.2.1 Cement 24
 3.2.2 Lightweight Aggregate 24
 3.2.3 Oil Palm Ash (OPA) 25
 3.2.4 Water 25
 3.2.5 Fine Aggregate 25
3.3 Mix Proportion 25
3.4 Mix Proportion 26
3.5 Durability Testing 27
 3.5.1 Sulphate Resistance Test 28
 3.5.2 Acid Resistance Test 28
 3.5.3 Water Absorption Test 29

CHAPTER 4 RESULTS AND DISCUSSION 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Sulphate Resistance</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Acid Resistance</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>4.3.1 Mass Loss</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Strength Deterioration</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Water Absorption</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 5 CONCLUSION</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>Conclusion</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5.2.1 Sulphate Resistance</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5.2.2 Acid Resistance</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5.2.3 Water Absorption</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Recommendation for Further Study</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Area of oil palm planting and growth in the decades of the last century.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>OPA particles at microscopic views.</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical composition of cement and OPA.</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The compressive strength of OPS and POBS based LWC at different ages.</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Mix proportion of samples.</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Annual oil extraction rate for 1986-2008</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Malaysian production, in 2004, of crude palm oil and by-products from palm oil mills and refineries</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>OPA as waste at the dump site in Maran, Pahang. October 30, 2017.</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>POBS at palm oil mill in Lepar Hilir, Pahang. October 6, 2017</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of work process.</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Ordinary Portland cement.</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of samples.</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Compressive test in progress.</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Water absorption test in progress.</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Sulphate resistance of seven days initially water cured LWAC with different percentage of OPA at 23 weeks.</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Mass loss percentage of seven days initially water cured LWAC with OPA specimens immersed in HCl solution for 1800 hours.</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Strength deterioration of seven days initially water cured LWAC with OPA immersed in HCl solution for 1800 hours.</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Water absorption of seven days initially water cured LWAC with different percentage of OPA at 28 days.</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>μm</td>
<td>Micro-meter</td>
</tr>
<tr>
<td>C-S-H</td>
<td>Calcium Silicate Hydrate</td>
</tr>
<tr>
<td>Ca(OH)$_2$</td>
<td>Calcium Hydroxide</td>
</tr>
<tr>
<td>d</td>
<td>Day</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kN</td>
<td>Loadings</td>
</tr>
<tr>
<td>lb</td>
<td>Pound</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>Mpa</td>
<td>Strength (Mega-Pascal)</td>
</tr>
<tr>
<td>SG</td>
<td>Specific Gravity</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>Magnesium Sulphate</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA</td>
<td>Oil Palm Ash</td>
</tr>
<tr>
<td>POBS</td>
<td>Palm Oil Boiler Stone</td>
</tr>
<tr>
<td>LWC</td>
<td>Lightweight Concrete</td>
</tr>
<tr>
<td>LWAC</td>
<td>Lightweight Aggregate Concrete</td>
</tr>
<tr>
<td>SSD</td>
<td>Saturated Surface Dry</td>
</tr>
<tr>
<td>USA</td>
<td>The United State of America</td>
</tr>
<tr>
<td>YTL</td>
<td>Yeoh Teong Lay</td>
</tr>
<tr>
<td>UMP</td>
<td>University Malaysia Pahang</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Concrete – commonly known as a major material in construction – is the mixture of cement, coarse and fine aggregates and with or without chemical-mineral additives. Being able to replace some of these materials could make significant changes to the environment and cost as well as the performance of the concrete themselves (Kanchidurai et al, 2017). Through a hydration process that binds the aggregates together the mortar – mixture of concrete ingredients, develops into becoming hard, durable and strong material. Depending on the content of the aggregate, the durability of the concrete would vary. The mixture of concrete with some lightweight coarse aggregate made up a lightweight aggregate concrete mixture. Typically, the density of lightweight concrete would be a lot less compared to the normal weight concrete. This is because, light weight structural concrete is an enhanced version of concrete, with emphasis on decrease in density of concrete, hence, when structural concerns require a minimum to the dead load, light weight concrete is used (Rasheed & Prakash, 2015). So, practically, the primary use of lightweight concrete is to reduce the dead load of a concrete structure.

Malaysia as one of the developing country in term of oil palm industry, have generate bunches of palm oil wastes. The most common wastes from palm oil mill is Oil Palm Ash (OPA) and Palm Oil Boiler Stone (POBS) are by-products of oil mills arising from the use of palm oil shell and palm oil bunches which are used to power oil mill plants for electricity generation (Awal and Hussin, 1997; Hussin et al., 2010). Each year, more than 100,000 tons of OPA is produced and is increasing annually, while the utilization of it is minimal. Thus, most of these oil palm waste will be disposed of in landfills, causing environmental and other problems (Jaturapitakkul et al., 2007). Its
abundant in amount made it an easier option for material replacement as it is easily available. Besides, there is also a research conducted to have shown that these palm oil wastes can be used as material in the manufacture of concrete (Teo, et al., 2006). Based on World Business Council for Sustainable Development in the year of 2006, the cement industry produces about 2.6 billion tonnes of cement annually. The most important use of cement is in the production of concrete, twice the amount of which is used than the total of all other building materials, to construct our homes, schools, hospitals, sewage systems, pavements and more. Concrete is the most used man-made material in the world, a fact not widely known. Concrete has a cement content of between 10-15%. The excessive use of natural resources could be reduced significantly through this integration.

Considering the amount of OPA arising from palm oil mills in Malaysia, Thailand, Indonesia and other palm oil producing nations and the desire to address environmental problem posed by this waste, there is a need to examine further on the application of OPA at higher volume particularly in concrete operations. As such there have been lots of previous researchers that have reported various studies that shows OPA is as suitable to be use in the mixture of concrete (Chindaprasirt et al., 2008; Wongkeo et al., 2014; Deboucha et al., 2015). OPA has a lot of time been introduced as a pozzolanic material in concrete and there have been a lot of studies that focussed on OPA in the study of its mechanical properties in concrete such as compressive strength and modulus of elasticity of concrete. Some studies have considered the durability of these mix of concrete against sulphate attack and corrosion resistance of high-strength concrete (Chindaprasirt, et al., 2011). With the increasing needs to substitute the construction into an eco-friendlier environment, a proper study about any integrations toward that objectives should be made. So, it seems more than appropriate and beneficial to conduct a further study on the durability performance of lightweight concrete containing OPA.

1.2 Problem Statement

In construction industry, the act of building a shelter from scrap involve a lot of uses of machines, natural resources and cost. So, there have been a concern about how to improve construction practices to minimise their detrimental effects on the natural
Construction contributes to air pollution at all levels. It creates air pollution at a local scale through emissions of dust, fibre, particles and toxic gases from site activities and building materials production processes. It contributes to regional pollution through emissions of nitrogen and sulphur oxides in building materials production (Spence et al., 1995). Being the major user of the world’s non-renewable energy sources and minerals, the construction industry has contributed a lot in causing pollution on the earth. Apart from that, an improving palm oil industry is also among the largest industry to contribute waste. Such as in Malaysia, its excessive production of waste from the palm oil industry has affected the sustainability of the country. Too much waste contributes to landfills and a higher possibility of causing a lot more pollution to the environment. This is because, the incineration of palm oil ingredients could release abundantly unnecessary smoke or gas to the atmosphere that will pollute the air. Therefore, the integration of palm oil industry by-products such as OPA and POBS as partial material replacement in the manufacture of concrete can decrease the use of natural resources, while also contributing to the reduction of pollution to the environment.

1.3 Research Objective

The objectives of the research are as follows: –

i. To investigate the effect of Oil Palm Ash (OPA) as mixing ingredient on sulphate attack of lightweight concrete.

ii. To investigate the effect of Oil Palm Ash (OPA) as mixing ingredient on acid resistance of lightweight concrete.

iii. To investigate the effect of Oil Palm Ash (OPA) as mixing ingredient on water absorption of lightweight concrete.

1.4 Significance of Research

The main purpose of conducting this research is to contribute in decreasing the pollution of the environment. With the excessive development and demand from the agricultural industry, lots of by-products or waste were involuntarily produce that can affect the environment. Sustainability of the construction industry is kind of the major issue that need to be immediately focused on. Therefore, the ability to properly reuse or
REFERENCES

Ismail, b. S., 2012. Study on properties of clay brick and CB brick under different heating rate. *Faculty of Civil and Environmental Engineering Universiti Tun Hussien Onn Malaysia*, pp. 8-11.

