AXIALLY LOADED BUILT-UP C-SECTION COLD-FORMED STEEL WITH HOLES

MUHAMMAD IZZUDDIN HARISFADZILL
AA14208

B.ENG(HONS.) CIVIL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and, in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor in Civil Engineering.

__

Full Name : Khalimi Johan b Abd Hamid
Position : Supervisor
Date : 25 June 2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__

Full Name : MUHAMMAD IZZUDDIN HARISFADZILL
ID Number : AA14208
Date : 25 JUNE 2018
AXIALLY LOADED BUILT-UP C-SECTION COLD FORMED STEEL WITH HOLES

MUHAMMAD IZZUDDIN HARISFADZILL

Thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2018
ACKNOWLEDGEMENTS

In the name of Allah, The Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Special appreciation goes to my supervisor, Mr Khalimi Johan Abd Hamid, for her supervision and constant support. Her invaluable help of constructive comments and suggestions throughout the thesis works have contributed to the success of this research.

My deepest gratitude goes to my beloved parents; Mr. Harisfadzill bin Wan ariffin and Mrs. Tunis binti Kadir; and also, my brothers and sisters who had been supporting me all the time with their motivating and encouraging words, and also their never-ending love and prayers had made me to go thru this study.

I would like to express my appreciation to all lecturers in Faculty of Civil Engineering and Earth Resources for the assistance, guidance and encouragement throughout the study in completing this program successfully.

Lastly, special thanks to all my friends especially, my coursemates intake 2014/2015 for their kindness and moral support during my study. To those who indirectly contributed in this research, your kindness means a lot to me.

Thank you very much.
ABSTRAK

Kajian eksperimen dijalankan untuk mengkaji kelakuanseluli terbentuk sejuk terbina. Kancing binaan dalam kajian ini terdiri daripada dua bahagian C berorientaskan back-to-back membentuk suatu keratan rentas berbentuk I. Dimensi untuk spesimen diameter terbahagi kepada dua iaitu 103mm dan 203mm untuk disiasat. Untuk setiap spesimen, stud disambungkan kepada satu sama lain dengan dua skru penggerudian diri yang dijarakkan pada selang yang ditetapkan. Seksyen trek keluli yang terbentuk sejuk telah bersambung dengan tegak lurus ke setiap hujung stud terbina dengan skru penggerudian sendiri melalui setiap bebibir bahagian C. Tujuan bahagian trek adalah untuk mengekalkan hujung kancing bersama dan mewakili lampiran akhir biasa. Spesimen dikimpal dengan saiz plat keluli spesifik sebelum diuji. Tujuan spesimen dikimpal adalah untuk memegang spesimen semasa ujian dan untuk mendapatkan hasil yang lebih tepat diperoleh. Keputusan spesimen boleh diperolehi oleh beban muktamad dari setiap spesimen dan untuk mengkaji tingkah laku tengkuk disebabkan oleh kedudukan pembukaan yang berbeza dalam spesimen.
ABSTRACT

An experimental investigation was conducted to study the behavior of built-up cold-formed steel. The built-up studs in this study consisted of two C-sections oriented back-to-back forming an I-shaped cross-section. The dimension for diameter built-up specimens are divided into two that are 103mm and 203mm to be investigated. For each specimen, the studs were connected to each other with two self-drilling screws spaced at a set interval. A cold-formed steel track section was connected running perpendicular to each end of the built-up stud with a single self-drilling screw through each flange of the C-sections. The purpose of the track section was to keep the ends of the studs together and represents a common end attachment. The specimens are welded with the specific size of steel plate before being testing. The purpose of welded specimen are to hold the specimens during testing and for more accurate result obtain. The result of the specimen can be obtained by the ultimate load from each specimen and to study the buckling behavior due to the different opening position in specimens.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 12

1.1 Introduction 12

1.2 Background of Study 13

1.3 Problem Statement 15

1.4 Research Objective 16

1.5 Research Scope 16

CHAPTER 2 LITERATURE REVIEW 17

2.1 Introduction 17

2.1.1 Hot rolled steel 18

2.1.2 Cold rolled steel 18

2.1.3 Press braking 18

2.1.4 Advantages of cold-formed 19
2.2 Classification of section
 2.2.1 Single section
 2.2.2 Built-up section
2.3 Built-up cold-formed steel
 2.3.1 Advantages of built-up C-section
2.4 Buckling behaviour
 2.4.1 Local buckling
 2.4.2 Distortional buckling
 2.4.3 Flexural buckling
2.5 Presence of holes in cold-formed steel
2.6 Previous researches
 2.6.1 Compression test of cold-formed steel columns
 2.6.2 Analysis for local buckling capacity of cold-formed steel section with web opening
 2.6.3 Buckling capacities of axially loaded, cold-formed, built-up C-channels

CHAPTER 3 METHODOLOGY

3.1 Introduction
3.2 Research Flow
 3.2.1 Phase 1: Planning and discussion of study
 3.2.2 Phase 2: Finding Literature review and Methodology planning
 3.2.3 Phase 3: Data analysis and result discussion
 3.2.4 Phase 4: Conclusion and recommendation
3.3 Research Design
3.4 Research Procedure
CHAPTER 4 FINDINGS AND DISCUSSION

4.1 Introduction 35
4.2 Load versus vertical displacement 35
4.3 Load versus horizontal displacement 37
4.4 Buckling Behaviour 43

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 49
5.2 Recommendation 49

REFERENCES 51

APPENDIX A 54

APPENDIX B 55
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Table of properties of plain and lipped channel with centroid position</td>
<td>14</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>The parameters of the typical C-section CFS and their naming convention</td>
<td>30</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Initial and Peak load for all specimen</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Finalize of buckling behaviour for each specimen</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Dimension of the built-up C-section plain and lipped angles 14
Figure 2.1 Shows the (a) C-section and (b) Z-section 20
Figure 2.2 Show the built-up c-sections specimen 20
Figure 3.1 Planning work process 27
Figure 3.2 Show the Built-up C-section with dimension 30
Figure 3.3 Schematic diagram for universal tester machine with transducer 31
Figure 3.4 Pictures (a) and (b) show the universal tester machine and schematic diagram for testing set-up 31
Figure 3.5 The different position of holes for section 103mm 32
Figure 3.6 The different position of holes for section 203 mm 32
Figure 3.7 Self-Drilling Screws that will be used to form Built-up Section 32
Figure 3.8 Labelling the specimen 33
Figure 3.9 Forming the built-up specimen with self-drilling screw 33
Figure 3.10 Base plated that used for specimen tested 34
Figure 3.11 Specimen welded at bottom support 34
Figure 4.1 Load versus Vertical Displacement for section 103 36
Figure 4.2 Load versus Vertical Displacement for section 203 37
Figure 4.3 Graph of transducer 2 and 3 for specimen BC203-A1 37
Figure 4.4 Graph of Transducer 2 and 3 for specimen BC203-A3 38
Figure 4.5 Graph of Transducer 2 and 3 for specimen BC203-A5 39
Figure 4.6 Graph of Transducer 2 and 3 for specimen BC203-A8 39
Figure 4.7 Graph of Transducer 2 and 3 for specimen BC103-A1 40
Figure 4.8 Graph of Transducer 2 and 3 for specimen BC103-A3 41
Figure 4.9 Graph for Transducer 2 and 3 for specimen BC103-A5 41
Figure 4.10 Graph for Transducer 2 and 3 for specimen BC103-A8 42
Figure 4.11 Buckling behaviour of specimen BC203-1.2-A1 (Initial, peak, post) 43
Figure 4.12 Buckling behaviour of specimen BC203-1.2-A3 (Initial, peak, post) 44
Figure 4.13 Buckling behaviour of specimen BC203-1.2-A5 (Initial, peak, post) 44
Figure 4.14 Buckling behaviour of specimen BC203-1.2-A8 (Initial, peak, post) 45
Figure 4.15 Buckling behaviour of specimen BC103-1.2-A1 (Initial, peak, post) 46
Figure 4.16 Buckling behaviour of specimen BC103-1.2-A3 (Initial, peak, post) 46
Figure 4.17 Buckling behaviour of specimen BC103-1.2-A5 (Initial, peak, post) 47
Figure 4.18 Buckling behaviour of specimen BC103-1.2-A8 (Initial, peak, post) 47
Figure 4.19 Specimen BC103 after being tested
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBW</td>
<td>Lateral back</td>
</tr>
<tr>
<td>CFS</td>
<td>Cold-Formed steel</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron Steel Inside</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BTB</td>
<td>Back-to-back</td>
</tr>
<tr>
<td>FKASA</td>
<td>Fakulti Kejuruteraan Alam Dan Sumber Alam</td>
</tr>
<tr>
<td>n.d</td>
<td>No date</td>
</tr>
<tr>
<td>LBF</td>
<td>Lateral torsional buckling at top support (front)</td>
</tr>
<tr>
<td>LMB</td>
<td>Lateral torsional buckling at middle span (front)</td>
</tr>
<tr>
<td>LTF</td>
<td>Lateral torsional buckling at top support (front)</td>
</tr>
<tr>
<td>DTF</td>
<td>Distortional buckling at top support (front)</td>
</tr>
<tr>
<td>DTB</td>
<td>Distortional buckling at top support (back)</td>
</tr>
<tr>
<td>DMF</td>
<td>Distortional buckling at middle span (front)</td>
</tr>
<tr>
<td>DBF</td>
<td>Distortional buckling at bottom support (front)</td>
</tr>
<tr>
<td>DBB</td>
<td>Distortional buckling at bottom support (back)</td>
</tr>
<tr>
<td>WMB</td>
<td>Warping buckling at middle span (back)</td>
</tr>
<tr>
<td>WMF</td>
<td>Warping buckling at middle span (front)</td>
</tr>
<tr>
<td>WBF</td>
<td>Warping buckling at bottom support (front)</td>
</tr>
<tr>
<td>WTB</td>
<td>Warping buckling at top support (back)</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>SFIA</td>
<td>Steel Framing Industry Association</td>
</tr>
<tr>
<td>CH1</td>
<td>Transducer 1 – Vertical Displacement</td>
</tr>
<tr>
<td>CH2</td>
<td>Transducer 2 – Horizontal Displacement</td>
</tr>
<tr>
<td>CH3</td>
<td>Transducer 3- Horizontal Displacement</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Steel is one of the material of construction and is a basic ingredient needed in construction. In steel structures, there are two types of structural steel members that are hot-rolled steel members and cold-formed. The usage of cold-formed steel structures in the building construction industry is rapidly increasing due to their potential benefits including high strength to weight ratio, rapid constructability and ease of transportability than hot rolled steel. Cold-formed steel structural members are commonly provided with holes to accommodate electrical and plumbing of building.

Cold-Formed Steel (CFS) industry have improved in technology and low production cost to produce more structurally efficient and economic cross section shapes. One of the most favourable ways to perform this task is to connect two or more single members together to form a built-up section, e.g. simply connecting two channel sections back to back to form a built-up I-section. Members with built-up section can carry more load and span more distance. There are different between the built-up C-section with plain and lipped angle. These types of sections can be shown in Figures 1.1. Loading is rarely concentric due to attachments along the angles legs. For plain and lipped channel have different centroid that will affect the angles legs. Plain angles have no primary warping resistance and local-plate buckling and global torsional buckling have nearly identical deformations.
1.2 Background of Study

Opening in cold formed steel columns section (CFS) are widely used in steel frames structures to facilitate piping, electrical, mechanical and sanitary works for maintenance services and inspections. Openings also made specifically for fasteners such as bolts and screws. By considering openings in steel columns sections are to reduce the materials volume without affecting the structural strength or serviceability requirement in addition to reduce the cold bridging effect when opening channel section steel column are used in the external wall panels at cold region. The ultimate strength and elastic stiffness of a structural member can vary with opening position, size, shape and orientation. In evaluation of the section properties of members in compression, openings need to be considered. The perforations can be divided by pre-punched or punched-on-site but mostly pre-punched are more favourable due to the problem that will rise later if the holes are not accurately made.

Use of built-up cold-formed steel got several advantages. The first advantages are production and handling such as ease of production. To produce new shapes without built special production method is fastened the standard -C and Z shape by a bolt, screw, or weld. Formation of (CFS) structure can be more easier and faster without heavy lifting equipment that suitable to up to semi high building. Strength and stability are the second advantages. Higher stability and capacity for built-up section due to combination of two or more standard section that produce greater cross-section properties. The eccentricity between the shear can be devastate with the symmetry of built-up section. Built-up section with Back-To-Back (BTB) advantages to strengthening external frame column and closed built-up section used to support long beam and double storey house.
Figure 1.1 Dimension of the built-up C-section plain and lipped angles
Source: LYSAGHT (January 2010).

Table 1.1 Table of properties of plain and lipped channel with centroid position
Source: LYSAGHT (January 2010).

<table>
<thead>
<tr>
<th>Plain Channels — Dimensions and Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue No.</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>LC05130</td>
</tr>
<tr>
<td>LC06425</td>
</tr>
<tr>
<td>LC07630</td>
</tr>
<tr>
<td>LC08330</td>
</tr>
<tr>
<td>LC08930</td>
</tr>
<tr>
<td>LC09530</td>
</tr>
<tr>
<td>LC10330</td>
</tr>
<tr>
<td>LC10230</td>
</tr>
<tr>
<td>LC12730</td>
</tr>
<tr>
<td>LC15230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lipped Channels — Dimensions and Properties of Full Unreduced Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue No.</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>LL06425</td>
</tr>
<tr>
<td>LL07610</td>
</tr>
<tr>
<td>LL07425</td>
</tr>
<tr>
<td>LL10530</td>
</tr>
<tr>
<td>LL10230</td>
</tr>
<tr>
<td>LL12730</td>
</tr>
<tr>
<td>LL15230</td>
</tr>
<tr>
<td>LL20330</td>
</tr>
</tbody>
</table>
REFERENCES

Brakefield, K., 2017. *Hot Rolled Steel vs Cold Rolled Steel*.[Online]
Available at: https://blog.swantonweld.com/hot-rolled-steel-vs-cold-rolled-steel

Kulatunga, M. P. et al., 2014. Load capacity of cold-formed column members of lipped channel cross-section with perforations subjected to compression loading - Part I: FE simulation and test results’. *Thin-Walled Structures*, pp. 1-12.

Mahmood, M. T., 2007. 'The use of light gauge construction material has been recently highlighted by Public Works Department Malaysia, especially in replacing wood for roof truss system in school. Performance Of Locally Produced Cold-Formed Steel Sections For Roof Truss System, pp. 11-27.

YU, W. a. L., 2010. Cold-formed steel design.