Bioelectrofuel synthesis by nanoenzymes : novel alternatives to conventional enzymes

Lakhveer Singh^{1,2,4}, Supriyanka Rana^{2,4}, Sveta Thakur², Deepak Pant³ ¹ Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh -522502, India ² Faculty of Civil Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia ³ Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium

ABSTRACT

Recent bioinspired efforts of designing novel nanoenzyme-based electrocatalysts are driven by the urgency of making bioelectrofuels more affordable and efficient. Unlike natural enzymes, nanoenzyme-modified electrodes with large surface areas enclose numerous biomimicking active sites to facilitate enhanced microbial growth followed by increased reactant-to-bioelectrofuel conversion.

KEYWORDS

Nanoenzyme; Enzyme mimicry; Enzyme activity; Microbial electrochemical technology; Electrofuels

ACKNOWLEDGMENTS

This work was supported by grants from the University Malaysia Pahang, Malaysia (<u>RDU190332</u>).