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Abstract. In this paper the solvability problems of some boundary value problems for a non-
local polyharmonic equation are studied. A non-local polyharmonic equation is represented
by using some orthogonal matrix. The properties and examples of such matrices are given.
In the current boundary value problem, which being considered in the paper, the fractional
order differentiation operators are used as boundary operators. These operators are defined as
derivatives of the Hadamard-Caputo type. Note that in particular cases of the parameters of
the boundary conditions we obtain well known conditions of the Dirichlet, Neumann, and Robin
type problems. For the problems under consideration, theorems on the existence and uniqueness
of solutions are proved. The exact solvability conditions for the problem under study are found.
In addition, we obtained representation for the solution of the fractional boundary problem for
polyharmonic operator.

1. Introduction
The concept of a non-local operator and the related concept of a non-local differential equation
started to appear in mathematics quite recently. E.g., in [1], the notion of non-local differential
equations incorporated the loaded equations, equations with fractional derivatives of the
unknown function, equations with deviating arguments in other words, all equations in which
the unknown function and/or its derivatives enter with different values of arguments. A specific
type of the non-local differential equations is formed by equations in which the deviation of
arguments has an involution character.

It is well known that differential equations containing an involution in the unknown function
or its derivative confer model equations with alternating deviation of the argument. In general
such equations can be attributed to the class of functional-differential equations. Solvability
issues for certain partial differential equations with involution are covered in [2]-[4]. Besides, in
[5]-[9], boundary value problems for second- and fourth-order elliptic equations are studied in
the case when an involution appears in the boundary conditions.

This paper is devoted to the study of the some boundary value problems with fractional order
for a non-local polyharmonic equation.

Let proceed with the statement of the problems.
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We consider n−dimensional Euclidean space Rn, n ≥ 2. Let Ω = {x ∈ Rn : |x| < 1} be a unit
ball. The boundary ∂Ω of the unit ball Ω is unit sphere.

We denote by S a real orthogonal n × n matrix: S · ST = In, where In denotes unit n × n
matrix. A matrix is orthogonal exactly when its column vectors have length one, and are pairwise
orthogonal; likewise for the row vectors. In short, the columns (or the rows) of an orthogonal
matrix are an orthonormal basis of Rn, and any orthonormal basis gives rise to a number of
orthogonal matrices. Any orthogonal matrix is invertible, with S−1 = ST . Suppose also that
there exists a natural number l such that Sl = In.

Note that, since any orthogonal transform is isometric, any x ∈ Ω and any x ∈ ∂Ω satisfies
the inclusions Skx ∈ Ω, and, respectively, Skx ∈ ∂Ω for any positive integer k.

Let us give some simple examples of such mappings S.
Example 1. Let, for any x ∈ Ω, the mapping S be defined by the relation Sx = −x, i.e.

S = −In. Obviously, one has S · ST = −In (−In) = In, S2 = In, and therefore l equals 2.
Example 2. The mapping S can clearly be a rotation in the space Rn, e.g. S is the product

of rotations S = C1
ϕ1
C2
ϕ2
· · ·Cn−2

ϕn−2
where Cjϕ corresponds to the matrix
Ij 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 In−j−2

 ,

Ij is the j × j unit matrix and j = 1, n− 2. Indeed, one has ST = Cn−2
−ϕn−2

. . . C2
−ϕ2

C1
−ϕ1

,

CiϕC
j
ψ = Cjϕ+ψ, and therefore

SST = C1
ϕ1
C2
ϕ2
. . . Cn−2

ϕn−2
· Cn−2

−ϕn−2
. . . C2

−ϕ2
C1
−ϕ1

= In.

Moreover, it is necessary to suppose that exists a natural number l ∈ N such that Sl = In.
Let u(x) be a smooth function in the ball Ω, let r = |x|, let θ = x/r , and let d = r ddr be the

Dirac operator, where r ddr =
∑n

j=1 xj
∂
∂xj

.

For any α > 0, the expression

Jα[u](x) =
1

Γ(α)

∫ r

0

(
ln
r

τ

)α−1
u(τθ)

dτ

τ

is called an integration operator of order a in the sense of Hadamard. By convention,
J0[u](x) = u(x).

Note that the operator Jα cannot be applied even to sufficiently smooth functions u(x) with
u(0) 6= 0. Therefore, for each α ∈ (p − 1, p], p = 1, 2, ..., we define the fractional differentiation
operator as the following modification of the Hadamard operator:

Dα[u](x) = Jp−α [δpu](x) ≡ 1

Γ(p− α)

∫ r

0

(
ln
r

τ

)p−α−1
(
τ
d

dτ

)p
[u(τθ)]

dτ

τ
.

Let µ ≥ 0. Set

Jαµ [u](x) = r−µJα[rµu](x), Dα
µ [u](x) = r−µDα[rµu](x).

Let m ≥ 1, 0 ≤ α ≤ 1, a− be some real number. We consider the following boundary value
problem in Ω

(−∆)mu(x) + a(−∆)mu(Sx) = f(x), x ∈ Ω, (1)

Dα+k
µ u(x) = gk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1. (2)
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By a solution of the problem equations (1) and (2) we mean a function u(x) ∈ C2m(Ω)∩C(Ω̄)
with Dα+k

µ u(x) ∈ C(Ω̄), k = 0, 1, ...,m− 1, satisfying equation (1) and the boundary conditions
(2) in the classical sense.

Note that the problem (1) and(2) in the case a = 0 were earlier considered in [10] and for the
case α = 0, µ ≥ 0,m = 1, i.e. for Poisson equation, is considered in [11]. In the case α = 0, µ = 0
we obtain a Dirichlet problem and when α = 1, µ = 0 we have the Neumann type problems.

2. Auxiliary statements
Consider the operator ISu(x) = u(Sx) = u(x∗). In view of what has been said above, this
operator is defined on functions u(x), x ∈ Ω. Let Sicol and Sirow be the i-th column and i-th row
of the matrix S, respectively.

We prove two simple lemmas. Let u(x) be a twice continuously differentiable function in Ω.
Lemma 1. Operators δ and IS are commutative δISu(x) = ISδu(x), and also the equality

∇IS = ISS
T∇ holds, and operators ∆ and IS are also commutative.

Proof. We can write the operator δ in the form δu = (x,∇)u. Since

∂

∂xi
ISu(x) =

∂

∂xi
u(Sx) =

∂

∂xi
u((S1

row, x), . . . , (Snrow, x))

=

n∑
j=1

sjiISuxj (x) = (Sicol, IS∇u(x)) = IS(Sicol,∇)u(x), (3)

then

δISu(x) = δu(Sx) =

n∑
i=1

xi
∂

∂xi
u(Sx) =

n∑
i=1

xi
(
Sicol, IS∇u(x)

)
=

(
n∑
i=1

xiS
i
col, IS∇u(x)

)
= (Sx, IS∇u(x)) = IS(x,∇u(x)) = ISδu(x).

Further, due to the formula (3), we find

∂2

∂x2
i

ISu(x) =
∂

∂xi
IS(Sicol,∇)u(x) = IS(Sicol,∇)2u(x)

and therefore

∆ISu(x) =
n∑
i=1

IS(Sicol,∇)
2
u(x) = IS

∣∣((S1
col,∇), . . . , (Sncol,∇)

)∣∣2u(x)

= IS
∣∣ST∇∣∣2u(x) = IS(ST∇, ST∇)u(x) = IS(SST∇,∇)u(x) = IS∆u(x).

At last,
∇ISu(x) = IS((S1

col,∇), . . . , (Sncol,∇))u(x) = IS(ST∇)u(x).

Corollary 1. If the function u(x) is polyharmonic in Ω, then the function u(x∗) = ISu(x)
is also polyharmonic in Ω.

Indeed, due to Lemma 1, ∆mu(x) = 0⇒ ∆mISu(x) = IS∆mu(x) = 0.
Lemma 2.The operator 1 + aIS , when (−a)l 6= 1 is invertible and the operator

Ga =
1

1− (−a)l

l−1∑
k=0

(−a)kIkS
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is inverse to 1 + aIS , i.e.
Ga (1 + aIS) = (1 + aIS)Ga ≡ E. (4)

Proof. It is easy to see that(
l−1∑
k=0

(−a)kIkS

)
(1 + aIS)u(x) =

(
l−1∑
k=0

(−a)kIkS −
l∑

k=1

(−a)kIkS

)
u(x)

=
(
E − (−a)lI lS

)
u(x) = (1− (−a)l)u(x).

Thus, if (−a)l 6= 1 then we can divide both sides of the equality by 1− (−a)l and hence the
operator Ga is inverse to 1 + aIS . The proof of Lemma 2 is completed.

3. Auxiliary problems
In this section we study the following problem:

∆mv(x) = f(x), x ∈ Ω, (5)

Dα+k
µ v(x) = ψk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1. (6)

The following assertions were proved in [10] for problem (5) and (6).
Theorem 1. Let µ > 0, 0 < λ < 1, 0 < α ≤ 1, f(x) ∈ Cλ+1(Ω̄), and ψk(x) ∈

Cλ+2m−k(∂Ω), k = 0, 1, ...,m− 1. Then there exists a unique solution of problem (5),(6), which
belongs to the class Cλ+2m(Ω̄) and can be represented in the form

v(x) = Jαµ [w](x),

where w(x) is the solution of problem

∆mw(x) = F (x), x ∈ Ω; δkµ[u](x) = ψk(x), x ∈ ∂Ω, k = 0, 1, ...,m− 1, (7)

with the function F (x) = Dα
µ+2m[f ](x).

Next let consider a following matrix:

A =


1 1 1 ... 1
0 2 4 ... 2(m− 1)

0 22 42 ... [2(m− 1)]2

...
...

... · · ·
...

0 2m−1 4m−1 ... [2(m− 1)]m−1

 .

We denote by ∆j , j = 0, ...,m − 1 the determinants of the matrix obtained from the matrix A
by the deletion of the first column and the (j + 1) st row. In particular, ∆0 = |A| = detA. One
can readily show that |A| 6= 0. Let 0 < α ≤ 1.

For the problem (5) and (6) in case of µ = 0, 0 < α ≤ 1 we have
Theorem 2. Let µ = 0, 0 < α ≤ 1. If f(x) ∈ Cλ+1(Ω̄), ψk(x) ∈ Cλ+2m−k(∂Ω), k =

0, 1, ...m − 1, 0 < λ < 1, then problem (5) and (6) is solvable if and only if the following
condition hold ∫

∂Ω

(
1− |x|2

)m−1
J1−α

2m [f ](x)dx =

m−1∑
k=0

ck,m

∫
∂Ω

ψk(x)dSx (8)
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where

ck,m = (−1)k+1∆k
4m−1((m− 1)!)2

|A|
. (9)

If there exists a solution of the problem, then it is unique up to a constant term, belongs to
the class Cλ+2m(Ω̄), and can be represented in the form

v(x) = C + Jα0 [w](x)

where w(x) is the solution of problem (7) with the function F (x) = Dα
2m[f ](x) and with the

additional condition w(0) = 0.

4. Uniqueness and existence of solution of the main problem
In this section we investigate the uniqueness and existence of the solution of the problem equation
(1) and (2). The following proposition is true.

Theorem 3. Let µ > 0, (−a)l 6= 1, 0 < λ < 1, 0 < α ≤ 1. If f(x) ∈ Cλ+1(Ω̄), and
gk(x) ∈ Cλ+2m−k(∂Ω), k = 0, 1, ...,m− 1, then

1) in the case µ > 0 there exists a unique solution of problem (1) and (2);
2) in the case µ = 0 the necessary and sufficient condition for solvability of the problem

equation (1) and (2) is

1

1 + a

∫
∂Ω

(
1− |x|2

)m−1
J1−α

2m [f ](x)dx =
m−1∑
k=0

ck,m

∫
∂Ω

gk(x)dSx, (10)

subject to the condition a 6= −1.
If there exists a solution of the problem, then it is unique up to a constant term.
3) If there exists a solution of the problem, then it belongs to the class Cλ+2m(Ω̄), and can

be represented in the form
u(x) = Ga[v](x), (11)

where v(x) is the solution of problem (5) and (6) with the functions ψk(x) = (1+aIS)gk(x), k =
0, 1, ...,m.

Proof Let u(x) be a solution of problem equation (1) and (2). If (−a)l 6= 1 then the operator
Ga exists. We apply the operator 1 + aIS to the function and set v(x) = (1 + aIS)u(x). Let find
conditions, which a function v(x) satisfy. By application of the operator Dα+k

µ , k = 0, 1, ...,m−1
and using the boundary conditions of (1) and (2), we obtain following relations for the function
v(x)

Dα+k
µ v(x) = Dα+k

µ (1 + aIS)u(x) = (1 + aIS)Dα+k
µ u(x) = (1 + aIS)gk(x) ≡ ψk(x), x ∈ ∂Ω.

Next, we apply the operator (−∆)m to the relation v(x) = (1 + aIS)u(x) and use relation
(1), then we obtain

(−∆)mv(x) = (−∆)m(1 + aIS)u(x) = (−∆)mu(x) + a(−∆)mu(Sx) = f(x), x ∈ Ω.

We have thereby shown that if u(x) is a solution of problem (1) and (2), then the function
v(x) = (1 + aIS)u(x) is a solution of problem (5) and (6) with the functions ψk(x) =
(1 + aIS)gk(x), k = 0, 1, ...,m.

Moreover by application of the operator Ga to the relation v(x) = (1 + aIS)u(x) and using
relation (4), we obtain a representation (11) for the solution of problem (1) and (2).

Conversely, let v(x) be a solution of problem (5) and (6) with the functions ψk(x) =
(1 + aIS)gk(x), k = 0, 1, ...,m.
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Next we show that the function u(x) = Gav(x) satisfies all assumptions of problem (1) and
(2). Indeed, if gk(x) ∈ Cλ+2m−k(∂Ω), k = 0, 1, ...,m − 1 , then ψk(x) = (1 + aIS)gk(x) ∈
Cλ+2m−k(∂Ω), k = 0, 1, ...,m.

Let µ > 0. In this case, by Theorem 1, problem (5) and (6) corresponding to these functions
has a unique solution, which belongs to the class Cλ+2m(Ω̄), that the function Gav(x) belongs
to that class as well.

Next, we apply the operator (−∆)m to the relation u(x) = Gav(x). Then we have

(−∆)mu(x) = Ga(−∆)mv(x) = Gaf(x) =⇒ a(−∆)mu(Sx) = aGa(−∆)mv(Sx) = aGaISf(x)

Hence

(−∆)mu(x) + a(−∆)mu(Sx) = (1 + aIS) (−∆)mu(x) = Ga (1 + aIS) f(x) = f(x), x ∈ Ω,

i.e., the function u(x) = Gav(x) satisfies equation (1). In addition, we apply the operator Dα+k
µ

a to the function u(x) = Gav(x) and take into account relations (6) and (4), then for µ > 0 and
x ∈ ∂Ω we have

Dα+k
a u(x) = GaD

α+k
µ v(x) = Gaψk(x) = Ga (1 + aIS) gk(x) = gk, k = 0, 1, ...,m− 1,

i.e., the boundary conditions of problem (1) and (2) are satisfied as well. The fact of uniqueness
of the solution of the boundary problem (1) and (2) is the consequence from the result that the
problems (5) and (6) have unique solution.

Let µ = 0. In this case, by Theorem 2, the necessary and sufficient solvability condition of
the problem (5) and (6) is the integral equality∫

∂Ω

(
1− |x|2

)m−1
J1−α

2m [f ](x)dx =
m−1∑
k=0

ck,m

∫
∂Ω

ψk(x)dSx, (12)

where ψk(x) = (1 + aIS)gk(x), k = 0, 1, ...,m, the numbers ck,m are defined in (9).
The following is giving the method for transformation of the integral on the right hand side

of (12).
Lemma 3. Let S be an orthogonal matrix, then for any continuous function ϕ(x) on ∂Ω a

following equality holds: ∫
∂Ω

ϕ(Sx) dSx =

∫
∂Ω

ϕ(x) dSx.

Proof. Let a function w(x) be a solution of the Dirichlet problem for the Laplace equation
in Ω with condition w(x)|∂Ω = ϕ(x), x ∈ ∂Ω. Then the function w(Sx) is a solution of the
Dirichlet problem for the Laplace equation in Ω with the condition w(Sx)|∂Ω = ϕ(Sx), x ∈ ∂Ω.
Therefore, due to the Poisson’s formula, we have∫

∂Ω

ϕ(Sx) dSx =

∫
∂Ω

w(Sx) dSx = ωnw(0) =

∫
∂Ω

ϕ(x) dSx,

where ωn is the area of the unit sphere. The proof of Lemma 3 is established.
Using the proved Lemma 3, the condition α 6= −1, and taking into account that the natural

degree of the orthogonal matrix is an orthogonal matrix as well, we find∫
∂Ω

ψk(x)dSx =

∫
∂Ω

(1 + aIS) gk(x)dSx =

∫
∂Ω

gk(x)dSx + a

∫
∂Ω

gk(Sx)dSx = (1 + a)

∫
∂Ω

gk(x)dSx.
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This implies that condition (12) can be transformed to the form (10).
The fact that a function u(x) = Gav(x) satisfies all assumptions of problem (1) and (2) can

be verified just as in the case µ > 0. Theorem is proved.
Remark. Note that the relation J0

2m[f ](x) ≡ f(x) holds for α = 1; therefore, the solvability
condition for problem (1) and (2) can be represented in the form

1

1 + a

∫
∂Ω

(
1− |x|2

)m−1
f(x)dx =

m−1∑
k=0

ck,m

∫
∂Ω

gk(x)dSx.
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