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ABSTRAK 

Algoritma pengoptimuman memainkan peranan penting dalam menyelesaikan banyak 

masalah kompleks dan masalah dunia sebenar. Penyelesaian yang dijana oleh algoritma 

mempunyai ketepatan yang tinggi dan boleh diharapkan. Tambahan pula, dengan 

perkembangan yang pesat dalam bidang teknologi perkomputeran, aplikasi algoritma 

pengoptimuman dalam menyelesaikan masalah menjadi lebih mudah dan semakin 

praktikal. Algoritma pengoptimuman juga dikenali sebagai algoritma metaheuristik yang 

berasal dari pendekatan heuristik. Ia adalah algoritma heuristik yang ditambahnilai 

dengan strategi yang maju diinspirasikan daripada pelbagai fenomena semulajadi yang 

ada di bumi. Algoritma ini juga dibahagikan jenis satu-objektif dan berbilang-objektif. 

Algoritma jenis satu-objektif boleh diaplikasikan untuk menyelesaikan masalah yang 

mempunyai hanya satu objektif, manakala jenis berbilang-objektif boleh diaplikasikan 

untuk menyelesaikan masalah yang mempunyai dua objektif. Bagi masalah kompleks 

yang terdiri dua objektif bercanggah yang tidak dapat diselesaikan dengan algoritma jenis 

satu-objektif boleh diselesaikan dengan algoritma berbilang-objektif. Penyelesaian yang 

dihasilkan oleh algoritma ini selalunya dijelmakan dalam bentuk lengkung pendepan-

Pareto. Pendepan-Pareto yang dihasilkan adalah ukuran sebaikmana penyelesaian yang 

dihasilkan oleh algoritma. Ukuran paling utama adalah ketepatan pendepan-Pareto yang 

dihasilkan dengan pendepan-Pareto yang sebenar dan pengagihan penyelesaian 

sepanjang lengkung pendepan-Pareto. Setakat ini prestasi algoritma berbilang-objektif 

masih belum mencapai aras terbaik dalam kedua-dua ukuran tadi. Justeru itu, masih 

terdapat ruang untuk penambahbaikan dengan memanipulasikan strategi algoritma. Tesis 

ini menampilkan dua variasi algoritma berbilang-objektif berdasarkan Algoritma 

Dinamik Lingkaran (SDA) dengan aplikasinya untuk mengoptimumkan pengawal PD 

bagi Sistem Bandul Terbalik. Variasi yang pertama dipanggil Algorithm Dinamik 

Lingkaran Berbilang-objektif berstrategi Penyusun Tidak-terdominasi (MOSDA-NS). 

Variasi ini menggunakan strategi Penyusun Tidak-terdominasi dan Penjarak Kesesakan 

dengan SDA. Variasi kedua dipanggil Algoritma Berbilang-objektif Dinamik Lingkaran 

berkonsep-Arkib (MOSDA-A). Ia menggabungkan konsep Arkib dengan SDA. Kedua-

dua algoritma yang dibangunkan telah diuji dengan satu set fungsi penanda-aras yang 

terdiri daripada 10 fungsi berbeza melangkaui pelbagai bentuk lanskap kesesuaian dan 

ciri. Kedua-dua ukuran ketepatan dan pengagihan penyelesaian pada pendepan-Pareto 

yang terhasil telah direkodkan. Kemudian, suatu analisa statistik telah dijalankan untuk 

mengukur tahap penambahbaikan berbanding Algoritma Berbilang-objektif Partikel 

Berkelompok (MOPSO) dan Algoritma Berbilang-objektif Penyusun Tidak-terdominasi 

Genetik (NSGAII). Keputusan daripada ujikaji menunjukkan bahawa MOSDA-NS 

mencapai ketepatan dan pengagihan penyelesaian yang terbaik berbanding dengan semua 

algoritma yang lain. Daripada segi menyelesaikan masalah dunia sebenar, algoritma yang 

dibangunkan telah diaplikasi untuk mengoptimumkan dua pengawal PD bagi Sistem 

Bandul Terbalik. Pengawal PD yang pertama adalah untuk menyingkirkan kesilapan yang 

terhasil daripada pergerakan linear bagi kereta bergerak manakala pengawal PD yang 

kedua menyingkirkan kesilapan darjah pusingan bagi bandul terbalik. Tindakbalas bagi 

kedua-dua darjah pendulum dan posisi kereta dalam domain masa telah direkodkan. Suatu 

analisa untuk mengukur prestasi tindakbalas kemudiannya dijalankan untuk mengetahui 

kesilapan keadaan-mantap, peratusan kelebihan-pecutan, masa kenaikan dan masa 

penyelesaian. Penemuan daripada analisa ini menunjukkan algoritma-algoritma yang 

baru dibangunkan ini mempunyai prestasi pengawalan yang lebih baik jika dibandingkan 

dengan MOPSO dan NSGAII. 
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ABSTRACT 

Optimization algorithm plays an important role in solving many complex and real-world 

problems. Solution offers by the algorithm has high accuracy and reliable. Moreover, with 

the fast development in computing technology, application of optimization algorithm in 

solving problems is easier and becomes more practical. Optimization algorithm is also 

known as a metaheuristic algorithm which is originally come from heuristic approach. It 

is a heuristic algorithm that is integrated with an advance strategy inspired from many 

natural phenomena found on earth. The algorithms can be categorized into a single 

objective and a multi-objective type. Single objective type optimization algorithm can be 

applied to solve a problem with a single objective. On the other hand, multi-objective 

algorithm is applicable to solve a problem with two or more objectives. A more complex 

problem in which has two conflicting objectives where it is not solvable by the single 

objective type algorithm is the right type of problem for the multi-objective algorithm. 

Solution produced by the multi-objective algorithm is always presented in Pareto front 

curve representation. The produced Pareto front curve is a measure of how good the 

solution produced by the algorithm is. The main measurement criteria include the 

accuracy of the solution to the actual Pareto curve and the distribution of the found 

solution on the actual Pareto curve. Yet the performance of many multi-objective 

algorithms in terms of the accuracy and the distributed solution is not achieved at the 

highest performance level. There are still rooms for improvement the algorithm 

performance by manipulating the algorithm strategy. This thesis presents two variants of 

multi-objective type algorithms based on a Spiral Dynamic Algorithm (SDA) with 

application to optimize a Proportional-Derivative (PD) controller for an Inverted 

Pendulum System. The first variant is known as a Nondominated Sorting Multi-objective 

Spiral Dynamic Algorithm (MOSDA-NS). It is a strategy which combines a 

Nondominated Sorting and Crowding distance approaches with the SDA. The second 

variant is known as Archived-based Multi-objective Spiral Dynamic Algorithm 

(MOSDA-A). It is a strategy combining an Archived approach with the SDA. All the 

developed algorithms were tested with a set of benchmark functions comprising of 10 

different functions covering various fitness landscapes and features. Both accuracy 

performance and distribution of the found solution on the obtained Pareto front are 

recorded. A statistical analysis is then conducted via a Wilcoxon Sign Rank test and a 

Friedman test. Both tests are conducted to verify the significant improvement of the 

solution obtained via the proposed algorithms to the Multi-objective Particle Swarm 

Optimization (MOPSO) and Multi-objective Nondominated Sorting Genetic Algorithm 

II (NSGAII). Result from the test shows that the proposed MOSDA-NS achieved the best 

accuracy and distribution performances compared to all other algorithms. In terms of 

solving a real-world problem, the proposed algorithms are applied to optimize two 

different Proportional-Derivative (PD) controllers for an Inverted Pendulum system 

attached on a moving cart. The first PD controller attenuates error for a linear movement 

of the moving cart. The second PD controller eliminates error for a rotating angle of the 

inverted pendulum. Transient responses of both pendulum angle and cart position in time-

domain representation are recorded. An analysis on the transient responses is then 

conducted which measuring steady-state error, percentage overshoot, rise time and 

settling time. Finding of the analysis indicates that the proposed algorithms have resulted 

in a better control performance compared to the MOPSO and NSGAII. 

 



v 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF ABBREVIATIONS xii 

CHAPTER 1 INTRODUCTION 1 

1.1 Research Background 1 

1.2 Problem Statement and Research Gap 6 

1.3 Research Objectives 7 

1.4 Scope of Research 7 

1.5 Publication 8 

1.6 Thesis Organisation and Sections 9 

CHAPTER 2 LITERATURE REVIEW 10 

2.1 Introduction 10 

2.2 Single-objective Optimization Techniques 10 

2.3 Multi-objective Optimization Techniques 11 

2.3.1 Priori Method 13 

2.3.2 Scalar Method 14 



vi 

2.3.3 Posteriori Method 15 

2.3.4 Interactive Method 16 

2.3.5 Hybrid Method 17 

2.3.6 Multi-level Programming 18 

2.4 Multi-objective Algorithms 18 

2.4.1 Classification of PoM Approaches 27 

2.5 Spiral Dynamic Algorithm 29 

2.5.1 Introduction 29 

2.5.2 Program Structure 33 

2.6 Genetic Algorithm and Its Variation 35 

2.6.1 Introduction 35 

2.6.2 Program Structure (Carr, 2014) 37 

2.7 Fast-elitist Non-dominated Sorting Genetic Algorithm 39 

2.7.1 Introduction (Barthelemy et.al., 1993) 39 

2.7.2 Flowchart NSGAII 40 

2.7.3 Non-dominated-sort (Barthelemy et.al., 1993) 44 

2.7.4 Crowding Distance 47 

2.7.5 Crowded Comparison Comparator 50 

2.8 Particle Swarm Optimization and Its Variation 50 

2.8.1 Introduction 50 

2.8.2 Program Structure 52 

2.9 Multi-objective Particle Swarm Optimization (Coello, 2002) 53 

2.9.1 Introduction 53 

2.9.2 Archiving-method 53 

2.9.3 Determine Domination 54 

2.9.4 Grid Generation 55 



vii 

2.9.5 Leader Selection 56 

2.9.6 General MOPSO 59 

2.10 Friedman Test (Pereira et.al., 2015) 60 

2.11 Wilcoxon Test (Cyprian, et.al., 2015). 60 

CHAPTER 3 METHODOLOGY 63 

3.1 Introduction 63 

3.2 Project Flow 64 

3.3 Proposed-developed Multi-objective Spiral Dynamic Algorithms 66 

3.3.1 Introduction 66 

3.3.2 MOSDA-NS: Non-dominated Sorting Spiral Dynamic Algorithm 66 

3.3.3 MOSDA-A: Archived-based Spiral Dynamic Algorithm 73 

3.4 Computer Simulation Setup 77 

3.4.1 Hardware 77 

3.4.2 Parameters Comparison 77 

3.4.3 Stopping Criterion 78 

3.4.4 Performance Metric 79 

3.4.5 Benchmark Function 86 

3.5 Validation of Proposed Algorithm 91 

CHAPTER 4 RESULTS AND DISCUSSION 92 

4.1 Introduction 92 

4.2 Simulation Result 93 

4.2.1 Pareto-front 93 

4.2.2 Numerical Result and Analysis 100 

4.2.3 Friedman and Wilcoxon Test 103 



viii 

4.2.4 Discussion and Analysis 104 

4.3 Application of The Proposed Algorithms 109 

4.3.1 Inverted Pendulum 110 

4.3.2 Motion Derivation of IP 111 

4.3.3 Optimization Setup 114 

4.3.4 Result of PD-Controller Optimization 116 

4.4 Overall Performance of Proposed Algorithms 119 

CHAPTER 5 CONCLUSION 123 

5.1 Conclusion 123 

5.2 Thesis Contribution 124 

5.3 Future Works 125 

REFERENCES 126 

APPENDIX A BEST, MEAN, WORST AND STANDARD DEVIATION FOR 

ALL ALGORITHM 145 

APPENDIX B FRIEDMAN TEST 147 

APPENDIX C WILCOXON TEST 150 

APPENDIX D FRIEDMAN VS WILCOXON 152 

 

 



ix 

LIST OF TABLES 

Table 2.1 Summary of methods in Posteriori technique. 28 

Table 2.2  Symbols for crossover operator. 37 

Table 3.1  The entities for each designated agents in population of MOSDA-

NS. 67 

Table 3.2  Specified agents to mutate and crossover. 68 

Table 3.3  The entities for each designated agents in a population in MOSDA-

A. 73 

Table 3.4 The specification of computer used. 77 

Table 3.5 Best initialization parameter for MOPSO. 78 

Table 3.6 Best initialization parameter for NSGAII. 78 

Table 3.7 Comparison of user-defined parameters. 78 

Table 3.8 𝑁𝐹𝐸 for each benchmark function. 79 

Table 4.1 Mean and 𝑆𝐷 for 𝐺𝐷 Test (Accuracy) 100 

Table 4.2  Mean and 𝑆𝐷 for 𝐷𝑀𝐷 Test (Spread/ Diversity) 101 

Table 4.3 Mean and 𝑆𝐷 for 𝑀𝑂𝑆 Test (Uniform Diversity) 101 

Table 4.4  Mean and 𝑆𝐷 for 𝐻𝑉 Test (Accuracy and Diversity) 102 

Table 4.5 Mean and 𝑆𝐷 for 𝑇𝑂𝐶 Test (Time of Computation) 102 

Table 4.6 Rank for compared algorithms based on Friedman vs Wilcoxon test. 

(Note: Marks (Ranks)). 109 

Table 4.7 IP parameters and their corresponding value. 111 

Table 4.8 Mean, best, worst and SD result for HV Test (Accuracy and 

Diversity) 117 

Table 4.9 Performance of algorithms to optimize PD-controller. 119 

Table 5.1 Summary of statistical optimization result obtained by MOSDA-NS 

for all reported 𝑀𝑂 problems. 145 

Table 5.2 Summary of statistical optimization result obtained by MOSDA-A 

for all reported 𝑀𝑂 problems. 145 

Table 5.3  Summary of statistical optimization result obtained by MOPSO for 

all reported 𝑀𝑂 problems. 146 

Table 5.4  Summary of statistical optimization result obtained by NSGAII for 

all reported 𝑀𝑂 problems. 146 

 



x 

LIST OF FIGURES 

Figure 1.1 Three types of optimization technique. 1 

Figure 1.2 Illustration (1): The logarithm of spiral;  Illustration (2) The spiral 

“diversification at the first half and intensification at the second 

half”. 5 

Figure 2.1 Multiple-criteria decision making methodologies. 12 

Figure 2.2 Pareto-front illustration which is optimized to maximum. 16 

Figure 2.3 Strength of SDA. 29 

Figure 2.4 Different value of 𝑟 and 𝜃 resulted the shape of the spiral step. 34 

Figure 2.5 Pseudocode of SDA. 34 

Figure 2.6 Crossover Operator 38 

Figure 2.7 Mutation operator. 38 

Figure 2.8 Pseudocode of GA. 39 

Figure 2.9 Elements in NS-approach 40 

Figure 2.10 Flowchart of NSGAII. 41 

Figure 2.11 Non-dominated sorting procedure illustration. 43 

Figure 2.12 Non-domination level 𝑁𝐿. Denote that, 𝐹1 > 𝐹2 > 𝐹3. 44 

Figure 2.13 Condition in selecting Pareto-optimal solution (𝑃𝑂𝑆). 44 

Figure 2.14 𝑂ℎ𝑌 and 𝑂(ℎ𝑌2) complexities illustration. 45 

Figure 2.15 Pseudocode of  non-dominated-sort procedure. 46 

Figure 2.16 CD illustration. 47 

Figure 2.17 Pseudocode of  CD. 48 

Figure 2.18 CD evaluation on all individuals in the same front. 49 

Figure 2.19 Pseudocode of  𝐶𝐶𝑂. 50 

Figure 2.20 Pseudocode of  PSO. 52 

Figure 2.21 Three elements in Archiving-method (AM) approach. 53 

Figure 2.22 Determine domination (𝐷𝐷) procedure. 54 

Figure 2.23 Normal dominance vs 𝜀 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒. 55 

Figure 2.24 Use of ε-dominance in external archive. 56 

Figure 2.25 Kernel-density (𝐾𝐷) estimator 57 

Figure 2.26 Nearest neighbour density estimator. 57 

Figure 2.27 Illustration on elements in archiving-method over one generation. 58 

Figure 2.28 Flowchart of MOPSO. 59 

Figure 2.29 Pseudocode of Wilcoxon test. 61 

Figure 3.1 Origins of  MOSDAs with its predecessors. 63 

file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585405
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585406
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585406
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585406
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585407
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585408
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585409
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585410
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585411
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585412
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585413
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585414
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585415
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585416
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585417
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585418
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585419
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585420
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585421
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585422
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585423
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585424
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585425
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585426
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585427
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585428
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585429
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585430
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585431
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585432
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585433
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585434
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585435
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585436


xi 

Figure 3.2 Project flow. 64 

Figure 3.3 The agents spread and how they move in spiral step looking for 

𝑃𝑂𝑆. 67 

Figure 3.4 Pseudocode of MOSDA-NS. 70 

Figure 3.5 Flowchart for MOSDA-NS. 72 

Figure 3.6 Pseudocode of MOSDA-A 74 

Figure 3.7 Flowchart of MOSDA-A. 76 

Figure 3.8 Illustration of 𝐺𝐷. 81 

Figure 3.9 𝐷𝑀𝐷 and 𝑀𝑂𝑆 illustration. 83 

Figure 3.10 Illustration of hypervolume operators. 85 

Figure 4.1 Produced-Pareto-front for 𝑓1. 94 

Figure 4.2 Produced-Pareto-front for 𝑓2. 94 

Figure 4.3 Produced-Pareto-front for 𝑓3. 95 

Figure 4.4 Produced-Pareto-front for 𝑓4. 95 

Figure 4.5 Produced-Pareto-front for 𝑓5 96 

Figure 4.6 Produced-Pareto-front for 𝑓6. 96 

Figure 4.7 Produced-Pareto-front for 𝑓7. 97 

Figure 4.8 Produced-Pareto-front for 𝑓8. 97 

Figure 4.9 Produced-Pareto-front for 𝑓9. 98 

Figure 4.10 Produced-Pareto-front for 𝑓10. 98 

Figure 4.11 Inverted pendulum system. 110 

Figure 4.12 Block diagram PD system. 114 

Figure 4.13 Result for PD-controller optimization by all algorithm. 116 

Figure 4.14 Closed-loop response produced by all optimized parameter of 

algorithms. 118 

 

file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585437
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585438
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585438
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585439
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585440
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585441
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585442
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585443
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585444
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585445
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585446
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585447
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585448
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585449
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585450
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585451
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585452
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585453
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585454
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585455
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585456
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585457
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585458
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585459
file:///D:/Formality/Forms/Draft%20Thesis%2013.docx%23_Toc534585459


xii 

LIST OF ABBREVIATIONS 

2LP Bi-level programming 

AM Archiving method 

AMGA Archived-Based Micro Genetic Algorithm 

APAES Adaptive Strategy PAES 

BA Bat algorithm 

BE Bat Echolocation 

BP back-propagation algorithm 

CF Community Fitness 

CS Community Score 

DE Differential evolution 

DMD Diversity Metric Delta 

DSD directed search domain 

EA Evolutionary algorithm 

EMO Evolutionary Multi-Objective Optimization 

GA Genetic Algorithm 

GD Generational Distance 

GP Goal programming 

HEM hybridization-encouraged mechanism 

HSCDA Hybrid Self-Adaptive Algorithm 

HV Hypervolume Indicator 

IP Inverted pendulum 

IWF Inertia Weighting Factor 

KKM Kernel 𝑘-Means 

LM Lexicographic method 

MCDA Multi-objective Community Detection Algorithm 

MCDM Multi-Criteria Decision Making 

MGA Micro Genetic Algorithm 

MLP Multi-level programming 

MLPSO Multi-Leader PSO 

MO Multi-objective  

MOA multi-objective Algorithm 

MOBA Multi-Objective BA 

MODE Multi-Objective Differential Evolutionary 

MOGA Multi-objective Genetic Algorithm 



xiii 

MOO Multi objective Optimization 

MOP Multi-objective Problem 

MOPSO Multi-Objective Particle Swarm Algorithm 

MOS Metric of spacing 

MOWCA Multi-objective Water Cycle Algorithm 

MPB Mathematical-Programming-Based 

NBI normal boundary intersection 

NBIm modified normal boundary intersection 

NC normal constraint 

NDS Non-dominated solution 

NPF No-Preference Methods 

NPGA Niched-Pareto Genetic Algorithm 

NS  Non-dominated sorting method 

NSGA Non-dominated Sorting Genetic Algorithm 

NSGAII Fast Elitist Non-Dominated Sorting Genetic Algorithm 

NSGSA-CM 
Non-Dominated Sorting Gravitational Search Algorithm with 

Chaotic Methodology 

OPSO Orthogonal PSO 

PAES Pareto Archived Evolutionary Strategy 

PD Proportional-Differential 

PESA Pareto Envelope Based Selection Algorithm 

PF Pareto-front 

PM Priori method 

PoM Posteriori Method 

POS Pareto optimal solution 

PSO Particle Swarm Algorithm 

RANSAC Random Sampling Consensus 

RC Ratio Cut 

SDA Spiral Dynamics Algorithm 

SKF Simulated Kalman Filter 

SO Single-objective 

SOA single objective Algorithm 

SOO Single-objective Optimization 

SOP Single-objective Problem 

SPEA Strength Pareto Evolutionary Algorithm 

SPEAII strength Pareto EA II 



xiv 

SPO Successive Pareto Optimization 

STWA Sliding Time Window Algorithm 

TBP Three-Term Backpropagation 

UOF Unique objective function 

VEGA Vector Evaluated Genetic Algorithm 

WCA Water Cycle Algorithm 



1 

CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Optimization is defined as a methodology, an act or a process of producing 

something as almost perfect, effective as possible or functional (Kiranyaz et.al., 2014). 

This method usually involves mathematical procedures like searching the maximum or 

minimum point of a function. This methodology is widely used in engineering and 

economics (Fonseca, 1995). To achieve the efficiency, a procedure which executes the 

solution iteratively is developed. This procedure is called as optimization algorithm 

(Yang, 2013). In this procedure, the algorithm compares various solution till an optimum 

or an approximate solution is found. An optimization model should be a tool to provide 

a fairly objectives decision. Optimization algorithm has become a part of computer-aided 

design activities as the development of computer technology is advancing (Wilde, 1962). 

Figure 1.1 shows three classes of optimization techniques. They are gradient-based 

technique, non-gradient-based technique and multi-disciplinary technique.  

Gradient based method is the one of the classical techniques which makes use of 

calculus and derivatives of the objective function or any constraint to search for optimum 

values. There are two ways to determine the optimum values either by using differential 

method or search method. Example of gradient-based method are including Steepest-

Optimization techniques 

Gradient-based 

technique 

Non-gradient-

based technique 

Multi-disciplinary 

technique 

Figure 1.1 Three types of optimization technique. 
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descent method, Newton’s method, Variable-Metric method (VM method) and 

Conjugate-Gradient method (Yang et.al., 2015). Second type of optimization technique 

is non-gradient-based.  It also known as the direct-search technique because there is no 

partial derivative used. Instead, they require only function values at different points to 

perform the search (Stanford, 2012). On the other hand, third multi-disciplinary technique 

is the combination of both gradient and non-gradient-based techniques.  

Heuristic and metaheuristic are types of searching strategies under non-gradient-

based techniques. Heuristic is a Greek word means “discover” or “find” (Ceberio et.al., 

2015). In computer algorithms, heuristic defined as criteria, methodology or principles to 

decide which alternative among several options promises to be most effective in order to 

achieve an objective (Kokash, 2005). It finds the solution quicker when the classic 

technique is very slow, or it is applicable to find the approximated solution when the 

classic method failed to provide the absolute one. This is achieved by trade-off  

(Lakshika, 2014). The methodology make compromise of several goals, firstly is to make 

the objective criteria is simple and second is the tendency to discriminate correctly 

between minimum and maximum valuation simultaneously (Sittisak et.al., 2015). To 

review, there are plenty of algorithms developed which belongs to heuristic algorithm 

including Simulated Annealing Algorithm (Algebra, 1980; Rutenbar, 1989), Tabu Search 

(Dorigo, 1990), Swarm Intelligent (Merkle et.al. 2015), Evolutionary Algorithms (Eiben 

et.al., 2003; Sevauex et.al., 2010), Neural Networks (Kriesel, 2005) and Support Vector 

Machine (SVM) (Evgeniou et.al., 2015).  

However, heuristic does not guarantee that all of the solution found are the best. 

Thus, the solution is only considered as approximated and not accurate solution (Kokash, 

2005). This is because the algorithm needs too many information from the user and some 

complex integration to solve the problem. So, heuristic usually only find and provide 

solution close to the best agent in a fast time  (Kokash, 2005). Metaheuristic on the other 

side is a higher-level procedure which to find, generate, develop or select a heuristic that 

may provide a sufficiently good solution to an optimization problem (Sörensen, et.al., 

2018). Their strategies are to guide the search process by exploring all the feasible region 

in order to find the optimal solution. The techniques of metaheuristic ranges from 

executing simple local search procedure to the higher level or complex procedure. This 

type of search are mostly approximation and commonly not deterministic (Tseng et.al., 
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2003). Differ to heuristic, metaheuristic problem-independent techniques and have 

mechanism to avoid local optima (Tseng et.al., 2003). Local optima are a situation where 

the algorithm only find the optimum value in some feasible region (Kesselring, 2006). 

This situation causes the possible better solution in wider feasible region could not be 

found. Thus, global optima are preferred. In contrast to local optima, global optima are 

the situation in which all feasible regions are discovered. Global optima can lead the 

algorithm to find the possible best solutions in all feasible region, not only in a specific 

region (Womersley, 2008).  

The recent challenges also faced by researchers are to provide a low computation 

cost to reduce time of computation, as well as to reduce monetary cost to gain higher 

profit. At the meanwhile, the algorithm also required to provide a high accuracy solution 

and fast computation speed to solve real-world problem (Wang, 2016). This challenges 

much solved by this metaheuristic optimization method. There are two groups to classify 

metaheuristic algorithms, first is singled-solution-based and second is population-based 

method (El Yafrani et.al., 2016; Lopez et.al., 2018). Singled-solution-based also known 

as trajectory methods. The goal of this approach is to modify and improve single 

searching agent solution (Bandyopadhyay et.al., 2013). In contrast, population-based 

method modifies and improves solutions from multiple numbers of searching agent. In 

other words, while searching the solution, they also maintain the best of found individuals 

in the current population.  

Other than that, metaheuristic algorithms are also classified in three categories of 

optimization, which are single-objective (𝑆𝑂) optimization, multiple-objective (𝑀𝑂) 

optimization and many-objective (𝑀𝑎𝑂) optimization. In 𝑆𝑂, the finding of only one-

single best solution is the goal. It determines the minimum or maximum value of a single-

objective (𝑆𝑂) problem that combined all different objectives into a unified-function 

(Savic, 2002). This 𝑆𝑂 is useful to give user an insight to the nature of the problems. 

However, the weakness of 𝑆𝑂 is it cannot provide any other choices of solution, which 

are traded-off between different aims against each other. On the contrary, 𝑀𝑂 does not 

provide single-solution, but they provide a set of various solutions (Deb, 2004, 2014; 

Nain et.al., 2005; Miettinen et.al., 2008). This methodology, which interacting less or 

equal than three objective functions, can provide a set of compromised solution, whether 

decided by trading-off, Pareto dominance or etc. while 𝑀𝑎𝑂  optimization is the 
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optimization which deals with more than three conflicting objectives (Palakonda et.al., 

2017; Bi et.al., 2017; Chand et.al., 2015). Some of the researcher state that, it might be 

consist of up to 20 objectives (Mariano-Romero et.al., 2005; Chand. et.al., 2015). They 

also found that, the number of objectives in 𝑀𝑎𝑂𝑂 increase the challenges to balance 

convergence and diversity of the Pareto-front.  

Since the real-world problems are complex and many aspects need to be 

considered, most of the designs are then characterized by a large and often infinite 

number of alternatives. Thus, the 𝑀𝑂 optimization is preferred by many users to identify 

a wide range of alternative solutions. Through this 𝑀𝑂 optimization, they do not need to 

predefine for which levels of the required best solutions that compared to the each other 

between the problem functions. Other than that, the algorithm in metaheuristic class is 

derivatives-free or non-gradient based (Rios et.al., 2013). Derivative-free means that the 

algorithm not require any information of functional derivatives. This algorithm is really 

useful when derivative information is unavailable, unreliable or not-practical to be 

provided. Instead, this type of algorithm only relies on the repeated evaluations of the 

objective function. It iteratively searches the solution by following the certain heuristic 

guideline.  

There are six of method-classes in 𝑀𝑂 optimization. They are including Priori 

method (PM) (Hartikainen, 2016b; Krause et.al, 2016), Scalarization (Feldman et.al., 

2016; Ghaznavi, 2017; Gutiérrez et.al., 2017), Posteriori method (PoM) (Williamson, 

2011; Al-Matouq, 2012; Bakhsh et.al., 2014; Hartikainen, 2016a), Interactive method 

(Deb et. al., 2007; Miettinen et.al., 2008; Sadrabadi, S.J., et.al, 2009; Ruotsalainen, 2010; 

Eskelinen et.al., 2012; Dergisi, 2015; Greco, S., et.al., 2016), Hybridization method 

(Adiche et.al., 2010; Carvalho, A. L. D., 2016, and Multi-Level Programming (Osman 

et.al., 2017). However, only Posteriori method was chosen. This method is defined as the 

method to find the Pareto-efficiency only which has better strategy to solve because it 

provide a number of traded-off solution. (Hartikainen, 2016a). A technique called as Fast 

Elitist Non-Dominated Sorting Algorithm (NS) is a type of concept belongs to Posteriori 

method. NS is the concept extracted from the extended version of multi-objective Genetic 

Algorithm (GA), called NSGAII (Deb et.al., 2000). In particular explanation, Pareto-

optimal Solution (𝑃𝑂𝑆 ) is the solution that passed through NS procedure. In this 

connection, 𝑃𝑂𝑆 are the solutions produced in which they are decided as Pareto-optimal, 
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Pareto-efficient or non-inferior, if none of the objective function can be modified for 

improvement in value without degrading other objective values. NS implements elitism 

for 𝑀𝑂 optimization, by using the elitism-preserving approach. This elitism-preserving 

approach is used to store all best 𝑃𝑂𝑆 found so far, beginning from the initialization of 

the population. The advantages of elitism is it enhances the convergence properties of the 

algorithm towards the Pareto-efficient set (Deb et.al., 2000). Other than that, a parameter 

less diversity preservation mechanism is adopted in order to make sure good well-diverse 

of Pareto-front.  

These few years back seems a lot of researchers took the opportunity to discover 

new nature-inspired metaheuristic algorithm (Yang, 2010, 2016; Järvilehto, 2011). This 

situation occurred due to the recognition of this methodology in versatility and concept. 

A new algorithm, named Spiral Dynamics Algorithm (SDA) is one of the recent natured-

inspired metaheuristic algorithms which was introduced in 2010 (Tamura et.al., 2011a). 

Spiral phenomena are the inspiration, which frequently occur in nature, like in nautilus 

shells, whirling currents and the arms of galaxies (Tamura et.al., 2011b). The author is 

motivated by an insight that the dynamics generating logarithmic spirals might have an 

affinity with the effective strategy of “diversification in the first half and intensification 

in the second half” as illustrated in Figure 1.2 (Tamura et.al., 2011b). Alongside with 

GA and PSO SDA is also a type of algorithm which derivative-free (Kennedy et.al., 1995; 

Stanford, 2012).   

Fast-elitist Non-dominated Sorting (NS) approach from NSGAII is a strategy to 

develop good Pareto solution set for 𝑀𝑂 -type problem (Deb et.al., 2000). Another 

method is by adopting the concept of Pareto-dominance to determine the movement of 

particles, at the same time the algorithm will maintain the 𝑃𝑂𝑆 found in a setup global 

repository (Oltean, et.al. 2005). This concept is taken from Multi-objective Particle 

(1) (2) 

Figure 1.2 Illustration (1): The logarithm of spiral;  Illustration (2) The spiral 

“diversification at the first half and intensification at the second half”. 
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Swarm Optimization (MOPSO) also known as Archiving-method (AM) (Coello et.al., 

2002; Ibrahim et.al., 2015). This method is easier to understand or develop as the PSO 

concept has some similarities with SDA.  For validation, both new algorithms will be 

tested with various types of numerical benchmark functions in optimization. (Kaveh 

et.al., 2011).  

In order to evaluate new algorithms’ performance, several classes of problems 

have been selected. The problem selected from wider family of optimization problems. 

Important to emphasize that, it is very preferable to use same algorithm to solve every 

problem to optimality with a minimal amount of computation. However, this will not 

possible. It is generally accepted that there is no perfection because there is no algorithm 

which can solve every problem better than any other, in which no-free-lunch (NFL) 

theorem supports this statement (Zhang, et.al., 2015, Pan. A., et.al., 2016, Wolpert, D. 

H., et.al., 1997). In this thesis, 10 𝑀𝑂 problems are selected which are taken from several 

researchers. They are come from low-dimensional 𝑀𝑂 problems which are derived by 

Schaffer, Fonseca and Poloni while high-dimensional 𝑀𝑂 problem which are Kursawe 

and ZDTs family (Antoniou, A., et.al., 2007).  

To know the algorithm performance in solving real world problem, a PD-

controller of an inverted pendulum (IP) is used (Shaheed et.al, 2006). At the end of the 

research, two versions of multi-objective algorithms based on SDA with good accuracy 

and diversity in finding Pareto-optimal front will be produced. 

1.2 Problem Statement and Research Gap 

The problem faced by algorithms, which are faced mostly by NSGAII and 

MOPSO are the convergence speed towards global-optimum. From the study and 

experiment, both of them require less than or nearly 1,000,000 times number of function 

evaluation (𝑁𝐹𝐸) (Nebro et.al., 2008). This huge 𝑁𝐹𝐸 is the motivation that driving the 

research as well as multi-conflicting problems are hard to solve. Therefore, by using 

metaheuristic which require high number of 𝑁𝐹𝐸 is not compatible approach in practice. 

Other than that, it is good to obtain a reasonably good approximation of Pareto frontiers 

in a quick time rather than obtaining high quality solution in a significant long time.  

Another foundation, there are still no research that has been done to develop 𝑀𝑂-

type SDA. As SDA provide a faster alongside a good accuracy solution for single-
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objective problems, it may provide a better response for 𝑀𝑂 problem. Rather than that, 

its convergence behaviour and simple structure can lead the SDA to be one of the 

promising multi-objective algorithms in the future. 

1.3 Research Objectives 

The main objective of this study is to propose a new multi-objective optimization 

based on spiral dynamic algorithm that has better convergence speed, with improved 

diversity and accuracy in finding Pareto-front in smaller 𝑁𝐹𝐸. The specific objective 

regarding this topic are: 

1. To propose a new archived-based multi-objective spiral dynamic algorithm 

with improved uniform diversity that requires smaller 𝑁𝐹𝐸. 

2. To propose a new non-dominated sorting-based multi-objective spiral 

dynamics algorithm with improved accuracy and diversity that requires 

smaller 𝑁𝐹𝐸. 

3. To apply and improve PD controller performance on an inverted pendulum 

system by using developed algorithms and compare them against PD-

controller which optimized by NSGAII and MOPSO. 

1.4 Scope of Research 

The overarching aim of the research project was to develop a new multi-objective 

(MO) algorithm based on Spiral Dynamic Algorithm (SDA). The specific project scope 

are as follows.  

1. In optimization, there are two types of problem, first is continuous and second is 

combinatorial problems. Other than that, the objective of the optimization is 

classified into two groups, which are single objective and multi-objective 

algorithm. The scope of this research is to solve continuous problem with multi-

objectives.  

2. From the literatures, there are six type of multi-objective techniques, which are 

Priori method, Scalar method, Posteriori method, Interactive method, Hybrid 

method and Multi-level Programming. Posteriori method are chosen due to its 
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superior features of Pareto-dominance to solve 𝑀𝑂 problem. Under Posteriori 

method, there are four approaches, which are combination of Non-dominated 

sorting and Crowding Distance (NS), Archive method (AM), External memory 

and Mathematical novel adaptive method. In this research, two of the approach 

which are NS and AM are the only considered approaches to be adopted to SDA.  

3. To validate the performance of the algorithms, benchmark functions is used. 

There are various of benchmark function in literatures found including those 

proposed by Schaffer, Fonseca and Fleming, Poloni and Kursawe. To challenge 

the real-world application, ZDT family of benchmark functions are also 

considered. These marked benchmark functions are all used to test the benchmark 

functions.  

4. The algorithms can be developed in various platforms. These platforms are 

including in MATLAB and SIMULINK, Java and Visual basic. Due to the 

superior of MATLAB features, it was chosen to be used to execute the proposed 

algorithms.  

5. To know the performance in real-world problem, the proposed algorithm will be 

used to optimize a real-world application. An inverted pendulum (IP) system is 

chosen and simulated in MATLAB SIMULINK. All algorithms involved in this 

research are applied to optimize the IP and comparison will be made.  

1.5 Publication 

Some results of this research have been submitted and published for several 

publication in conference proceedings or journals. List of the publications are presented 

as follow.  

Publication as first author: 

1. A. Azwan AR, A.N.K. Nasir, Sha’akmal S., M. Sawal A.R. (2017) 

MOSDA: A Proposal for Multi-objective Spiral Dynamics Algorithm. 4th 

International Conference on Electrical, Control and Computer 

Engineering (InECCE 2017). Langkawi, Malaysia, 16-17 October 2017, 

pp. 15-19.  
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Publication as a co-author: 

2. A.N.K. Nasir, A. Azwan A.R., (2017). A Multi-objective Spiral Dynamic 

Algorithm and Its Application for PD Design. 8th IEEE Control and 

System Graduate Research Colloquium (ICSGRC 2017), Shah Alam, 

Malaysia, 5-6 August 2017, pp, 1-6. 

1.6 Thesis Organisation and Sections 

The thesis is organized in five chapters. The whole thesis is described in Chapter 

1. The introduction of the thesis including the research background, problem statement, 

objectives and scope of research. At the meanwhile, this chapter summary describes what 

is the thesis about in more detail and simple.  

The various of literature gains are describe comprehensively in Chapter 2. By this 

chapter, the concept and basic of SDA will be explained well. Rather than that, the 

methods in MO-type algorithm are investigated and summarized. The selected methods 

then will be adopted into SO-type SDA and turn it into a MO-type problem solver.   

In Chapter 3, the process of conceptual method adoption and programming are 

shown. This chapter will brief SDA in very specific with all of the equations and 

procedures. It will be continued with proposed MOSDAs, in which NS and A is adopted 

into SDA. In this chapter also, the benchmark function will be introduced and discussed.   

In Chapter 4, the experimental setup is briefed including the performance metrics 

of the Pareto-front. The algorithm settings are illustrated well and all of the test types 

which listed before will be detailly described. The result which produced in graphics and 

numbers also presented in this chapter. Last but not least, the case study of IP and its 

performance result is also presented.  

The last Chapter 5 will summarize all about the thesis. The significant 

contribution of these new MOSDAs will be explained with detail. The chapter also 

suggest the future work, which could make the MOSDAs better in this section. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

This chapter is about existing methods used to optimize real-world problems of 

complex engineering or economic system. The discussion about modifications of single-

objective (𝑆𝑂 ) algorithm to multi-objective (𝑀𝑂 ) algorithm will be stressed as the 

research goes on how to convert 𝑆𝑂 Spiral Dynamic Algorithm (SDA) to 𝑀𝑂 SDA. Most 

of the citation will focus on the modification done to the GA into multi-evolutionary 

optimization algorithm of NSGAII, the application of Fast-elitist Non-dominated Sorting 

(NS) in other 𝑀𝑂 algorithms, the application and the use of various algorithms to solve 

𝑀𝑂 problem. The review will be furthered to the PSO and its extension of MOPSO, the 

application of Archiving-method (AM) and several modifications for its improvement. 

Some revision on the related topic also done in order to gain more understanding in 

fundamentals of algorithm, deepening mathematical concept and coding language. The 

findings of this review will be analysed and used to generate idea on how to convert SDA 

into an 𝑀𝑂 algorithm using NS and AM from MOPSO. The findings then used to obtain 

a sequence of procedures, which can be used to develop new algorithms which require 

smaller number of function evaluation (𝑁𝐹𝐸). 

2.2 Single-objective Optimization Techniques 

Single objective optimization finds only a “best” solution, whether minimum or 

maximum value of a single objective problem. The problem can be single function or a 

function that lumps all different objectives into only a function. The advantage of this 

optimisation gives good insights into the nature of the problem. However, it cannot 

provide a set of solution that traded-off the objectives against each other.  



11 

2.3 Multi-objective Optimization Techniques 

In general,  𝑀𝑂 optimization is an area of multi-criteria decision making (Kuo et. 

al.,  2015; Almeida et al., 2016; Shieh et. al, 2017). 𝑀𝑂 algorithms solve 𝑀𝑂 problems 

which involve more than one or maximum of two objective functions. These functions 

required to be optimized simultaneously. Hence, the optimal decision is required in the 

presence of trade-offs between these multiple-conflicting problems, also called as Pareto-

optimal solution (𝑃𝑂𝑆) in decision space or Pareto-front (Henig et. al, 1997; Eskelinen 

et. al, 2012). This trade-off defined as a condition, where a decision done to any subject 

that involves losing an ability, quality, quantity or property of the subject in order to 

increase other criteria (Shukla et. al, 2012; Wu, 2017). Plus, the solution set in the Pareto-

front should be evenly distributed, by achieving two goals simultaneously which is 

convergence to true-Pareto-front and maximizing the distribution of diversity along the 

Pareto-front. Other than that, 𝑀𝑂  optimization with more than three conflicting 

objectives is called as many-objective optimization (𝑀𝑎𝑂𝑂) (Palakonda and Mallipeddi, 

2017).  

Definition of 𝑀𝑂 problem for minimization is in Equation 2.1 to 2.2.  

min𝐹(�⃗�) = (𝑓1 ( �⃗�), 𝑓2( �⃗�), 𝑓3( �⃗�) … , 𝑓𝑚(�⃗�)) 2.1 

𝐺(�⃗�) ≤ 0, 𝐻(�⃗�) = 0, �⃗� ∈  Ω 2.2 

Denote that �⃗� = (𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝐷), Ω is the variable space, 𝑅𝑚 is the objective 

space and 𝐹:Ω → 𝑅𝑚  consist of 𝑚  real-valued objective functions with constraints 

𝐺(�⃗�) ≤ 0, and 𝐻(�⃗�) = 0, the feasible region is Ω =  ∏ [𝐿𝑖 , 𝑈𝑖],
𝐷
𝑖=1  where 𝐿𝑖  and 𝑈𝑖  are 

respectively lower and upper boundary of the 𝑥𝑖 .  

To categorize the methods to develop 𝑀𝑂 algorithm from 𝑆𝑂 algorithm, there are 

six methodologies as shown in Figure 2.1. They are including Priori method (PM) 

(Hartikainen, 2016b; Krause et. al, 2016), Scalarization (Feldman et.al, 2016; Ghaznavi, 

2017; Gutiérrez et.al, 2017), Posteriori method (PoM) (Williamson, 2011; Al-Matouq, 

2012; Bakhsh et.al, 2014; Hartikainen, 2016a), Interactive method (Deb et.al., 2007; 

Miettinen et.al, 2008; Sadrabadi, S.J., et.al, 2009; Ruotsalainen, 2010; Eskelinen et.al., 

2012; Dergisi, 2015; Miettinen et.al., 2016), Hybridization method (Adiche et.al, 2010; 
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Carvalho, A. L. D., 2016; Ota et.al, 2014; Sutradhar et.al., 2016), and Multi-Level 

Programming (Osman et.al., 2017). These six methodologies will be explained later in 

the next section.  

𝑀𝑂 algorithms are also classified into two types, which are in Mathematical-

Programming-Based (MPB) and Evolutionary-Concept-Based (EA) (Eiben et.al., 2003; 

Parrill, 2000; Szopa et.al., 2011; Luenberger, et.al., 1984; Eiben et.al., 2015; Wong, 

2015). MPB also known as classical method algorithm which run the procedure 

repeatedly and produces only a 𝑃𝑂𝑆. At the meanwhile, EA mimic natural evolution and 

evolve a population of a solution simultaneously into a representative set of 𝑃𝑂𝑆. Most 

of MPB algorithm works only to some linear or convex 𝑀𝑂 problem and some of them 

need make further assumption. For instance, the EA has the advantages in which they 

have the ability to provide the sets of solutions. This allows them to compute the 

approximation of the entire Pareto-front. However, the speed is the limitation for EAs 

compared to MPB and the  𝑃𝑂𝑆  generated are not guaranteed satisfy the Pareto-

efficiency. The only known is, the 𝑃𝑂𝑆 generated are non-dominated solution.  

Example of the most popular MPB include the Normal Boundary Intersection 

(NBI) (Lim et.al., 2001; Siddiqui et.al., 2012; Charwand et.al., 2015), Modified Normal 

Boundary Intersection (NBIm) (Siddiqui et.al., 2012) , Normal Constraint (NC) (Nakano 

et.al., 2006; Piche et.al., 2009; Al-Matouq, 2012; Umadevi et.al., 2014), Successive 

Pareto Optimization (SPO) (Zhou et.al., 2011; Lopez et.al., 2013; Adelmann et.al., 2015) 

and Directed Search Domain (DSD) (Erfani et.al., 2013; Wang et.al., 2017a, 2017b). 

These algorithms solve the 𝑀𝑂  problems by generating the 𝑃𝑂𝑆  through the 

scalarization. This will yield 𝑃𝑂𝑆 whether locally or globally. The scalarization of these 

Figure 2.1 Multiple-criteria decision making methodologies. 
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algorithms is to gain the solution of Pareto-front with evenly distributed. Example of the 

wide used EA are Fast-Elitist Non-Dominated Sorting Genetic Algorithm (NSGAII), 

strength Pareto EA II (SPEAII) ( Zitzler, et.al., 2001; Deb, 2014; 2001; Zitzler et.al., 

2004; Deb et.al., 2005; Shukla et.al., 2012), MOPSO (Parsopoulos et.al., 2008; Coello 

et.al., 2006; Abido, 2009; Liu et.al., 2013; V. Kumar, 2014; Jia et.al., 2017) and 

Stimulated Annealing (Suppapitnarm et.al., 2000; Bandyopadhyay et.al., 2007; Li et.al., 

2011; Naderi et.al., 2011). Denote that NSGAII and SPEAII have become the standard 

approaches widely used in many applications or optimization software. Recently, a new 

method based on EA was introduced. The new novelty-based paradigm for 𝑀𝑂 problems 

is the improvement for algorithm in guiding the exploring agents to the unexplored region 

(Kuhn, 1970; Corucci et.al., 2015). This is to reduce the bias and plateaus as well as the 

guide the searching phases in 𝑀𝑂  algorithm. At the end of the iterations, PoM will 

provide a finite 𝑃𝑂𝑆  that “dense enough” or a set of 𝑃𝑂𝑆  which may contain the 

approximated vectors of the optimal solution. 

2.3.1 Priori Method 

Before the solution is processed, this method needs all of the sufficient 

information. This type of procedure is called as Priori method (PM). First example of PM 

is Lexicographic method (LM) (L. Jaimes et.al., 2011). This LM define all the objectives 

of the 𝑀𝑂 problems can be arranged and ranked in order or the importance (Zhukovin 

et.al., 1988). LM assumes that, for all objective function without loss of generality, can 

be ranked in the most important to less important, for example Function 1, 𝑓1 is the most 

important to the 𝑘𝑡ℎ number of functions, 𝑓𝑘 less important objective. For instance, there 

are many mathematical and reasoning approach for this LM including monoids of word, 

Cartesian product, over a well-ordered set functions, finite subsets, group of order (Ζ𝑛), 

colexicographical order, and monomials (Ogryczak et.al., 2006; Ogryczak et.al., 2007; 

Castro-Gutierrez et.al., 2009; Marques-Silva et.al., 2011; Orumie et.al., 2013). 

On the other hand, another PM called Goal Programming (GP) is introduced also 

apply same concept as in LM (Gorges et. al., 2005). However, in GP, a goal or a target 

need to be achieved (Gass, 1987; Li, 1996; Ignizio, J. P., 1976; Gorges et.al., 2005; Tang 

et.al., 2012; Gupta et.al., 2018). An achievement function will be setup in order to 

minimize the unwanted deviation from a set of the goal. The achievement function could 

be a vector or weighted-sum, which depends on the variants of the GP applied. To satisfy 
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all of the functions, an underlying satisficing philosophy is assumed. According to the 

literature, GP has been applied to determine the needed resources to obtain the desired 

set of goals, determine the degree of 𝑃𝑂𝑆 with the resources and providing the best 

𝑃𝑂𝑆 based on the resources or the priorities itself. This GP then furthered study in 1995 

to explain the detail of this state-of the art 𝑀𝑂 algorithm (Li, 1996).  

As conclusion, PM is a simple method. This is the main advantages that this 

method has. This priori method faced no problems to solve large number of variables, 

objectives and constraint. However, the main critic is the ability of PM to provide 

solution, which is not Pareto-dominance (Ma et al., 2015; Hartikainen, 2016b). This critic 

is against the concept of decision-making theory, which state that the no rational decision 

making will clearly provide the solutions, or the solutions provided by this method are 

concluded as not satisfying conceptual of Pareto-efficiency. 

2.3.2 Scalar Method 

One of the method in 𝑀𝑂 optimization is scalarization technique (Pagani et al., 

2009). In scalarization, the procedure is to formulate an 𝑆𝑂 problem by assuming the 

optimal solution provided by the 𝑆𝑂 algorithm is the Pareto-optimal solution to the 𝑀𝑂 

problem (Eichfelder, 2009). Another definition, the scalarization is the method of 

combining all of the functions in any 𝑀𝑂 problem into scalarized one-objective function. 

Some of the researchers known this method as the weighted-sum because all of the 

functions are minimized through the new generated unique objective function (UOF). 

When the UOF is optimized, the image of the graph shows that the solutions are in the 

form of Pareto-front. At the initial state, the user needs to define the desired constant of 

weight vector. This is important in order to obtain a solution with strict-Pareto or weak-

Pareto, depends on the application of the 𝑀𝑂 problem. This two criteria are actually 

representing which part of the Pareto front the solution belongs to, and which type of 

solution are more preferred by the user (Ghaznavi, 2017; Gutiérrez et.al., 2017). 

An approach, called No-Preference Methods (NPM) is also based on the scalar 

method. The NPM does not require any preference of the 𝑀𝑂 problem which did not 

explicitly articulate by the user. The most known example is the scalarized-global 

criterion (Feldman et.al., 2016). However, this method is quite sensitive to the scaling of 
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the objective functions. Hence, the author suggested that 𝑀𝑂  problem are better 

normalized into uniform or dimensionless scale (Eskelinen et.al., 2012; Ghaznavi, 2017). 

2.3.3 Posteriori Method 

Posteriori method (PoM) is the most used 𝑀𝑂 optimization approach categorial 

used to optimize 𝑀𝑂 problem nowadays (Hartikainen, 2016a). This PoM is the method 

that provides 𝑃𝑂𝑆 or the representative subset of the Pareto-front (Bakhsh et. al., 2014). 

This set of 𝑃𝑂𝑆 is defined as the approach or state of allocation, which is impossible to 

reallocate so as to make any of criterion better off without making at least one criterion 

is worse-off (Aziz et.al., 2015). The determination of Pareto-efficiency in engineering 

and economics seems particularly useful. By having all of the optimal solutions, a 

solution designer will focus trade-offs within the objectives, rather than they required to 

focus on full-ranges of the objectives function. 

To explain Pareto-dominance concept in mathematical way, let be two vectors of 

�⃗⃗� = (𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚) and �⃗� = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚). 

1. �⃗⃗� is said to be weakly dominates �⃗�, if all �⃗⃗� is less or equal to �⃗�. This definition 

can be expressed as in Equation 2.3. 

�⃗⃗�  ≼ �⃗� if ∀𝑖 ∶ 𝑢𝑖 ≤ 𝑣𝑖 
2.3 

2. �⃗⃗� is said to be dominates �⃗�, if all �⃗⃗� is less or equal to �⃗� and there is exist of vector 

�⃗⃗� which less than �⃗�. This expression can be expressed as in Equation 2.4. 

�⃗⃗�  ≺ �⃗� if ∀𝑖 ∶ 𝑢𝑖 ≤ 𝑣𝑖  and ∃𝑖 ∶ 𝑢𝑖 < 𝑣𝑖 
2.4 

3. �⃗⃗� is said to be strongly dominate �⃗�, if all of vector �⃗⃗� are less than �⃗�. This 

expression can be expressed as in Equation 2.5. 

�⃗⃗� ≺≺  �⃗� if ∀𝑖 ∶ 𝑢𝑖 < 𝑣𝑖 . 2.5 
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Product of Pareto-dominance criteria decision will be formed in a graph or in 

Pareto-front as illustrated in Figure 2.2.  In this figure, the example of maximization of a 

𝑀𝑂 problem is shown. Pareto-front, which consist of 𝑃𝑂𝑆 or also can be called as non-

dominated solution will be formed while other solutions which do not suit Pareto-

dominance criteria will be called as feasible solutions. Most of time, only 𝑃𝑂𝑆 is shown, 

but the feasible solutions are not shown and totally ignored.  

To measure the performance of the 𝑃𝑂𝑆, the authors provide some criteria. The 

first measurement is the cardinality or the number of 𝑃𝑂𝑆 found, diversity or distribution 

and the spacing (Laumanns, 2002; Ma et.al., 2015; Tian et.al., 2016). Hypervolume 

indicator is the one example of the method that could be applied to measure performance 

of Pareto-front (Bradstreet, 2011; Cao et.al., 2015). This indicator will simply measure 

the multi-dimensional volume of the hypercubes which will be generated in the objective 

spaces. These hypercubes will cover all the 𝑃𝑂𝑆 in the feasible region. The authors also 

stated 𝜖-constraints also can measure the performance through the Pareto-front. (Bérubé 

et. al., 2009; Hu et. al., 2013). The performance tests will be explained in the next section 

with detail.  

2.3.4 Interactive Method 

This method needs the user to define their initial preference for each loop of the 

iterations (Bandyopadhyay et.al., 2008; Miettinen et.al., 2008; Eskelinen et.al., 2012; 
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Figure 2.2 Pareto-front illustration which is optimized to maximum. 
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Hartikainen, 2016c; Miettinen et.al., 2016). While in the searching process, the user is 

continuously interacting with the algorithm in selecting the 𝑃𝑂𝑆. This is not a preferable 

method for most of the application because this method has the weakness in which the 

solution might be wrongly chosen, as the user will stop the searching manually if they 

felt that the desired solutions were found. To decide the solution, there are three types 

preference of information. The solution could be based on the trade-offs information, 

reference points or the class of the 𝑀𝑂 problem (Ruotsalainen, 2010).  

For the first preference of trade-offs, the user will be shown the current solution 

which traded-off among the objective functions (Garcia et. al., 2011; Dergisi, 2015). The 

user will decide whether the solution is likeable or vice-versa. The second types, 

preference point is the desired value of each objective function. The user will set this 

value and the algorithm will continuously show the user the solution for this reference 

point for each loop. For the third type of preference, the user need to specify the 

preference of the current 𝑃𝑂𝑆  into different class indicating how the values of each 

objective should be changes for a better solution. This classification information are 

considered when the more preferred 𝑃𝑂𝑆 is computed (Deb K., et.al., 2007). 

2.3.5 Hybrid Method 

Recently, many researchers hybridize the algorithm with various concept in order 

to deal with the 𝑀𝑂 problem. Hybridized 𝑀𝑂 algorithms are numerous. Hybridization in 

the 𝑀𝑂 optimization is the application of the combining method or algorithm between 

two different types, e.g. MPB plus EA. There are numerous of hybrid methods, however 

the hybridizing Multi-Criteria Decision Making (MCDM) (Mnasri et.al., 2013) and 

Evolutionary Multi-Objective Optimization (EMO) (Lotfi et.al., 2017) are the best 

example. However, this method has the weakness of computation cost. Most of the 

literature reviewed, the combination of two or more algorithms produce a complex 

structured 𝑀𝑂 algorithms (Goel et.al., 2002; Adiche et.al., 2010; Baraskar et.al., 2013; 

Bautista et.al., 2013; Carvalho, A. L. D., 2016; Ota et.al., 2014; Kuroda et.al., 2015; 

Aider, 2015; Yang et.al., 2015; Borhanifar et.al., 2015; Colledani et.al., 2015; Englander 

et.al., 2015; Gorjestani et.al., 2015; Ismail et.al., 2015; Oesterle et.al., 2016a, 2016b; 

Krause et.al., 2016; Lotfi et.al., 2017; Lu et.al., 2017). However, this method also has 

the high possibilities of providing the best accuracy and diverse Pareto-front, depends on 

the method or strategy involved. 
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2.3.6 Multi-level Programming 

This method is aimed to find the only one best optimal points from the Pareto-

front (Bialas et.al., 1980). Multi-level programming (MLP) arranges the 𝑀𝑂 problem 

according to the hierarchy (Bialas et.al., 1980; Gaur et.al., 2008; Ansari et.al., 2011; 

Arbaiy, N., et.al., 2012). The MLP will minimize first to 𝑛𝑡ℎ objectives, to find small 

optimal sets for each objective. The MLP is useful when the user is not interested in the 

trade-offs between the functions or when the hierarchical order is the preference. 

However, this method could provide a largely constrained hierarchy of Pareto-front 

solution, which also could be infeasible. This means that the less important objective 

function is less considered or tend to have absolutely no influence on the last given 

solution. One of MLP algorithms is bi-level programming (2LP). 2LP only concerned for 

only two optimization problems. The first level called upper-level problem is the feasible 

region which determined by the knowledge gained for other optimization problem called 

lower-level (Ansari et.al., 2011). The problem is modelled by means the first problem are 

constrained according to the 𝑃𝑂𝑆 from the lower-level problem. In general, 2LP is a 

strategy to find the 𝑃𝑂𝑆 with two decision makers, which the first level is constraints by 

the second level of feasible region, then the second level is constrained by the third level 

and so forth. 2LP is also related to the van Stackelberg equilibrium problem and the 

mathematical approach of equilibrium constraints. Recently foundation, better and 

complex 2LP have been developed as the current method is really hard to solve. This is 

the main weakness of the 2LP, which increases the computation cost, at the same time 

provides a solution which not too satisfy the Pareto-efficiency (Shih, et.al., 2003; Cheng 

et.al., 2013; Sen et.al., 2013; Osman et.al., 2017).  

2.4 Multi-objective Algorithms 

There are numerous of multi-objective algorithms that proposed by researchers 

for the last three decades. These algorithms are derived and introduced to handle many 

problems in real-world (Aronsson et.al., 2006). As the world’s technology grow fast and 

peoples competing each other, the technology needs to be always improvised in order to 

become better. The 𝑀𝑂 algorithms play a big role to these races as it is a part of the 

technology. Researchers try hard to provide algorithms that can provide a Pareto-front 

solution with high accuracy and diversity. Differs to 𝑆𝑂 algorithm, 𝑀𝑂 algorithm does 

not provide a single solution (Jensen, 2003). PSO and GA are some of the most popular 
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𝑆𝑂 algorithms that used in the world today. These two algorithms are good in term of 

their structures, while its extended version, MOPSO and NSGAII are the widely used 

multi-objective algorithms to solve multi-objective problems. 

As mentioned before, Pareto-dominance is the main concept that applied to solve 

more than one objective problems. It will provide the best solution that may be achieved 

by determining the outcome of Pareto-game theory, which the result will be considered 

as Pareto-dominated, if some of the outcomes would make at least one player better off 

without hurting another player (Aziz et.al., 2015; Pardalos et.al., 2008). The Pareto 

concept then applied on many computing algorithms by researchers such as ones 

developed in year 1994 called Niched Pareto Genetic Algorithm (NPGA) (Horn et.al., 

1994). NPGA is among of the early algorithms that directly addresses the diversity of the 

approximation set. The addition element in NPGA added to traditional GA are localized 

in the selection mechanism. In NPGA, to make a constant a diversity of population, the 

modified tournament selection called Pareto-domination tournaments along with fitness 

sharing in the objective space is used. However, NPGA becomes inferior compared to 

other newer algorithms. For example, the comparison investigated by Zitzler (2013), the 

NPGA ranked at number fifth out of six multi-objective Evolutionary Algorithm. The 

concept of Pareto-domination tournaments along with fitness sharing also used in 

NPGAII, NSGA and MOGA (Murata et.al., 1995).   

NPGAII is derived from previous NPGA with the main improvement of the usage 

degree of the domination. Degree of domination is the number solutions in the current 

population that dominate it, functioning as the determination of score in the tournament 

selection  (Erickson et.al., 2001). This method leads to noisier search. However, the 

NPGAII brings along with the following drawbacks, which is this algorithm was only 

tested to an 𝑆𝑂 problem and random function. It can simply be said that it has limited of 

proved performances compared to other algorithms. It cannot be summarized as powerful 

than other if it was not tested many times and included with the statistical result. Another 

characteristic of NPGAII, it has a high sensitivity towards the parameter controlling 

tournament selection and fitness sharing. Some of literatures stated, an updated fitness 

sharing strategy may be applied in order to avoid chaotic perturbations in the population 

composition (Kunkle, 2005). 
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In year 1994, Srinivas and Deb introduced Non-Dominated Sorting Genetic 

Algorithm (NSGA) (Ghiasi et.al., 2011). NSGA is similar to NPGA and NPGAII in most 

of their sequence, but NSGA only differs in the method used to rank population in the 

tournament selection. The main idea of non-dominated-sorting method in ranking 

selection is to obtain good points while a niche method is used to maintain a stable 

subpopulation of these good points  (Ghiasi et.al., 2011). As the year changes and 

becomes better, the algorithm was then also surpassed by other state-of-art algorithms. 

Fast-elitist Non-dominated Sorting Genetic Algorithm (NSGAII) is very 

important in this research. Originated from NSGA and proposed in year 2000,  there are 

a lot of modifications done to develop modified-NSGAII for various multi-objective 

optimization problems, in order to create algorithm that have better performance 

according to the various specific applications needed whether in engineering, economics 

or sciences (Srinivas et.al., 1994). The modifications of NSGAII were created from the 

original NSGA, which is more complex in three terms of the step involves in the 

optimization sequence. In most criteria, NSGAII have a lot of differences compared to 

the original NSGA, but the authors kept the term Non-Dominated Sorting (NS) to 

highlight its genesis and place of origin. The NSGAII solved these following weakness 

or drawback of NSGA which are:  

1) First, high computational complexity of NS, 𝑂(ℎ𝑌3) , 𝑀 = number of 

objectives, 𝑁 = population size. The improvement is, the NSGAII approach 

will require at most of 𝑂(𝑀𝑁2) calculation. 

2) Second, lack of elitism. By improving elitism such as in NSGAII, 

performance of the GA can be faster. It also at the same time can avoid from 

the loss of good solution.  

3) Third, need of specifying the sharing parameter, 𝜎  share. The need of 

specifying the sharing parameter in NSGA was improved into non-parameter 

diversity mechanism which overcome this problem. NSGAII is superior 

during latter generations regardless of the level of noise presence in the 

problem.  

Because of NSGAII is the one of the superior multi-objective algorithms, there 

are a lot of modifications done to solve many specific applications. One of the 
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modifications was done by Ibrahim (2014). They hybrid the NSGAII with the back-

propagation algorithm (BP). They used this hybrid-NSGAII to optimization of the 

accuracy and complexity of the three-term backpropagation (TBP) network. They 

managed to improve the classification performance with a smaller number of hidden 

nodes. Previously Yijie (2008), improved NSGAII based on hybridization-encouraged 

mechanism (HEM-based NSGAII). In their paper, they improved the convergence and 

diversity by using this method. HEM technique is used to normalize distance to evaluate 

the different genes in the population. HEM-based NSGAII used to design a longitudinal 

flight control system, which show that HEM-based NSGAII able to provide reasonable 

and correct Pareto-front. For better understanding of NSGAII, some application which 

used original NSGAII also reviewed. Among the application, a group of researchers 

applied NSGAII to optimize the placement process of switching devices in distribution 

network (Mazidi et.al., 2013). Other than that, Shen (2008) used NSGAII to optimize 

urban road traffic signal and Jiang (2016) optimize a laser welding process parameters of 

stainless steel 316L. 

NSGAII also used to estimate homograph (Osuna-Enciso et.al., 2016). The author 

in their paper shows how NSGAII operated to estimate the homographs between two 

different perspectives that hold a very large set of abnormal data. The random sampling 

consensus (RANSAC) method used to maximise the number of matching points of given 

a permissible error (𝑝𝑒) (Fischler et.al., 1981; Chum et.al., 2005). The conflict was when 

the 𝑝𝑒 value is low, the accuracy is increased but the ability of its generalization that 

refers to the number of matching points that tolerate noisy data is degraded. This problem 

was solved successfully using NSGAII.  

MOPSO is proposed at first in late 90’s (Moore et.al., 1999; Coello et.al., 2002). 

This early-stage-modified version of PSO then become the motivation to other developers 

to extend this version of MOPSO (Coello et.al., 2002). This version of MOPSO however 

becomes the most referred version. The technique used in MOPSO is by initializing the 

particles population characteristic as “Best position”. This denote the best experience or 

the best fitness value obtained by the searching agents. These values then will be used to 

store the 𝑃𝑂𝑆  generated previously. Based on PAES, a global repository is setup 

(Knowles et.al., 1999). This repository acting as the storage for 𝑃𝑂𝑆 . The particles 

deposit their movement experience for each iteration. The mechanism of global attraction 
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combines the previous found 𝑃𝑂𝑆 that lead towards globally 𝑃𝑂𝑆. From most of the 

literature, MOPSO is an algorithm that able to provide a diverse and accurate Pareto-

front solution (Coello et. al., 2006). However, the main problem face is the archive size 

increases very quickly per iteration. The archive that need to be updated for each iteration 

leads the computing cost become higher.  

There is also a modification to MOPSO done in 2015. Ibrahim (2015) proposed 

multi-leader PSO (MLPSO). In this MLPSO, the author developed MOPSO version in 

which the movement of the particles or searching agents are determined by all of the 

leaders that dominate the particles. MLPSO replaced the concept of uni-leader in 

MOPSO, by having multiple numbers of leaders. By this method, the particles will have 

better information gained by sharing. In this paper, the author also denoted that they did 

not compare MLPSO with the original MOPSO. However, they include the random 

leader selection to the MOPSO without include multiple-leaders concept (MOPSOrand). 

From the result, MLPSO outperformed MOPSOrand at all test. The level of the 

improvement is also significant. As the conclusion the multi-leader’s concept are 

relatively good to have an agent that rich in information.  

Multi-objective Water Cycle Algorithm (MOWCA) originated from 𝑆𝑂 Water 

Cycle Algorithm (WCA) (Sadollah et.al., 2015). This algorithm is the one of the newest 

algorithms introduced. The WCA first introduced was inspired from the observation of 

water cycle process, flows of rivers and streams to the sea in the reality (Sadollah et.al., 

2016). The 𝑀𝑂 approach adopted to the WCA in order to solve 𝑀𝑂 problem in this paper 

is the same concept of NS which also adopted in NSGAII. The NS suit the WCA concept 

very well and this algorithm reveals that it can provide an impressive Pareto-front 

solution based on the statistical result from the stated performance metric. However, the 

robustness and the exploratory of MOWCA depend highly on the nature and the 

complexity of the problems, which is high in computation cost. 

Differential evolution (DE) is the algorithm that solve 𝑆𝑂 problem introduced by 

Storn (1995). The concept of DE uses a simple mutation operator based on differences 

between pairs of vectors of solutions. These vectors are used to find the direction of 

searching agents based on the distribution of solution. Other than that, DE also adopted 

a concept called steady-state-like replacement mechanism. In this mechanism, the new 

generated agents or trial vector competes only against its corresponding parent or old 
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vector and replace their parent if they had higher fitness value. DE is same with some 

previous EAs, which it is a population-based approach, recombination and mutation are 

the operators function to generate new solution (Storn et. al., 1997). The extension of DE,  

MODE introduced a Pareto-based approach in order to implement the selection of the 

best individuals (Babu and Anbarasu, 2006). The biggest difference between DE and 

MODE was the MODE did not compare the trial vector with the corresponding parent 

vector. Instead, both of the populations are combined. After the ranking of the global 

position is done, then the crowding distance (𝐶𝐷) is calculated. The advantage of MODE 

can be concluded as it provides Pareto-front with a great diversity. However, the run-time 

complexity increases as the population size larger.  

From the author Ziztler, Evolutionary Algorithms (EA) are often most applicable 

to solve multiple-conflicting objectives (Zitzler et.al., 1999). They then introduced A 

Strength Pareto Evolutionary Algorithm (SPEA) in year 1999. This SPEA combines 

several features of previous 𝑀𝑂 algorithm in very different way. SPEA method include 

4 steps to search 𝑃𝑂𝑆, 1) storing 𝑃𝑂𝑆 externally for a while, and the population will  

continue to be updated, 2) evaluate the fitness value of an individual, depend on the 

number of external 𝑃𝑂𝑆  points that dominate it, 3) preserve the diversity and 4) 

incorporating a clustering procedure in order to decrease number of 𝑃𝑂𝑆  without 

destroying its properties. The result of Pareto-front obtained from SPEA show that it 

capable to guide the search towards the Pareto-optimal front. However, SPEA should be 

improved in terms of its ability to adopt other method of solution set searching, the ways 

to evaluate comparison of the 𝑃𝑂𝑆  and SPEA should also be tested with more 𝑀𝑂 

problems. After that, SPEA2 was then introduced in 2001 by improving method to prune 

the size of archive that retain the boundary solutions in that archive (Zitzler et.al., 2001). 

From the literature, SPEA2 is found as more superior compared to NSGAII, at most in 

term of searching in high dimensional search spaces. SPEA2 has improved in three 

different aspect compared to SPEA (Zitzler et.al., 1998). 1) It incorporates a fine-grained 

fitness assignment strategy, 2) Using a nearest neighbour density estimation techniques 

and 3) It has enhanced archive truncation method.  

Bat algorithm (BA) is one of the latest metaheuristic algorithm which proposed 

(Yang et. al., 2013). BA inspired from the echolocation behaviour of microbats, which 

emitting with various pulse rate and loudness. The extension of BA, multi-objective BA 
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(MOBA) is then introduced by the same author (Yang, 2012). MOBA applied the Pareto-

optimality concept that used in NPGA. The empirical result show that the MOBA is also 

an effective solver for 𝑀𝑂 problem. It provides 𝑃𝑂𝑆 that accurate and diverse compared 

to true-Pareto-front. However, the additional test is highly needed. From the analysis, this 

original MOBA cannot handle diverse range of problem, which mean that the MOBA 

only limited to specific problem only. 

Pareto-archived evolution strategy (PAES) is a simple EA proposed back in year 

1999 (Knowles et.al., 1999). In PAES, mutation operator make parent generates only one 

offspring. The comparison then is done to determine whether the offspring dominates the 

parent or not. If dominates, the offspring will become new parent and the iteration will 

be continued. Vice-versa, the offspring will be discarded if the parent more dominates. If 

both not dominates each other, previous 𝑃𝑂𝑆 will be compared and used. PAES then 

modified by Oltean (2005) using adaptive strategy to form Adaptive PAES (APAES) in 

order to ensure a better exploration. From the experiment done by them, the APAES 

performed as well as compared to the original PAES. However, APAES still had a slow 

computation time rate is similar with PAES.  

Non-dominated Sorting Gravitational Search Algorithm with Chaotic Mutation 

(NSGSA-CM) was proposed in year 2014 (Tian et.al., 2014). The literature stated that 

they also applied the concept of NS which used in NSGAII into Gravitational Search 

Algorithm (GSA) (Rashedi et.al., 2009; Eldos et.al., 2013; Sabri et.al., 2013). Other than 

NS, 𝐶𝐷  also applied to NSGSA-CM. Additionally they added an operator called as 

chaotic-mutation (CM) in order to prevent the premature convergence. NSGSA-CM also 

had better strategy of elitism, in which the algorithm selects better solutions of parent and 

offspring solution based on the NS-ranked population to update the new generation. 

NSGSA-CM also had a faster evolution process as the author introduced particle memory 

character and population social information. The Pareto-front set is also come with better 

diversity and able to handle constraints effectively.  

NSGAIII is a latest proposed 𝑀𝑂 algorithm which also known as the single-

reference point based NSGAIII (Yuan Y. et al, 2014). It is clearly the extended version 

of NSGAII. The author K. Deb. (2014) proposed this algorithm stated that NSGAIII able 

to maintain the best diversity distribution among the population set. This maintenance is 

aided by supplying and adaptively updating a number of well spread reference points. 
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From the literature, NSGAIII still depends on the Pareto-dominance to push the solution 

towards the global Pareto-optimal set. Thus, this lack opens the gate to another 

improvement. NSGAIII then modified in the same year to form a new 𝜃-NSGAIII which 

overcome the previous problem of NSGAIII (Bi X. et. al, 2017). The author aims to have 

better trade-off strategy between to retain convergence and diversity. Their method is by 

adopting a new concept that they introduced which is 𝜃-dominance. 𝜃-dominance is an 

adaptive mathematical method which to ensure the Pareto-front convergence and 

diversity. This 𝜃-NSGAIII significantly better that original NSGAIII. Deb (2014) also 

extends the version of NSGAIII. They proposed U-NSGAIII also to improve the first 

version of NSGAIII (Seada et.al., 2014).  

Multi-objective Genetic Algorithm (MOGA) at some times have become popular 

in a wide variation of application domains (Murata et.al., 1995). MOGA employed the 

concept of niching and dominance along with the rank-based fitness assignment. 𝑃𝑂𝑆 

provided by MOGA was categorized in group then will be assigned as same ranks in each 

group. For other groups, 𝑃𝑂𝑆 which was dominated by current group was assigned next 

ranked. The author dynamically uses updated sharing to maintain the distribution of 

diversity. The drawbacks from this method is it converges slowly that prevent the 

algorithm from finding the optimum Pareto-front (Engen, 2010).  

Another version of EA is Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 

1985). A modified selection process to cope with several evaluation criteria was adopted 

to VEGA (Bechikh et.al., 2011). The author, Schaffer proposed to divide the whole 

population into groups in equal number of objectives. That means, the selection 

procedure in this small group depends on the single objective. The author also limits the 

mating operator in order to help limited combinations of individual solutions in the same 

group. To compare the 𝑃𝑂𝑆, pairwise comparison is applied. 𝑃𝑂𝑆 are plotted after setup 

iteration is complete. However, the drawback of this algorithm is it prevents to determine 

the location of the Pareto-front. The algorithm also lacks in its strategy to select the 

individuals, as this strategy provide only the better solution in one objective. Hence this 

led the algorithm to converge to individually best solution only.  

The extension of GA then furthered in year 2000 (Corne et.al., 2000). They 

proposed Pareto Envelope-based Selection Algorithm (PESA) which introduced a new 

method of small internal population and large external population. They maintained the 
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concept of grid division in PAES to maintain the distribution of 𝑃𝑂𝑆. The selection 

process performed by 𝐶𝐷 operator. The external population plays the great role in order 

to maintain the diversity. After a while, author revised PESA to PESAII in year 2001 

(Corne et.al., 2001). PESAII differs with PESA in term of its selection procedure. PESAII 

used region-based selection. The author stated that the concept of an individual is 

changed to the concept of hyper-box. Then, the individuals are selected from these hyper-

boxes randomly. The PESAII was upgraded due to the computation cost in PESA.  

As the GA superior to solve optimization problem, the researchers also modified 

and introduced another version of GA called Micro Genetic Algorithm (MGA) in year 

2002 (Chakravarty et.al., 2002). This version of GA is operating with a small population 

and reinitialization process. MGA generates random population, which then saved into 

two proportions named replaceable and non-replaceable portions. The replaceable 

portion is updated every iteration while non-replaceable portion was remained constant 

throughout the iterations. The author set the population are randomly taken from both of 

the portion. At the end of each cycle, two 𝑃𝑂𝑆 members from both portions are selected 

to compare it with the content of external memory. By this operation, all dominated 

solutions are removed. For elitism strategy, the author lined up with three forms. First 

form is retaining the 𝑃𝑂𝑆 found within the internal iteration of the algorithm, second by 

using a replaceable portion of the memory which its contents are partly restored and third 

is by replacing the population by nominal solutions created. From MGA, author extended 

it to Archived-Based Micro Genetic Algorithm (AMGA) and its improved version 

AMGA2. AMGA used genetic operator such as mutation and crossover to create 

solutions (Tiwari et.al., 2008). For selection, AMGA uses a two-tier fitness assignment 

mechanism, the primary fitness is the domination-based level rank and the secondary 

based on the diversity of the solution. AMGA generated small number of new solutions 

per iteration. This small number of solutions called as micro-GA (MGA). The MGA 

helped to reduce the number of function evaluation by minimizing exploration of less 

promising search regions and direction. The use of external memory is maintained by 

AMGA in order to keep the best solution found. External archive also helped AMGA to 

provide a wide range of 𝑃𝑂𝑆. It also provides its flight experience during the operation. 

Later, the study of AMGA formed AMGA2. AMGA2 was designed to obtain fast and 

reliable convergence on a wide variation of 𝑀𝑂 problem (Tiwari et.al., 2011). The author 
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modified diversity assessment techniques in AMGA and genetic variation operators were 

proposed. The benchmark test showed AMGA2 improved a lot compared to AMGA.  

In addition, there are also literatures that used some concept in MOEA. For 

example, an 𝑀𝑂  algorithm named Hybrid Self-Adaptive Algorithm (HSCDA) for 

community detection in complex networks was developed (Xu et.al., 2015). The author 

adopted both concept mutation and crossover. Both mutation and crossover were 

modified. In this paper, they hybrid three new-designed of crossover and two new-

designed mutation into a strategy pool, which based on the self-adaptive learning 

framework. This concept of HSCDA was used to develop an 𝑀𝑂 algorithm named Multi-

objective Community Detection Algorithm (MCDA) (Deng et.al., 2015). MCDA based 

on the kernel 𝑘-means (KKM) and ratio-cut (RC) objective function. RC and KKM are 

the combination of mathematical method in which introduced into objective function to 

promote a group of new detection method based on the multi-objective optimization. 

These two combined methods also used to develop several 𝑀𝑂  algorithms for 

community detection such as MOCD, MOEA/D-net, and MOGA-net. These algorithms 

are interesting in terms of how they find the Pareto-front. MOGA-net for example is an 

algorithm which employs the community fitness (CF) and community score (CS) as two 

objectives to be simultaneously optimized. PESAII in the meanwhile is also adopted in 

MOCD to optimize the objective between intra- and inter- functions. It also employs the 

two methods of namely max 𝑄 and max 𝐷 to select a suitable solution from Pareto-front. 

There is also MOEA\D-net which originated from MOEA\D to optimize the negative RC 

to find dominated solution. This research on modularity-based intelligent algorithm really 

attracts the researcher’s community. 

2.4.1 Classification of PoM Approaches 

From the literature review, the conclusion can be made that there is still no 

research to develop 𝑀𝑂-type of SDA. The development on SDA only take part in term 

of improvement in its local optima problem and improves its functions in engineering 

applications. This gap is yet to be filled with the development of the 𝑀𝑂-type SDA. As 

the performance of SDA is good in solving 𝑆𝑂 problems, the modification to SDA needs 

to be done in order to justify the SDA, whether it can handle 𝑀𝑂 problems. There are 

many types of 𝑀𝑂  algorithm that adopting some method to find the 𝑃𝑂𝑆. From the 
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findings, there are four methods used by researchers to turn a 𝑆𝑂 algorithm into 𝑀𝑂 

algorithm. The Table 2.1 below shows these four methods. 

Table 2.1 Summary of methods in Posteriori technique. 

Method 1 Method 2 Method 3 Method 4 

Non-dominated sorting and 

crowding distance 

Archive method External memory Mathematical 

novel adaptive 

method 

The most applicable method 

used by researchers to 

develop 𝑀𝑂-type algorithm. 

Most reliable to provide the 

best accuracy and diversity 

of Pareto-front set. 

However, the computation 

time for this method is quiet 

longer that 2nd and third 

method.   

The method is 

one of the 

simplest methods 

to find 𝑃𝑂𝑆 for 

Pareto-front set. 

Also, able to 

provide good 

accuracy and 

diversity of 

Pareto-front set. 

The memory used to 

store main 

population 

externally. This 

method only take 

part in fitness 

computation. 

However, the size 

may increase very 

large as the iteration 

continued. A limit 

needs to be set in 

order to reduce 

computation cost. 

A complex 

mathematical 

equation should 

be derived to use 

this method. The 

mathematical 

complexity 

increases the time 

to compute and 

increase cost. Not 

suggested to all 

application, may 

the most 

applicable to 

solve some 

applications and 

problems. 

NSGA/NSGAII/NSGAIII, 

NSGSA-CM, MOWCA  

MOPSO, MOGA, 

NPGA, NPGAII, 

PAES 

SPEA, SPEA2, 

AMGA, AMGA2 

MOBA, MODE, 

VEGA 

For this thesis, the first two methods extracted from various type of 𝑀𝑂 

algorithms are highly recommended to be adopted to SDA. From the study, NS method 

are the most superior method that adopted to many 𝑆𝑂-type algorithms. This is due to the 

best of 𝐶𝐷, which is a mathematical-approach to provide a good distribution of solution 

set along the Pareto-front. This operator does not feature in any of another three methods 

listed. Rather than the advantages in the diversity distribution, this method prove able to 

plot a high accuracy Pareto-front. Another method recommended is AM. From the 

structure, AM is simpler compared to NS. This method has been used in MOPSO, 

MOGA, NPGA, NPGAII and PAES. After these algorithms was experimented, they also 

provenly found as a superior method to solve 𝑀𝑂 problem. AM is described as a faster 

strategy to provide a good Pareto-front. In term of diversity and accuracy, the method can 

be also concluded as superior. For some explanation, the concept of the external memory 

(3rd method) also applied in AM. The difference between these two techniques are, AM 

consist of an additional element, which is known as grid-division strategy. The grid 
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division strategy operator makes lesser computation cost, as the searching will be 

conducted in the most possible area in the searching space. Last but not least, as the fourth 

method more complex than others, thus the adoption of this method will be less 

considered. 

2.5 Spiral Dynamic Algorithm 

2.5.1 Introduction 

This nature-inspired algorithm was introduced in 2011 (Tamura et.al., 2011a).  

The author inspires the algorithm based on the spiral phenomena which found mostly on 

earth and galaxies. This method inspired because of the movement of the particles in 

spiral steps generates logarithmic spirals seems to have a great strategy of solution 

searching which described as “diversification in the first half and intensification the 

second half” (Nasir et.al., 2012). From the structure of this algorithm, it can be said as 

simple in design and program. These features make SDA only require a low computation 

cost to solve 𝑆𝑂 problems. Additionally, only few parameters that need to be initialized 

at the beginning. These parameters also make it as a user-friendly algorithm and easy to 

apply in order to solve the real-world problem. Figure 2.3 shows the strength of SDA.  

The algorithm has strength features in diversification and intensification at the 

early and later phases of the search trajectory. Recall that the diversification is the ability 

of the algorithm to explore the entire search space in order to find the solution, while 

intensification is the ability of the algorithm to exploit found solution in order to converge 

SDA’s 

strengths 

Program 

structure is 

simple 

Low 

computation 

cost. 

Require only 

few parameters 

set by user. 

A solution with 

high-accuracy  

Figure 2.3 Strength of SDA. 
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towards the global best location (Lakshika, 2014; Tian et.al., 2016). SDA has 

combination of these features. This strategies lead SDA to search solution with more 

efficient and provide better solution with high accuracy. This type of algorithm is a 

derivative-free or non-gradient based optimization algorithm. The algorithm also has a 

simple structure that has good exploitation and high-speed computing time.  

Generally, at the beginning, all agents will be spread onto the search space. These 

agents will diversely explore the whole search area. At the latter phase, these agents will 

be intensely moved within a small area of the search space. In counting the spiral steps, 

the agents will move while the step size gradually decreases as the agents move towards 

the spiral centre simultaneously. The agents at the first place will be spread and begin to 

move at the outermost layer toward the centre of the spiral. By using this strategy, the 

searching agents could achieve global optimum points for various of problem landscape 

in the search space even it is located in isolated area. Other than that, the spiral step in 

every iteration is guided by the best cost value from the previous iteration. For the sake 

of this strategy, the algorithm has a relatively faster convergence speed. To the whole 

about SDA, it has a simple structured programming which can lead it to provide a solution 

in a quick time.  

The author furthered the study to extend the version of SDA in order to handle 

more than 2-dimensional continuous optimization problem (Tamura et.al., 2011b). In the 

paper published in 2011, the author shows how to construct an 𝑛-dimensional spiral 

model. The concept used is rotation matrices in 𝑛-dimensional space. This derivation of 

rotation of matrices are represent the number of dimensions of the problem. Hence the 𝑛-

dimensional rotation matrices constructed based on these numbers. The advantage of this 

method is it makes SDA able to deal with 𝑛-dimensional problems. The analysis data 

shows that this method provide solution than the solution provided by PSO and DE 

(Kennedy et.al., 1995; Chasnov, 2014). As part of conclusion, this method clearly a big 

improvement for SDA. After that, the author also test the stability of the user-defined 

SDA parameter (Tamura et.al., 2013). They found that these two parameters, which are 

convergence rate and rotation rate affect the search performance. They try to proposed 

the method and focus on the convergence rate, which apply its effectiveness of setting 

method from analysing stability of dynamics equilibrium point of spiral model.   
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The extension of SDA also found published by Nasir (2012). This paper presents 

improved version of SDA called Adaptive Spiral Dynamics Algorithm (ASDA), which 

adapted with mathematical model equation. The author found that the SDA lack during 

the search process due to incorporation of single radius value. They apply the novel 

mathematical equation alongside with non-mathematical fuzzy logic strategy. This both 

method important to establish the relation between fitness value and spiral step radius 

well. In this paper, they introduced four approaches of adaptable step size of SDA. The 

first method is by applying a non-mathematical fuzzy logic and the rest is by utilizing the 

novel mathematical equation based on linear, quadratic and exponential function. From 

the study, it can be concluded that these adaptive SDAs are better than the previous SDA. 

It provides higher speed of convergence and higher accuracy. Moreover, these version 

ASDA are still retained the simple structure of SDA, which mean its complexity is not 

changed.  

Another one improved version of SDA is exponential-based SDA (ESDA) (Nasir 

et.al., 2015). The author used this ESDA in order to model a flexible manipulator system. 

In this ESDA, the author has improved the feature of spiral movement throughout the 

search by adapting mathematical method to vary both of the radius and angle of the spiral 

model. An exponential-based radius and exponential-based angle are adopted into SDA. 

To test the performance of the ESDA, the author applied it to solve dynamic modelling 

problem of a single-link flexible manipulator. ESDA is found improved significantly 

from original SDA and show a good dynamic behaviour of the system. To summarize 

ESDA, it provides better model of the system and contain less error compared to SDA.  

SDA also applied to solve a Combined Economic and Emission Dispatch (CEED) 

problem (Benasla et.al., 2014). In this problem, SDA managed to minimize fuel cost and 

emission levels. It scheduled the generators, while trading-off the requirement of load 

demand and operational constraint. Both of the objective is combined into single 

objective function using price penalty factor. The author used SDA on three test systems 

with different number of generating units. Each of them has their own constraints and 

various cost curve nature. From the result, SDA solve the problem by minimizing a good 

performance of the CEED problems.  

Another foundation, SDA also used to evaluate human health effects of using 

computer-aided workstation (Khan et.al., 2013). Human and safety (HS) in this journal 



32 

are related to occupational ergonomics and job satisfaction. To calculate the HS risk, 

index a neural-swarm spiral-dynamic search (NSSS) optimization-based algorithm has 

been employed. NSSS is an example of multi-disciplinary optimization involving SDA, 

which a form a hybrid algorithm of SDA with neural-swarm-based HS risk assessment 

model which use artificial neural network (ANN). ANN is a set of processing elements, 

containing neurons or nodes that interconnecting with each other. NSSS interpret the 

weight matrices of the ANNs as solutions, weights, and to change the weights. This is 

achieved by using iterative spiral movement to find the better solution. The author set 

four human risk indexes denoted as 𝐼𝐻𝑆 which are low, moderate, high and extremely 

high. An advantage of this NSSS is it is easy to use and the user can quickly point out 

individual employee specific HS risk.  

From the study, SDA has unbalance exploration and exploitation strategies due 

to the spiral movement. To be clear, SDA has a simple structure that has good exploitation 

but not better in exploration. This lead the solution to get trapped into local optima point, 

a situation which no modification made to the current best result that lead to produce 

better solution (Michalewicz et.al., 2004). The measurement of ‘better’ depends on the 

performance of the solution with respect to the single objective being optimized 

(Knowles et.al., 2004). As result, the algorithm might produce a solution which has low 

accuracy. Despite of its great abilities, SDA remains one of the metaheuristic algorithms 

which is not extended to become a multiple-conflicting objectives problem solver so far 

as there is no such literature found. Among conventional study on this algorithm, there is 

no version of SDA dealings with 𝑀𝑂 problem plus there is only a limited number of 

publications in literature on improving its performance in term of accuracy and 

convergence speed. Although it had a little weakness in its strategy, research of SDA is 

still far from maturity. A lot of studies may be required because it is relatively such a new 

metaheuristic algorithm that has good potential to be improved. Therefore, to know the 

real ability of this algorithm, this 𝑆𝑂 SDA could be expanded to its 𝑀𝑂 algorithm in 

order to deal with 𝑀𝑂 problem, which is more complex and more realistic to the various 

of current applications.   

For conclusion, there are a lot of version 𝑆𝑂 -type SDA developed by the 

researchers nowadays. Thus, there is still a gap that need to be fulfilled by developing 

new version of 𝑀𝑂-type of SDA. 
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2.5.2 Program Structure 

Essentially to emphasize that to modify 𝑆𝑂-type SDA into 𝑀𝑂-type algorithms, 

the fundamental of SDA is really important to be technically explored deeper. The 

elements of SDA will be explained in detail in this section. SDA provides dynamics step 

size for each agent to move from one point to another, in spiral model (Tamura et. al., 

2016). Spiral model is represented by an equation. This equation is the most important in 

SDA because this equation will move all the search agents a step ahead in spiral steps. 

The previous mentioned features of diversification and intensification are generated by 

this equation. This equation also consists of crucial parameters that need to be defined at 

first place. These parameters affect the performance of the algorithm, in term of its speed 

of convergence to find the solution and how accurate the solution is. The spiral model 

equation of SDA is defined in Equation 2.6. 

𝑥(𝑘 + 1) = 𝑆𝑛(𝑟, 𝜃)𝑥(𝑘) − (𝑆𝑛(𝑟, 𝜃) − 𝐼𝑛)𝑥∗ 2.6 

From the equation 2.6,  𝑥∗ is the centre of the spiral, 𝐼𝑛 is the matrix identity, 𝑥(𝑘) 

is location of a point at 𝑘𝑡ℎ iteration, 𝑘 is the iteration number, 𝑟 is radius of spiral, 𝜃 is 

the angular displacement and 𝑆𝑛(𝑟, 𝜃) is a square matrix formulated based on radius, 𝑟 

and rotation matrix with 𝑛 × 𝑛 dimension. 𝑆𝑛(𝑟, 𝜃) is represented in Equation 2.7. 

𝑆𝑛(𝑟, 𝜃) = 𝑟𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . , 𝜃𝑛,𝑛−1) 2.7 

From the equation 2.7, 𝑅(𝑛) (𝜃1,2, 𝜃1,3, … . , 𝜃(𝑛,𝑛−1)  is  𝑛 × 𝑛 dimensional of 

rotational matrix. For clarification, 𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . , 𝜃𝑛,𝑛−1) also can be representing 

Equation 2.8. 

𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . , 𝜃𝑛,𝑛−1) = ∏(∏𝑅𝑛−𝑖,𝑛+1−𝑗
(𝑛)

𝑖

𝑗=1

(𝜃𝑛−1,𝑛+1−𝑗))

𝑛−1

𝑖=1

 2.8 
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With respect to these equations, types of the spiral model with different value of 

radius, 𝑟 and angular displacement, 𝜃 are illustrated in Figure 2.5.  

Denote that when different radii 𝑟 and angular displacements, 𝜃 are used, then the 

shape of the spiral is also different. This shows how both parameters will affect the 

search. The performance of SDA will be depending on these parameters. For instance, 

every spiral model has its own centre and in SDA, the centre, 𝑥∗ will be chosen according 

to best ranked agent in the current population and it changes in every iteration. If the top-

ranked solution found in the next iteration is better than the top-ranked found in the 

current iteration, the new 𝑥∗ will be defined.  

Figure 2.4 Different value of 𝑟 and 𝜃 resulted the shape of the spiral step. 

 
Step 0: Preparation 

Select number of search agents, 𝑚 ≥ 2, angular displacement, 0 ≤ 𝜃 < 2𝜋, radius 

of spiral, 0 ≤ 𝑟 < 1 in 𝑆(𝑟, 𝜃) and maximum number of iterations, 𝑘𝑚𝑎𝑥 . Set 𝑘 = 0. 
 

Step 1: Initialization 

Randomly spread search agents 𝑥𝑖(0) ∈ 𝑅𝑛, 𝑖 = 1,2,3, … ,𝑚 in the feasible region. 

Set centre of spiral, 𝑥∗ as 𝑥∗ = 𝑥𝑖𝑔
(0), 𝑖𝑔 = argmin

i
 𝑓 ቀ𝑥𝑖(0ሶ )ቁ , 𝑖 = 1,2,3, … ,𝑚. 

 

Step 2: Updating position of search agents 

Update position using spiral equation:  

𝑥𝑖(𝑘 + 1) = 𝑆𝑛(𝑟, 𝜃)𝑥𝑖(𝑘) − 𝑆𝑛(𝑟, 𝜃) − 𝐼𝑛)𝑥∗ 

 

Step 3: Updating centre of spiral 

The centre of spiral is updated after positioning the agents by 𝑥∗ = 𝑥𝑖𝑔
(𝑘 + 1),  

where  𝑖𝑔 = argmin
i

𝑓(𝑥𝑖(𝑘 + 1)), 𝑖 = 1, 2, 3, … ,𝑚. 

 

Step 4: Checking termination criterion 

Terminate iteration if 𝑘 = 𝑘𝑚𝑎𝑥. If else set 𝑘 = 𝑘 + 1 and repeat step 2. 

Figure 2.5 Pseudocode of SDA. 



35 

The pseudocode of SDA is shown in Figure 2.5. The sequence starts with 

selecting the number of search agents, 𝑚. The number of agents will affect the accuracy 

of the solution. The large number of agents provides more accurate of solution while 

small number of 𝑚 will reduce the accuracy. However, if the number is too large, then it 

will affect the computation time. Hence, the enough number of search agents is required. 

In the same stage, the user determines the angular displacement, 𝜃 and radius of spiral, 

𝑟. These parameter values selections are also important. As mentioned before, they will 

affect the performance of the algorithm. After the preparation, 𝑚 of search agents will be 

randomly spread out in the search space or called the feasible region. These agents will 

be put onto these spaces randomly in term of position or point, between the specific 

ranges of the problems. These points then will be evaluated on the problem function. The 

best cost value among these positions will be set as the centre, 𝑥∗. All of the points will 

move towards this 𝑥∗ as in Step 2. These points further will move in spiral step by using 

the spiral model equation. For a clearer vision, this equation will be used to move all of 

the points towards the spiral centre in spiral step. This explains why large 𝑚 will make 

the algorithm computes slower because it needs to calculate a lot of new positions for 

each agent. These new points then will be again evaluated on the problem function and 

the new  𝑥∗ is determined by the best cost value from the computation. This sequence 

will be repeated till 𝑘𝑚𝑎𝑥 is achieved and if not, the procedure will be restarted from Step 

2.  

2.6 Genetic Algorithm and Its Variation 

2.6.1 Introduction  

Genetic algorithm (GA) is designed to simulate the biological process inspired by 

evolutionary theorem of Charles Darwin. GA at the early phase was introduced by James 

Holland in 1960 however become attraction to many researchers in late 1990. It searches 

the solution through the use of simulated evolution, by adopting the concept of survival 

of the fittest (Bodenhofer, 2004; Sivanandam, S.N., et.al., 2008; Carr, 2014; G. Kumar, 

2014; Kramer, 2017). The terminology also taken from the biology. For instance, the 

fittest member in the simulated population tend to survive, reproduce and continue the to 

the next generation, then improving for each generation. However, some of the inferior 

member also able to survive, by a little chance to reproduce. This GA procedure is much 

simpler compared than its real biological counterparts, which contain the components of 
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five including 1) the fitness function of the 𝑀𝑂  problems; 2) a population of 

chromosomes; 3) selection of the fittest chromosomes; 4) crossover to produce next 

generation and 5) mutation to random member in population. The word “fitness” used 

widely in extended GAs is extracted from the evolutionary theory. This word was chosen 

to represent how fit the potential solution is. The chromosome represents the candidate 

solution. These chromosomes which actually is numerical value is the one that the GA 

trying to optimize. 

GA has been widely used to solve many linear and non-linear problems by 

exploring the all regions of the state space through mutation, crossover, and a selection 

operation (Michalewicz, 1996; Houck et.al., 2008). To solve different problems, 

researchers have modified many versions of GA. 

Adaptive GA (AGA) is the one of the enhanced versions of GA. In AGA, the 

parameters are varied throughout the searching process (C.L. et.al., 1993). Those 

parameters are including population size, rate of crossover and rate of mutation. The 

author also made variant of several AGA by varying the parameter such as the mutation 

rate will be changes accordingly to the changes in the population. As long the population 

do not improve, a higher mutation rate is chosen. The AGA also will be acting vice-versa 

if the population is improved.  

Another work improving GA is done in 2017 (Nasir et.al., 2017). The author 

combined GA with SDA to form a Hybrid-Spiral-Genetic algorithm (HSGA). From this 

paper, the exploration and exploitation strategy in GA are improved by adopting spiral 

model from SDA. After tested with several benchmark functions, HSGA is clearly 

outperform both of SDA and GA at a significant level of improvement.  

One of the improved GA was developed to optimize a multi-runway schedule of 

airport (Zhou et.al., 2015). The author used sliding time window algorithm (STWA) to 

improved GA. STWA is an algorithm developed focused to solve flight landing schedule. 

The current STWA faces problem of ineffectiveness in schedule the flights and take-offs, 

delays and landing. In this paper, GA was improved in order to adopted the conflicting 

problems. They applied Grefenstette coding method to produce efficient chromosomes. 

So, these chromosomes are representing the sequence of the flight. At the same time, 

Grefenstette also reduced the complexity of the algorithm. By hybridizing GA and 



37 

STWA, the author found that the runway throughput was increased by 13% and delay 

cost was reduced by 61%. The controller of the runway also significantly reduced in term 

of its workload compared to traditional method of “first come first serve”. Although 

complexity of the proposed algorithm was increased, the algorithm managed to reduce 

time complexity and improves real-time and work-efficiency significantly. This GA-

STWA significantly succeed to make better air traffic control. 

2.6.2 Program Structure (Carr, 2014) 

At the beginning, it is important to emphasize that mutation and crossover 

operators are involved in GA. The mutation procedure and the crossover operator used 

can be described in Figure 2.6 and Figure 2.7 respectively. At the meanwhile, Figure 2.8 

shows the pseudocode of GA. GA at the beginning will initialize a Population (𝑝𝑜𝑝) with 

desired number of chromosomes, denoted as 𝑛𝑝𝑜𝑝. These chromosomes then will be 

tested with the fitness function, in order to obtain the information its fitness value. The 

selection will be furthered operates to find the fittest solution among the members of the 

population. The members which are fitter have greater chances to survive and reproduce. 

At the next phase, the selected chromosomes will undergo crossover in Figure 2.6. The 

crossover operator simulates the biological crossing over and they will be combined in 

cell meiosis. This process will produce two chromosomes, which swapped from 

subsequent of two previous parent selected chromosomes. As shown in Figure 2.7, the 

mutation operator will take the current found population as their subject. This operator is 

defined to create a new position of agents in the search space, according to lower and 

upper boundary, which computed based on the mutation rate initially set by the user. The 

mutation operator will randomly flip the individual properties by change the bit ‘0’ to ‘1’ 

and vice-versa. As the stopping criterion is still not met, this cycle will be repeated until 

the initial population is completely replaced with the fittest solution found. 

Table 2.2  Symbols for crossover operator. 

Symbols Description 

𝑥𝑖 𝑖𝑡ℎ number of individuals 

𝑥𝑗 𝑗𝑡ℎ number of individuals 

𝑦𝑖 New position for 𝑖𝑡ℎ agent 

𝑦𝑗 New position for 𝑗𝑡ℎ agent 

𝛼 Rate of crossover 
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Step 0: Preparation 

Set rate of crossover, select specific two individuals in current population, 

𝑖𝑡ℎ and 𝑗𝑡ℎ  of in individual in 𝑝𝑜𝑝 and named 𝑥𝑖 and 𝑥𝑗. Take the position of both 

agents.  

 

Step 1: Initialization 

Define the size of position agent 𝑥𝑖. Random a value between range of this size. 

 

Step 2: Operate crossover  

Compute the new positions for both 𝑖𝑡ℎ and 𝑗𝑡ℎ by using crossover equation. 

𝑦𝑖 = 𝛼 × 𝑥𝑖 + (1 − 𝛼) × 𝑥𝑗 

𝑦𝑗 = 𝛼 × 𝑥𝑗 + (1 − 𝛼) × 𝑥𝑖 

 

Step 3: Store new position, 𝒙𝒊 and 𝒙𝒋. 

  𝑥𝑖 = 𝑦𝑖 and 𝑥𝑗 = 𝑦𝑗  

 

Step 4: Return 𝒙𝒏𝒆𝒘 

  𝑥𝑛𝑒𝑤 = ቄ
𝑥𝑖

𝑥𝑗
 

Figure 2.6 Crossover Operator Figure 2.6 Crossover Operator 

Step 0: Preparation 

Select a constant value for rate of mutation, 𝑚𝑢𝑡𝑟𝑎𝑡𝑒. 
 

Step 1: Initialization 

Take current 𝑝𝑜𝑝 agents, identify the current number of NDS in 𝑝𝑜𝑝. Choose 

randomly an agent in 𝑝𝑜𝑝, called 𝑗 = 𝑟𝑎𝑛𝑑(𝑛). 

 

Step 2: Calculate rate of mutation 

Compute the rate of mutation, in between the range of MOP.  

 

Step 3: Mutate agents. 

Set the lower and upper boundaries for 𝑗, and create a new random position of 

agents, 𝑥𝑛𝑒𝑤 

 

Figure 2.7 Mutation operator. Figure 2.7 Mutation Operator 
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2.7 Fast-elitist Non-dominated Sorting Genetic Algorithm 

2.7.1 Introduction (Barthelemy et.al., 1993)  

To adopt the NS methodology concept which originated from NSGAII into 𝑆𝑂-

type SDA, the fundamental of NSGAII is really important to be explored further. Figure 

2.9 shows the elements of NS techniques. These elements will be explained in detail in 

this section.  

Step 0: Preparation 

Choose total number of chromosomes in the population, 𝑛𝑝𝑜𝑝, mutation rate and 

crossover rate. 

 

Step 1: Initialization 

Create chromosomes in a population, 𝑝𝑜𝑝. Evaluate the chromosomes using fitness 

cost function.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

 

Step 2: Select the best chromosomes with best fitness value for reproduction. 

The best 𝑛𝑝𝑜𝑝 of chromosomes with best fitness value will be selected to reproduce 

by next breeding operators. 

𝐵𝑒𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = min(𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡) 

 

Step 3: Breed new children by crossover and mutation. 

Apply crossover and mutation procedures as stated in Figure 2.6 and 2.7 to double 

the size of 𝑛𝑝𝑜𝑝 by producing children.  

 

Step 4: Evaluate fitness of new chromosomes. 

Combination of parents and children will be evaluated to know their individual 

fitness. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

 

Step 5: Replace least-fit chromosomes  

New chromosomes with better fitness will replace least-fit chromosomes.  

 

Step 6: Check termination criterion 

Check termination criterion, if 𝑘 = 𝑘𝑚𝑎𝑥, then stop. If not, then repreat Step 2.  

Figure 2.8 Pseudocode of GA. 
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2.7.2 Flowchart NSGAII 

Figure 2.10 shows the flowchart for NSGAII. At the beginning, the algorithm will 

initialize a size population of 𝑛𝑝𝑜𝑝  and will be evaluated based on 𝑀𝑂𝑃 . After the 

evaluation, all individuals will be sorted to determine their domination. This is where the 

Pareto-optimal concept is applied. At this phase also, the individuals will be arranged in 

ascending order, based on their best fitness values. This initial population is recognized 

as parent, in which this size of population furthered to increase by producing children. In 

this case, NSGAII will use the GA operator to produce those children. There are three 

components of GA which are binary tournament selection, mutation and crossover. 

Binary tournament selection is a function to select individuals which are the fittest. These 

selected individuals will be mutated and crossover to produce new generation. The 

number of the desired offspring or children is defined by user at the beginning. Producing 

more children will create more chances to produce better solution however increase the 

computation time.  

Elements of 

Non-dominated sorting 
Non-dominated sort 

Crowding distance 

Crowded Comparison 

Operator 

Figure 2.9 Elements in NS-approach 
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START 

Initialization 

Create a population of individuals size 

of 𝑛𝑝𝑜𝑝. Evaluate fitness, determine 

non-domination and rank the 𝑃𝑂𝑆. 

Apply GA 

Operate binary tournament selection, 

crossover and mutation. 

 

Evaluate Fitness 

 

Combine parents and children. 

Combine parent and children to form a 

new population size of 2𝑛𝑝𝑜𝑝. These 

previous parent and children will 

compete each other. 

Apply non-dominated sort, crowding 

distance and crowd comparison 

operator. Rank the 𝑷𝑶𝑺. 
 

Select 𝒏𝒑𝒐𝒑 number of individuals. 

 

𝒌𝒎𝒂𝒙? 

 

Plot Pareto Front 

 

END 

NO 

 

YES 

 

Figure 2.10 Flowchart of NSGAII. 
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The process is continued in order to evaluate the entire population based on the 

𝑀𝑂  problem. In this phase, all individuals from parent and children populations are 

evaluated. Then the information of their fitness will be stored in each individual 

characteristic.  

Next, both parent and children population which were combined will be sorted 

using non-dominated-sort operator. By this process, the individuals will be again 

separated and stored according to their non-domination level. Then to preserve the 

diversity, the sorted population will undergo both 𝐶𝐷 calculation and 𝐶𝐶𝑂. 

The last step is to discard the excessive individuals in the population and let the 

required size of population remains. The crowded comparison operator (𝐶𝐶𝑂) will be 

applied to select the best desired number of individuals to continue and survive for next 

iteration. This process will be continued till the maximum iteration is achieved.  

Once the algorithm achieved the maximum iteration, the last population will be 

used to plot the Pareto-front. Thus, this is the best 𝑃𝑂𝑆 found that plotted along the 

Pareto-front, which can be used as the best solution.  

NS is an organized and systematic strategy to find the 𝑃𝑂𝑆. This is shown in 

Figure 2.11. Important to denote that, the NS method is not able to function well if these 

three elements are not applied together. Therefore, when NS is used to developed a new 

version of 𝑀𝑂-type SDA, these three elements are included.  
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Non-dominated 

Sorting 

Crowding  

Distance 

Calculation 

Rejected 

𝑦𝑡ℎ𝑃𝑎𝑟𝑒𝑛𝑡, 𝑃𝑦  

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑦  

2𝑛𝑑 𝐹𝑟𝑜𝑛𝑡, 𝐹2 

3𝑟𝑑 𝐹𝑟𝑜𝑛𝑡. 𝐹3 

1𝑠𝑡 𝐹𝑟𝑜𝑛𝑡, 𝐹1 

𝑃𝑦+1 

Crowd 

Comparison 

Comparator 

 

Repeat till stopping 

criterion is met 

Figure 2.11 Non-dominated sorting procedure illustration. 
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2.7.3 Non-dominated-sort (Barthelemy et.al., 1993) 

Non-dominated-sort is a methodology which divides a population of solutions 

into several non-domination levels (𝑁𝐿).  

Figure 2.12 illustrates the concept of 𝑁𝐿. This division of 𝑁𝐿 is based on their 

dominance relationship. This method provides a good quality of solution in which 𝑁𝐿 

they belong to with respect to each other. However, it becomes time-consuming when the 

number of objective and population size is increased. In other words, in non-dominated-

sort, each solution must be compared to each other within the population by using the 

 

𝑓2 

𝑓1 

𝐹2 

𝐹3 

𝐹1 

Figure 2.12 Non-domination level (𝑁𝐿). Denote that, 𝐹1 > 𝐹2 > 𝐹3. 

Let two solutions, 𝑦1 and 𝑦2  from a population size of  𝑛𝑝𝑜𝑝  are taken to make 

comparison. 

 

Definition 1: 

Solution 𝑦1 is considered to dominate solution 𝑦2, if both conditions (a) and (b) are 

satisfied. 

(a) 𝑦1 is no worse than 𝑦2 in all objectives or, 

𝑓𝑗(𝑦1) > 𝑓𝑗(𝑦2) for all 𝑗 = 1,2,3, … , 𝑛𝑝𝑜𝑝 

(b) 𝑦1 is strictly better than 𝑦2 in at least one objective or, 

𝑓𝑗(𝑦1) < 𝑓𝑗(𝑦2) for all 𝑗 = 1,2,3, … , 𝑛𝑝𝑜𝑝 

Definition 2: 

Non-dominated set is a set of all solutions that are not dominated by any member of 

the solution set. 

 

Figure 2.13 Condition in selecting Pareto-optimal solution (𝑃𝑂𝑆). 
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condition in Figure 2.13. This is to sort the population, 𝑝𝑜𝑝 in size of 𝑛𝑝𝑜𝑝 according to 

the non-domination level. 

For the initial clarification, to describe the performance or complexity of an 

algorithm in computer science, big "𝑂" notation is used. Big “𝑂” specifically describes 

the worst-case scenario and can be used to describe the execution time required. Other 

than that, this notation also describes the space used for example in memory of disk by 

an algorithm.   

The comparison requires 𝑂(ℎ𝑌) of complexity for each solution, which ℎ is the 

number of objectives and 𝑌 = 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛𝑝𝑜𝑝
. Figure 2.14 shows the illustration of 

this complexity. In this figure, there are two objective functions, ℎ1 and ℎ2 . The 

individuals, 𝑦1 − 𝑦6 will be evaluated on these objective functions. The complexity then 

will become 𝑂(ℎ𝑌2) when the process is continued to find the first NDS as shown in 

Figure 2.14. The complexity increases because the comparison of an individual to other 

each individual take place. During this phase, all first 𝑃𝑂𝑆 are found. To find next 

frontiers, the first 𝑃𝑂𝑆 are temporarily discounted. The procedure then repeated with the 

same complexity of 𝑂(ℎ𝑌2).  

In general, the procedure will initialize the problem-range-based population of 

search individuals. Fitness or cost value of these searching individuals is then evaluated 

by recalling the 𝑀𝑂 problems. Then, the individuals in the population will be sorted 

based on the 𝑁𝐿. 𝑃𝑂𝑆 that have different levels of non-domination will be stored in 

different subsets. Denote that, a subset is a set of 𝑃𝑂𝑆 in different 𝑁𝐿. In this perspective, 

the method is done by ranking the current non-dominated subset as 0 and then it is 

 
 

 

 

𝑦2 𝑦5 

𝑦1 

𝑦3 𝑦4 

𝑦6 

ℎ1 ℎ2 

Figure 2.14 𝑂(ℎ𝑌) and 𝑂(ℎ𝑌2) complexities illustration. 

𝑂(ℎ𝑌2) 

𝑂(ℎ𝑌) 
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removed from consideration temporarily. Next, the remaining population is evaluated to 

determine another non-dominated subset. If there are, the subset will be ranked number 

1. This sequence will be continuing until the overall population has been ranked. This 

non-dominated-sort procedure in which applied to a population will return a list of non-

dominated fronts, 𝐹. 

Figure 2.15 shows the pseudocode of non-dominated-sort procedure. By this 

detail procedure, at the early stage of its operation, a subset of population 𝑃, denoted as 

𝑆𝑝 is initialized with all of the individuals that dominated by 𝑝 is contained in this set. At 

the same time, operator also initialized the number of individuals that dominated by 𝑝, 

𝑛𝑝. In the first step in the pseudocode, the evaluation of the individuals begins to take 

place. All individuals in population will be compared each other’s in order to determine 

the domination. For an individual, 𝑝 will be compared with another individual, 𝑞. At this 

 Step 0: Preparation 

Calculate the fitness of each individual in 𝑛𝑝𝑜𝑝 size of population. 

 

Step 1: Initialization 

Evaluate each evaluating dominate member, 𝑝 of population, 𝑃 which has entities of 

domination count, 𝑛𝑝, and a set of solutions, 𝑆𝑝, which are the set of solution 𝑝 

dominates. Set 1st front domination count, 𝑛𝑝 = 0 and 𝑆𝑝 = 0. 

 

Step 2: Determine first domination 

Visit each member, 𝑞  in 𝑃 . Compare 𝑝 against each visited member, 𝑞 . If 𝑝 

dominates 𝑞, add 𝑞 into 𝑆𝑝. Otherwise, if 𝑞 dominates 𝑝 then set increment of 1 in 

𝑛𝑝.  

 

Step 3: Ranking the solution 

Rank 1 for each member 𝑝 which has 𝑛𝑝 = 0, and combine them with the current first 

frontier, 𝐹1. 

 

Step 4: Archive the current front 

Store all the NDS in 𝐹1 in storage 𝑄.  
 

Step 5: Determine solution domination of current iteration.  

Start front counter, 𝑖 = 1. Evaluate each 𝑝 in current front, 𝐹𝑖 by comparing it with 

each visited member 𝑞 of new updated set of population, 𝑆𝑝. For each 𝑞 in 𝑆𝑝,set 

decrement of 1 in domination count of 𝑞, 𝑛𝑞. If 𝑛𝑞 = 0, then store 𝑞 in 𝑄. 

 

Step 6: Checking termination criterion 

If  𝑖 = 𝑘𝑚𝑎𝑥, then terminate, otherwise set 𝑖 = 𝑖 + 1 and repeat step 4.  

Figure 2.15 Pseudocode of  non-dominated-sort procedure. 
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stage, if 𝑝 dominates 𝑞, individual 𝑞 will be included in solution set, 𝑆𝑝. Otherwise, if 𝑞 

dominates 𝑝 then the domination counter will be increased by 1. Non-dominated-sort will 

set 𝑝  as the individual of first frontiers if there is no member dominates it. Non-

dominated-sort will then continue its operation with storing the current fronts in a 

separated list, Η. The individual, 𝑝 in each front counter 𝑖, 𝐹𝑖 is then again evaluated. The 

operator will compare the individual, 𝑝 with 𝑞 in the solution set, 𝑆𝑝 and it will decrease 

the number of domination count, 𝑛𝑞  until it becomes zero. When the 𝑛𝑞  is empty, it 

means that there is no individual in the remaining 𝑖𝑡ℎ fronts could dominate 𝑞. Hence, 

the ranking is set to increment 1, 𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1. The set with individual 𝑞 then will be 

combined with the current front, Η = Η ∪ 𝑞. The front counter is then increased by one 

and the final set of current fronts, Η is now the next front. At the other meaning, the 

current 𝑖𝑡ℎ front, 𝐹𝑖 is equal to Η or 𝐹𝑖 = Η.  

Non-dominated-sort procedure in NSGAII is better compared to the same 

procedure in NSGA because it utilizes the information about the set that an individual 

dominates (𝑆𝑝) and number of individuals that dominate the individuals (𝑛𝑝).  

2.7.4 Crowding Distance 

The next procedure in 𝑁𝑆  is to calculate the density estimation or crowding 

distance (𝐶𝐷) that surrounding a particular individual in the population. This point refers 

to the fitness value of an individual. In other words, 𝐶𝐷 is an operator which used to 

 

i-1 

i+1 

i 

𝑓2 

𝑓1 

𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Hyperspace 

Outermost 

individuals 

Figure 2.16 CD illustration. 
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define an order among individuals. The way to calculate 𝐶𝐷  by taking the average 

distance of two points between an evaluating point along each of objectives, 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒.  

Figure 2.16 shows the illustration of 𝐶𝐷. 𝐶𝐷 computes 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 which represent 

the cuboid enclosing one individual ( 𝑖 ) without accounting any other points of the 

population. The idea behind the creation of 𝐶𝐷 concept is actually to find a Euclidian 

distance between each individual in a frontier’s members. This 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 will operated to 

serve the estimate of the size of the largest cuboid enclosing an individual, 𝑖 without 

considering any other individuals in the population. The front is based on their 

ℎ objectives in their ℎ dimensional hyperspace, which mean that the 𝐶𝐷 only operates on 

the individuals on the same front. Denote that hyperspace is another term for searching 

space or feasible space. Also, important to stress that, two outermost individuals which 

are located at right- and left-hand-side of the whole searching space are always selected 

since the individuals are set with infinite distance assignment. 

Figure 2.17 shows the pseudocode for 𝐶𝐷. Particularly, Ι(𝑖). ℎ refers to the ℎ𝑡ℎ 

objective function value of the 𝑖𝑡ℎ individual in the set Ι.  Denote that, term “objective 

function value” is equal to term “fitness value” in NSGAII while Ι𝑚𝑎𝑥 = 𝑛𝑝𝑜𝑝.   In the 

figure, the pseudocode of 𝐶𝐷 starts with taking the information of location of current 

frontiers. This preparation step also determines the numbers of current 𝑃𝑂𝑆 that found. 

After that, the algorithm will initialize all distance, Ι(𝑖)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of all these 𝑃𝑂𝑆 by 0. 

Continuing the operation, all the 𝑃𝑂𝑆 will be sorted in ascending orders based on the 

 
Step 0: Preparation 

Take the information of current frontiers. Determine number of NDS in the current 

front, I.  

 

Step 1: Initialization 

For each iteration, 𝑖 set I(𝑖)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0. 

 

Step 2: Sort the member according to fitness value 

Each member in 𝐹𝑖 is sort in ascending order. Set for the first distance, 

I(1)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = I(𝑖)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∞.  

 

Step 3: Calculate crowding distance 

Calculate CD for 𝑖 = 2 𝑡𝑜 (I − 1) by using equation 

Ι(𝑖)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒.𝑛𝑒𝑤 = Ι(𝑖)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒.𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + (Ι(𝑖 + 1). ℎ − Ι(𝑖 − 1). ℎ) 

Figure 2.17 Pseudocode of  CD. 
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fitness value and non-domination levels (𝑁𝐿). For the first- and last-ranked 𝑃𝑂𝑆, their 

initial distances will set by infinity to make them always selected. Next procedure is to 

calculate the 𝐶𝐷 by using the stated mathematical formulation. This procedure will be 

applied to all of 𝑃𝑂𝑆 found in the storage as shown in Figure 2.18.  At the end, only 𝑁 

individuals with large Ι(𝑖)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 will be selected.  

For instances, to be clearer, the algorithm will generate 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  for each 

inidviduals as shown in Figure 2.18. 𝑖1 and 𝑖11 will always be selected because they are 

the outermost 𝑃𝑂𝑆 in the feasible region. In this figure, to generate 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  for 𝑖2, 𝑖1 and 

𝑖3 will be the vertices for the cuboid that enclosed it. This procedure also will be repeated 

to 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 for 𝑖3 in which 𝑖2 and 𝑖4 will be its vertices. This step will be repeated to all 

𝑖3 to 𝑖11. As the consequence, individual 𝑖10 will not be selected because it enclosed in 

the smallest cuboid. To demolished 𝑖10, next operator called 𝐶𝐶𝑂  is involved. This 

operator will be explained in the next subsection.  

Really important to denote that 𝐶𝐷 cannot be operated between two individuals 

in different fronts. It is only applicable front-wise, which means it is only can compare 

distance between two individuals in same front. To get a better diverse Pareto-front, 

individuals which have a large 𝐶𝐷 value are better than ones with a smaller value, if they 

are at same 𝑁𝐿 . Other than that, 𝐶𝐷  with combination of its component Crowded 

Comparison Operator (𝐶𝐶𝑂) also operates to remove all solutions with worst 𝐶𝐷 from 

the storage, when the storage has achieved its limit.  

 

 

𝑖1 

𝑖2 

𝑖3 

𝑖4 

𝑖5 
𝑖6 

𝑖8 
𝑖9 𝑖10 𝑖11 

𝑓2 

𝑓1 

Figure 2.18 CD evaluation on all individuals in the same front. 
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2.7.5 Crowded Comparison Comparator 

To obtain a well-diverse Pareto-front, 𝐶𝐶𝑂 is important. 𝐶𝐶𝑂 is a part of 𝐶𝐷. To 

operates this 𝐶𝐶𝑂, two inputs are needed, which are 1) 𝑃𝑂𝑆 rankings, 𝑖𝑟𝑎𝑛𝑘 ; and 2) 𝐶𝐷 

values, 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . These both two values come from both non-dominated sort and 𝐶𝐷 

operators respectively. These two values are also can be defined as the attributes from 

each individual of the population, which passing through both non-dominated-sort and 

𝐶𝐷 procedure. This procedure is described as in Figure 2.19. 

𝐶𝐶𝑂 only consists of one step. The step only requires the 𝑃𝑂𝑆 found to satisfy 

the condition of the defined partial order which denoted with notation (≥𝑛). From the 

definition of 𝐶𝐶𝑂 , when two solutions with different non-domination ranks, the 

individual which has the lower rank will be selected. In contrast, if these two individuals 

are in the same front, then the 𝐶𝐶𝑂 will select the member which located in a space with 

lesser number of frontiers. This will be decided if the size of cuboid, which bound the 

points is larger.  

2.8 Particle Swarm Optimization and Its Variation  

2.8.1 Introduction 

Particle swarm optimization (PSO) inspired from the emulation of the group of 

dynamic behaviour choreography of a bird flock (Kennedy et.al.,  1995). This means that 

every particle in a formed population, all particles affected by the overall groups. Each 

particle is set with position and velocity. PSO combines the experience of the particles 

with the experience of the group. The behaviour of each member is affected by either the 

best local or the best global. The concept can be seen as a distributed behavioural 

algorithm that performs multi-dimensional search (Coello et.al.,  2002). The concept in 

evolutionary algorithm (EA) which is population and a measure of performance similar 

to the fitness value also adopted (Coello, 2006). The adjustment to the members also done 

with crossover operator. At another aspect, PSO allows members to take advantage from 

 
Step 1: Execute partial order 

Define partial order, ≥𝑛. 

 𝑖 ≥𝑛 𝑗 , if 𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘 or 𝑖𝑟𝑎𝑛𝑘 = 𝑗𝑟𝑎𝑛𝑘 and 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 

Figure 2.19 Pseudocode of  𝐶𝐶𝑂. 
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their past experiences. In EA, these current population is the only memory used by 

members. Similar with GA, PSO also manage to solve linear and non-linear problems 

(Kennedy et.al., 1995). Based its structure, PSO is really suitable to be modified into 𝑀𝑂 

algorithm and can solve 𝑀𝑂  problems as it has high speed of convergence when it 

performs to solve 𝑆𝑂 problems. 

A lot of researchers have developed a numerous number of modifications to PSO 

in order to solve the non-linear searching problems. One of the version are the orthogonal 

PSO (OPSO), which adopted simple orthogonal array of Taguchi method (Kuo et.al., 

2010). To apply this, the functions are initially defined. These number of objective 

functions are respectively representing the number of swarms. For example, if three 

functions are defined, then the orthogonal array will contain three factors and three levels. 

The optimal solution is able to be obtained by comparing the values in this array. To 

validate this method, the author applied it to an axial flux motor system and they managed 

to maximise the motor RPM alongside with its torque better. 
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2.8.2 Program Structure 

Figure 2.20 shows the procedures that take place in PSO. It consists of six steps 

in total. To generalize the procedure in PSO, after the searching begins, the algorithm 

will set the initial solution (Ibrahim et.al., 2015). While the algorithm iterates, every 

particle in population will be updated with a new value coming from the evaluation of 

group particles and individuals’ particle. The accuracy of the solution depends on the 

fitness cost of the current position or can be defined as the average square error of the 

particles. Both of these properties are used for the entire solution searching process. In 

order to avoid the problems of the local optima, PSO adopted a concept of inertia 

weighting factor (𝐼𝑊𝐹). This is a random function to solve the problem in PSO, which 

the optimal solution might jump into a local trap and cannot go out form the trap. So, this 

concept able to make the particles jump out from the local optima. This is also to increase 

 
Step 0: Preparation 

Set two acceleration constants, 𝑐1 and 𝑐2. Set desired maximum iteration, 𝑘𝑚𝑎𝑥.  

 

Step 1: Initialization 

Initialize the population, 𝑝𝑜𝑝 with specific number of particles, 𝑛 and randomized 

position, 𝑥.  

 

Step 2: Calculate the fitness value 

All particles are evaluated to know its fitness by using equation below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

Set best-fitness value gained by each particle as their personal-best (𝑝𝐵𝑒𝑠𝑡) fitness 

value. 

 

Step 3: Choose a particle with best-fitness. 

A particle with best fitness value will be selected as Global-best (𝑔𝐵𝑒𝑠𝑡) particle. 

 

Step 4: Calculate new velocity 

Each particle will have its velocity value using the following equation. 

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝐵𝑒𝑠𝑡 − 𝑥) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝐵𝑒𝑠𝑡 − 𝑥) 

 

Step 5: Update position, 𝒙 

Particles position are updated using the equation below. 

𝑝𝑛𝑒𝑤 = 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑣𝑛𝑒𝑤 

 

Step 6: Check termination criterion 

Check termination criterion, if 𝑘 = 𝑘𝑚𝑎𝑥, then stop. If not, then repreat Step 2.  

Figure 2.20 Pseudocode of  PSO. 
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the convergence or accuracy rate (Laumanns, 2002). However, the operator 𝐼𝑊𝐹 only for 

linear problems. 

2.9 Multi-objective Particle Swarm Optimization (Coello, 2002) 

2.9.1 Introduction 

The strategy in MOPSO is to maximize the number of elements of the Pareto-

front set found, minimize the distance of the Pareto-front produced by respect to global 

optimum and maximize the spread or distribution along the Pareto-front. The strategy is 

called as Archiving-method (AM). AM consists combination of three components. All of 

the elements in this technique are shown in Figure 2.21 and will be well-explained in the 

next section.  

2.9.2 Archiving-method 

Archiving-method (AM) is one of the best techniques which adopted to PSO to 

make it deal with 𝑀𝑂  problems. In AM, the particles population characteristic is 

initialized at the beginning with “Best Position” criteria which denotes the best 

experiences or the best fitness value obtained by them.  These values will be used to store 

𝑃𝑂𝑆 generated previously.   

 

Elements of 

Archiving-method 

Determine domination Grid Generation 

Leader selection 

Figure 2.21 Three elements in Archiving-method (AM) approach. 
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In AM, a global repository is set up. This repository is the storage where the 

particles will deposit its movement experience after each iteration. Global attraction 

mechanism will be combined with the previous found 𝑃𝑂𝑆 that lead the convergence 

towards globally 𝑃𝑂𝑆. The particles stored in the repository will be updated after each 

iteration. The best required number of solution (i.e. 100 solutions will be stored in 100 of 

empty space in repository) will be ranked, and particles that exceed from the repository 

space will be deleted. This top-ranked solution will be plotted and from this, Pareto-front 

can be generated.  

2.9.3 Determine Domination  

Unlike non-dominated sorting in NS method, to determine domination in AM is 

simpler. Determine Domination (𝐷𝐷) is an operator that will decide whether the particles 

in the current population is dominated or not. The Figure 2.22 below shows the procedure 

of 𝐷𝐷.  

In this procedure, a swarm is required to be generated at first. In MOPSO, the 

swarm is evaluated at first based on the 𝑀𝑂  problem. This swarm then furthered to 

undergo this 𝐷𝐷 operation.  

At beginning, the particles domination value will be set as ‘0’. The process then 

furthered to compare each particle to other particles based on the criteria in Step 2. After 

all particles has been evaluated based on their domination, they then will be separated 

and stored in a setup global repository (𝑟𝑒𝑝). In AM, all dominated solution will be 

deleted instantly. That make in this 𝑟𝑒𝑝, only 𝑃𝑂𝑆 will be stored. This 𝑟𝑒𝑝, which also 

 
Step 0: Preparation 

Create population of a swarm, 𝑝𝑜𝑝.  
 

Step 1: Initialization 

Set current particle domination as false, 𝑝𝑜𝑝(𝑖). 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0. 
 

Step 2: Determine domination  

Evaluate each particle with each other by following procedure. 

If 𝑝𝑜𝑝(𝑖) ≤ 𝑝𝑜𝑝(𝑗), then 𝑝𝑜𝑝(𝑗). 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒,  

If 𝑝𝑜𝑝(𝑗) ≤ 𝑝𝑜𝑝(𝑖), then 𝑝𝑜𝑝(𝑖), 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 
 

Figure 2.22 Determine domination (𝐷𝐷) procedure. 
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functions as an external memory will be put aside temporarily while the algorithms will 

operate and loops to generate new 𝑝𝑜𝑝 with new particles.  

2.9.4 Grid Generation 

The algorithm will then process to generate grid in the searching space. This 

strategy also known as relaxed forms of dominance or 𝜀-dominance. This grid system is 

actually a strategy to preserve the distribution on Pareto-front. This geographically-based 

system grid will be generated after the algorithm calculates the fitness of each particle 

and mainly it operates to functional by filtering the 𝑃𝑂𝑆 in the external archive.  

By 𝜀 -dominance ,  a user needs to define the desired number of grid division 

between two outermost found agents at left and right-hand side. This grid will form a 

range of small boxes and only one 𝑃𝑂𝑆 is retained in each box. The number of grids 

however need to be selected wisely because if the number chosen is too small, it will lead 

the low performance in terms of distribution of 𝑃𝑂𝑆. However, the large value of grid 

division will affect the computation time, but the distribution will become well. Hence, 

the best optimum value is required to be defined.   

Figure 2.23 (a) shows that how certain area is dominated by certain solution using 

normal dominance technique. At the meanwhile, Figure 2.23 (b) illustrates the 𝜀 -

dominance concept. The operation is to extend the current area by a value proportional 

to the parameter ε while ε is a constant value defined by user. The use of 𝜀-dominance 

make sure that all the retained solutions are 𝑃𝑂𝑆 respect to all other found 

𝑃𝑂𝑆 throughout the search. Important to denote that, when this bounding technique is 

 

𝑓2 

𝑓1 𝑓1
𝜀

 

𝑓2
𝜀

 

𝑓2 

𝑓1 

Figure 2.23 Normal dominance vs 𝜀 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒. 

(a) (b) 
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used, the size of final repository depends on the 𝜀 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒. Other than that, this 

technique also will make sure that it will select 𝑃𝑂𝑆 which better, if there are solution 

found better in the generated boundaries. The advantage is the algorithm could find the 

solution faster when this 𝜀 -dominance technique is adopted compared to normal 

dominance.   

Figure 2.24 show an illustration on how the operator 𝜀-dominance operates in an 

external archive. To figure out, in the grid that consist of Solution 1 and 2, the operator 

will choose solution 1. This is due to Solution 1 is closer to grid vertices of 𝜀 and 3𝜀. For 

the meanwhile, in case of Solution 3 and 4, Solution 4 is preferred as it located closer to 

boundary of horizontal 2𝜀. For the grid consists of solution 5 and 6, it is clearly Solution 

5 is more preferred as it is closer to the left-hand corner. For instance, Solution 7 is not 

accepted as solution 3 and 4 are located at the lower grid division compared to it.  This 

brief how the operator filtering the 𝑃𝑂𝑆 in the external archive.    

2.9.5 Leader Selection 

It is important to emphasize that the leader selection is originally adopted from 

original PSO. However, the concept in PSO need to be changed as the solution in a 𝑀𝑂 

problem consist of a compilation of good solution. For two objective problem, selection 

of leader is the key component of MOPSO.  

 

Figure 2.24 Use of ε-dominance in external archive. 
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The algorithm at the first place will evaluate the particles. From this evaluation, 

the 𝑃𝑂𝑆 found will be stored in the repository. Commonly, the approach is to consider 

all the 𝑃𝑂𝑆 in the repository are the leader and only an 𝑃𝑂𝑆 is selected. By this approach, 

a quality measure of the selected 𝑃𝑂𝑆 is really important in order to know how well it is.  

To do this, this quality measure can be related to density measures. By promoting 

diversity, the quality measurement of the 𝑃𝑂𝑆 can be known based on closeness of the 

particles within the swarm. Two types of most used density estimation are Nearest-

neighbour-density estimator (𝑁𝑁𝐷) in Figure 2.25 and Kernel-density (𝐾𝐷) estimator in 

Figure 2.26. In 𝑁𝑁𝐷, the techniques estimate how crowded are the closest neighbour of 

the 𝑃𝑂𝑆 in the objective function spaces. The strategy estimates the perimeter of the 

cuboid formed by using the nearest 𝑃𝑂𝑆 neighbours as vertices. This strategy is the same 

strategy of 𝐶𝐷 applied in NS-method. For instance, the fitness of a particle within a 

certain perimeter is degraded in proportion to the number and closeness to other particles 

that surround. when a particle sharing resources with others, So, in 𝐾𝐷 the strategy is 

defining a parameter called radius of neighbourhood, 𝜎𝑠ℎ𝑎𝑟𝑒. It also indicates as niches. 

 

i-1 

i+1 

i 

𝑓2 

𝑓1 

Cuboid 

 

𝜎𝑠ℎ𝑎𝑟𝑒 
𝜎𝑠ℎ𝑎𝑟𝑒 

Figure 2.26 Nearest neighbour density estimator. 

Figure 2.25 Kernel-density (𝐾𝐷) estimator 

Figure 2.25 

Figure 2.26 
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Figure 2.28 graphically shows the overall procedure take place in AM. These procedures 

are taking place in one loop which will stop when the stopping criterion is met.   

1) Create swarm of particles 

2) All 𝑃𝑂𝑆 found will stored  

in repository.  

3) Leader will guide next  

search. (Note: Leader marked  

with dark-blue) 

4) Grid as reference to the  

algorithm to select the best 𝑃𝑂𝑆 in 

each cuboid.   

Figure 2.27 Illustration on elements in archiving-method over one generation. 
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2.9.6 General MOPSO 

START 

Initialization 

Create a particle swarm size of 𝑁. 

Determine domination, generate grid 

and store 𝑃𝑂𝑆 in repository. 

 

Update Each Particle 

Select a leader for each particle and 

update the position with objective 

function.  

 

Apply Mutation 

 

Evaluate Particles 

Evaluate the new mutated particles with 

objective function. 

Update Best Experience 

 

Update Leaders in Repository and 

Select Leader 

Create grid and select the best 𝑃𝑂𝑆. 

 

𝒌𝒎𝒂𝒙? 

 

Plot Pareto Front 

 

END 

NO 

 

YES 

 

Figure 2.28 Flowchart of MOPSO. 
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2.10 Friedman Test (Pereira et.al., 2015) 

Friedman test is a non-parametric statistical test developed by Milton Friedman. 

It used to detect differences in treatments across multiple test attempts. In this test, each 

row will be ranked together, then the values of ranked will be considered according to 

column. Important to emphasize that the rows represent the block or individuals or 

matched sets of individuals while the column represent the various condition or 

treatments.  

Friedman test operates with four simple steps. For a given data in form of a matrix 

with 𝑛 rows, 𝑘 columns and a single observation at the intersection of each block and 

treatment denoted as {𝑒𝑖𝑗}𝑛×𝑘
. The ranks within the block will be calculated. If there are 

existence of tied values, the average of the ranks is assigned. This average value is 

without ties. The data is replaced with a new matrix of {𝑤𝑖𝑗}𝑛×𝑘
 where the entry 𝑤𝑖𝑗 is 

the rank of 𝑒𝑖𝑗 within block 𝑖. Then, the procedure is furthered by calculating the average 

of matrix 𝑤 using the following formulation in Equation 2.9. 

�̅�.𝑗 =
1

𝑛
∑𝑟𝑖𝑗

𝑛

𝑖=1

 2.9 

After that, the equation of Friedman test statistic is applied. At this phase, value 

of 𝐹does not required to be adjusted for tied values in data by using Equation 2.10.  

𝐹 =
12𝑛

𝑘(𝑘 + 1)
∑(�̅�.𝑗−

𝑘 + 1

2
)
2𝑘

𝑗=1

 2.10 

Final step, when 𝑛 or 𝑘 is large, for example for 𝑛 > 15 or 𝑘 > 4,  the probability 

distribution of 𝐹 can be approximated by that of a chi-squared distribution. In this case, 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 is given by 𝑃(𝜒𝑘−1
2 ≥ 𝑄). If 𝑛 or 𝑘 is small, the approximation to chi-square 

becomes poor and the p-value should be obtained from tables of 𝐹 specially prepared for 

the Friedman test.  

2.11 Wilcoxon Test (Cyprian, et.al., 2015). 

This test was named after Frank Wilcoxon, the man who proposed it. Similar to 

Friedman, Wilcoxon signed-rank test is also a non-parameter which used to compare to 
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related samples, matched samples, or repeated measurements on a single sample to assess 

whether their population mean ranks differ. Other than that, this test can be used to 

determine whether two independent samples were selected from populations having the 

same distribution.  

 
Step 0: Preparation 

Get two pairs of samples which consist of 𝑀 number of individuals per pair. For 

each pair 𝑖 = 1, 2, 3, … ,𝑀, let 𝑚1,𝑖 and 𝑚2,𝑖 as the notations. Assign 𝐻𝑜 for “null 

hypothesis” in which the pairs that follows a symmetric distribution around zero and 

𝐻1 for which does not follow the symmetric distribution. 

 

Step 1: Calculate difference and sign value of each pair 

Calculate |𝑚2,𝑖 − 𝑚1,𝑖| and 𝑠𝑔𝑛(𝑚2,𝑖 − 𝑚1,𝑖). Exclude pairs with ห𝑚2,𝑖 − 𝑚1,𝑖ห = 0. 

Assign 𝑀𝑟 be a reduced sample size.  

 

Step 2: Order and rank the remaining pairs 

Order the remaining 𝑀𝑟 pairs from smallest to largest absolute difference, |𝑚2,𝑖 −
𝑚1,𝑖|. Then, rank all the pairs using notation of 𝑅𝑖.  

 

Step 3: Apply test statistic, 𝑾 

Calculate the sum of the signed-ranks using formulation below. 

𝑊 = ∑[𝑠𝑔𝑛(𝑚2,𝑖 − 𝑚1,𝑖). 𝑅𝑖]

𝑀𝑟

𝑖=1

 

 

Step 4: Checking distribution criterion 

Under null hypothesis, 𝑊 follows a specific distribution with no simple expression. 

The expected value is 0 and a variance resulted by equation below. Using this 

equation, a reference table for the table is generated.  

𝑣𝑎𝑟𝑊 =
𝑀𝑟(𝑀𝑟 + 1)(2𝑀𝑟 + 1)

6
 

Refer critical value of 𝑊 from generated table. Perform two-sided test and reject 𝐻𝑜 

if |𝑊| > 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑀𝑟
. 

 

Step 5: Calculate 𝒛 − 𝒔𝒄𝒐𝒓𝒆 

For 𝑀𝑟 ≥ 10, calculate 𝑧 − 𝑠𝑐𝑜𝑟𝑒 using the formulation below. 

𝑧 =
𝑊

𝜎𝑊
 

Where 𝜎𝑊 is as follow. 

𝜎𝑊 = ඨ
𝑀𝑟(𝑀𝑟 + 1)(2𝑀𝑟 + 1)

6
 

Perform two-sided test and reject 𝐻𝑜 if |𝑧| > 𝑧𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙.  
 

Figure 2.29 Pseudocode of Wilcoxon test. 
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The pseudocode of Wilcoxon test is shown in Figure 2.29. Wilcoxon test operates 

in five steps. For a briefing, let 𝑀 be a sample size. To compare two samples, there will 

be 2𝑀.  For pairs 𝑖 = 1, 2, 3, …𝑀 , let 𝑚1,𝑖 and 𝑚2,𝑖  denote the comparison.  The 

comparison resulted two types of differences between the pairs which are denoted as 𝐻𝑜 

and 𝐻1. 𝐻𝑜 is the difference between the pairs follow a symmetric distribution around 

zero while 𝐻1 is vice-versa.  

The next procedure is to calculate difference between individuals in each pair and 

their signums value using stated formulation in Step 1. At this phase, exclude all 

individuals with absolute difference of zero. The next Step 2 is to order and rank the 

remaining pairs. The operation will rank the pairs from smallest to largest value of the 

absolute difference. This rank will use notation of 𝑅𝑖.  

In Step 3, each pair will be used to calculate Wilcoxon signed rank test by 

applying the formulation in the figure. As mentioned in the figure, under 𝐻𝑜,  𝑊 follows 

a specific distribution with no simple expression. Their expected value is zero with 

variance resulted by the equation in Step 4. Using the equation, a specific reference table 

is generated. Then, the critical value of 𝑊 is referred from the generated table. In this 

step, perform two-sided test and reject 𝐻𝑜  if |𝑊| > 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑀𝑟
. The final step is to 

calculate 𝑧 − 𝑠𝑐𝑜𝑟𝑒  and two-sided test is once more performed. This time, 𝐻𝑜  will 

rejected if |𝑧| > 𝑧𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . 
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CHAPTER 3 

 

 

Methodology 

3.1 Introduction 

This chapter explains about the whole methodology that has been used to design 

the algorithms. Solutions for the problems, the physical and computational domains of 

study will be clearly defined. In necessary, the governing equation used for the 

simulation, computational method and the procedure of solution will be also described in 

detail.  

 

 

+ + + + 

Two Techniques of Multi-objective 

Optimization 

Fast elitist non-

dominated 

SDA 

MOSDA-NS  MOSDA-A  

GA 

MOPSO

O 

NSGAII  

Archive 

Approach  

Main comparison  Main comparison  

SDA PSO 

Figure 3.1 Origins of  MOSDAs with its predecessors. 
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3.2 Project Flow 

To understand how the research is done, the methodology is at the first place 

should be clarified. The methodology for developing this algorithm is divided into three 

phases as shown in Figure 3.2. 

END 

MOSDA Flowchart 

formulation 
MATLAB 

Programming 

Review on modelling and control 

START 

Analyze Observation 

Problem Identification 

Develop SDA-based multiobjective algorithm 

Review on metaheuristic algorithms NSGAII 

and its variation of modification 

MOSDA Pseudocode 

formulation 

Validation with mathematical/ benchmark 

function 

Performance 

better? 

Optimize an inverted pendulum system model  

Figure 3.2 Project flow. 
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In the first phase, the research is to focus on the problem identification on current 

used algorithm in many fields. At first place, general view on modelling and control are 

discovered. They includes the algorithm which currently used to optimize parameters of 

robotics and optimize values in economics measurement (Bajd et.al., 2010). Many papers 

and journals, are reviewed in order to identify the ineffectiveness, weakness and lacks in 

current optimization algorithms. To do this, the study reviews and analyses various 

strategies used in many algorithms. 

The second phase will start to review on the metaheuristic algorithms. The review 

will more focus on both NSGAII and MOPSO and their applications to real world, the 

modification or upgrade done to the sequence of algorithm to provide more better solution 

set. The next step in this phase is to develop two SDA-based 𝑀𝑂  optimization 

algorithms. A Fast-elitist Non-dominated Sorting method (NS) and an Archiving-method 

(AM) will be used in the development. The development then will continue to specify the 

step to calculate the solution in the algorithm. This can be done by arranging the step 

involved using pseudocode. At the same time, the MATLAB is used to test each of the 

step whether it complies with the SDA or not. The developed algorithms will be then 

justified at the early stage with benchmark function. The result is gained by plotting the 

Pareto-front. The process will be furthered to validate the algorithms. After testing using 

benchmark functions the algorithm needs to be compared against other solution provided 

by other algorithms. If the performance is not satisfied the main objective, then the 

adjustment is needed to be done to the sequence of algorithm in order to achieve the 

objective, which is to provide a set of solution with better response. In the early phase, 

the algorithm will be tested with Schaffer 𝑀𝑂 problem. This is to ease the process in 

justify whether the algorithm could find the solution for this simplest problem. After the 

algorithm achieved to find its Pareto-front, then the algorithm will be furthered tested 

with other nine 𝑀𝑂 problems. From these 10 problems, six of them are more-than-two 

dimensional, which considered as the real challenge to 𝑀𝑂  algorithm to prove their 

ability. Hence, in next chapter there will be two subsections to discuss two categorial 𝑀𝑂 

problems benchmarking test.  

Third phase of the study is to apply the new developed MOSDA on a real-world 

application. In this thesis, MOSDA will be applied to an IP system. This testing will be 

done as simulation in MATLAB-Simulink software. It is very important to denote that 
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the simulation done will lead to deeper understanding of the algorithms purpose to the 

engineering field. This will add a valuable knowledge, which could lead better result at 

the end of MOSDA development.  

3.3 Proposed-developed Multi-objective Spiral Dynamic Algorithms 

3.3.1 Introduction 

From the previous chapter, there are several methods from numerous papers 

which can be used to turn the 𝑆𝑂-type algorithm into 𝑀𝑂-type algorithm. The most 

successful method used by researchers are Fast-elitist Non-dominated Sorting (AM) and 

Archiving-method (AM) which used in NSGAII and MOPSO respectively.  

As these methods are most strategic, they will be adopted into SDA in order to 

develop the 𝑀𝑂  SDA algorithm. In the next section, two new algorithms will be 

described well. The tree-chart in Figure 3.1 shows that the approach techniques from 

NSGAII and MOPSO, which then will be furthered adopted by SDA in order to make it 

as 𝑀𝑂-type algorithm. The next section will describe the MOSDA-NS and MOSDA-A 

with detail.  

3.3.2 MOSDA-NS: Non-dominated Sorting Spiral Dynamic Algorithm 

3.3.2.1 Introduction 

At the beginning, the algorithm will create a population of random agents. A 

population (𝑝𝑜𝑝) which consist of a number of (𝑛𝑝𝑜𝑝) searching agents will be generated. 

Important to emphasize that, this 𝑝𝑜𝑝 will be the main population that contain the best 

solution for each loop. There are also other two populations; Population 1 (𝑝𝑜𝑝1) and 

Population 2 (𝑝𝑜𝑝2)  which will be the secondary and tertiary population to create 

maximum number of randomized parents’ agent in the procedure. These population also 

will be useful to create interpopulation mutation and crossover children. Particularly, 

these population will contain agents with a few of specific characteristics or entities. To 

be clear, the searching agents in the generated population 𝑝𝑜𝑝, 𝑝𝑜𝑝1 and 𝑝𝑜𝑝2 will be 

the same type of individuals which generated in NSGAII. These agents, will spread 

randomly onto the search spaces, according to the 𝑀𝑂  problem search ranges. The 

information of position of these new updated positions will be stored in the agent’s entity. 
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Denote that, entities are a bunch of properties that an agent has. Table 3.1 shows the detail 

of the entities which every agent has. 

Table 3.1  The entities for each designated agents in population of MOSDA-NS. 

Characteristic of an agent (𝒎) 

1 Position 

2 Cost 

3 Rank 

4 Crowding Distance 

5 Domination Set 

6 Domination Count 

Entity “cost” will present the cost value of particular position. As mentioned 

before, the agents which have a lower cost value are better because they are closer to the 

theoretical optimum value. By these cost values, the agents will be ranked in ascending 

order and their crowding distance (𝐶𝐷) further will be calculated. At the meanwhile, 

those entities called “domination set” an “domination count” will specify which fronts 

those agents belong to. These entities will be stored in every agent for every loop until 

the stopping criterion is achieved. The more loops set by the user, then more and better 

information gathered by the algorithms, and this will improve the result.  

 

 

Spiral step 

Search 

agents produced-PF 

𝑓1 

𝑓2 

Figure 3.3 The agents spread and how they move in spiral step looking for 𝑃𝑂𝑆. 
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Also, in this algorithm, a new approach by generating more than one population 

is introduced. As the consequence, Population 1 (𝑝𝑜𝑝1)  will be generated. 𝑝𝑜𝑝1 is 

generated based on the spiral model equation in Equation 2.6. This new position will be 

evaluated and its cost value will be stored into the agents’ entity in 𝑝𝑜𝑝1. Then, the 

algorithm continues to create new population or Population 2 (𝑝𝑜𝑝2) . For this 

𝑝𝑜𝑝2, position of the agents in 𝑝𝑜𝑝1 are taken as the reference. This 𝑝𝑜𝑝2 position will 

be randomized by using Equation 3.1.  

𝑥2𝑖 = (𝑥1𝑖 + 2π 𝑟𝑎𝑛𝑑(sin(𝑋))(1 − exp|𝑥1𝑖|) 3.1 

From the equation, 𝑥2𝑖 is the new position of agents in 𝑝𝑜𝑝2, 𝑥1𝑖   is the current 

position of agents in 𝑝𝑜𝑝1, where 𝑖 = 1, 2, 3, … , 𝑛𝑝𝑜𝑝and 𝑋 is the 𝑏 × 𝑐 matrix which 

contain of generated random values. This 𝑝𝑜𝑝2 will be combined with 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 

which further will undergo NS procedure. The products of SDA then will be transferred 

to next procedure of mutation and crossover. 

Beyond introducing more than one population, there are also more randomization 

of the agents in MOSDA-NS compared to NSGAII. Even though SDA has a balanced 

exploration and exploitation strategies, but it is very easy to trapped in local optima, 

which is not good. This lead SDA operator in MOSDA-NS will have solution that has 

low performance in terms of its diversity. To have a well-diverse Pareto-front, global 

optimum is likely. Hence, the randomness strategies are really required. Despites, these 

random operators of mutation and crossover are inspired from NSGAII itself. However, 

not all members will be mutated and crossover. Only specified selected members are pass 

through this operator. In this MOSDA-NS, the specified members which will be passed 

through mutation and crossover are as stated in Table 3.2. 

Table 3.2  Specified agents to mutate and crossover. 

1st Mutation First 5 members of 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 

2nd Mutation Last 5 members of 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 

1st Crossover First 5 members of 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 

2nd Crossover Last 5 members of 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 

From the table, the algorithm run mutation and crossover for two times. Before 

this operator are operated, the population must be passed through NS procedure. This is 

to ensure the entire population are sorted according to the best fitness values. Other than 
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that, NS also used to obtain 𝑃𝑂𝑆 in desired amount. Hence, the current population that 

will be mutated and crossover are the population that has the best 𝑛𝑝𝑜𝑝 of 𝑃𝑂𝑆 found 

from the loop before. 

3.3.2.2 Descriptive Main Loop of MOSDA-NS 

From the Figure 3.4, the whole pseudocode for MOSDA-NS are shown. The 

algorithm will start at Step 0 with the user will need to define the number of search agents, 

𝑚,  radius, 𝑟 and theta, 𝜃 of spiral 𝑆𝑛(𝑟, 𝜃), maximum number of iteration and number of 

function evaluation, 𝑘𝑚𝑎𝑥 and 𝑛𝑓𝑒𝑚𝑎𝑥 respectively and mutation rate, 𝑚𝑢𝑡𝑟𝑎𝑡𝑒 and 

crossover rate. In Step 1, the algorithm then will create a population 𝑝𝑜𝑝 containing 

search agents that spread randomly in the feasible region. The ranges of this feasible 

region are specific based on the 𝑀𝑂 problem. Throughout the overall search, the agents 

only will randomly spread in this feasible range.  

The algorithm will then recall the function of 𝑀𝑂 problem to calculate the cost 

value for each position. This cost then will be stored into the properties of each agent in 

𝑝𝑜𝑝. Then, the NS procedures will be applied to the 𝑝𝑜𝑝. To recall, cost value will be 

used to determine which agents are 𝑃𝑂𝑆. At this stage of initialization, the 𝐶𝐷 operator 

is also adopted. By using 𝐶𝐷 value, the algorithm will sort the population in ascending 

order. This procedure very important to determine the centre of the spiral, 𝑥∗. In Step 2, 

the first-ranked agent in current population will be chosen as the centre of spiral, 𝑥∗. This 

point will be a reference to other agents to move inwards in spiral step.  

The algorithm then will update the position of the agents in Step 3. To do this, the 

spiral model equation is used. All agents will be moved in spiral towards centre, 𝑥∗ a step 

ahead. These agents then will be evaluated to gain its cost value. The algorithm produced 

third population called 𝑝𝑜𝑝2  in this step. This 𝑝𝑜𝑝2 will be produced based on the 

random equation as stated in Equation 3.1. This approach is aimed to have more choices 

of 𝑃𝑂𝑆. Important to mentioned that these 𝑝𝑜𝑝1 and 𝑝𝑜𝑝2 will be combined with the 

previous 𝑝𝑜𝑝 in order to find the best 50 𝑃𝑂𝑆.  
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 Step 0: Preparation  

Select a 𝑚 ≥ 2 number of search agents in a population 𝑝𝑜𝑝, number of variables, 

𝑛, parameters of spiral radius, 𝑟 and angle of convergence, 𝜃, maximum number of 

iterations, 𝑘𝑚𝑎𝑥 and maximum number of function evaluation, 𝑛𝑓𝑒𝑚𝑎𝑥. Denote that, 

𝑛𝑝𝑜𝑝 = 𝑚, and set mutation rate, 𝑚𝑢𝑡𝑟𝑎𝑡𝑒. 

 

Step 1: Initialization 

Create a population, 𝑝𝑜𝑝 of agents with position 𝑥𝑖(0) ∈ 𝑅𝑛 which 𝑖 = 1, 2, 3… ,𝑚. 

These agents will spread randomly in the feasible region. 

The agents will be evaluated to determine their fitness.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

Apply NS procedures in Figure 2.16, 2.18 and 2.20. Sort population 

 

Step 2: Define the centre of the spiral, 𝒙∗ 

The first-ranked agent in current population will be the centre, 𝑥∗. Later, all agents 

will move towards this agent in spiral step. 

 

Step 3: Move agents a step ahead in spiral step 

Update the position of every agents. The agents move in spiral step towards 𝑥∗. The 

new updated agents of 𝑖 = 1, 2, 3, … ,𝑚. 

𝑥𝑖(𝑘 + 1) = 𝑆𝑛(𝑟, 𝜃)𝑥(𝑘) − 𝑆𝑛(𝑟, 𝜃) − 𝐼𝑛)𝑥∗
 

 

Step 3: Randomize 𝒑𝒐𝒑𝟏 and create 𝒑𝒐𝒑𝟐 

By using the agents in 𝑝𝑜𝑝1, create new population 2, 𝑝𝑜𝑝2 based on the random 

equation. Update new information of 𝑝𝑜𝑝2. 
𝑥2𝑖 = (𝑥1𝑖 + 2π 𝑟𝑎𝑛𝑑(sin(𝑋))(1 − exp|𝑥1𝑖|) 

Determine the fitness of the 𝑥𝑖(𝑘 + 1) of 𝑖 = 1, 2, 3, … ,𝑚. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

 

Step 4: Apply mutation procedure in Figure 2.7. 

Mutate first 5 and last 5 agents in 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 as stated in Table 3.2.  

 

Step 5: Apply crossover as in Figure 2.6. 

Apply crossover to first 5 and last 5 agents in 𝑝𝑜𝑝 and 𝑝𝑜𝑝1. 

 

Step 6: Apply NS procedures as in Figure 2.16, 2.18 and 2.20. 

 

Step 7: Sort population of 𝒀 

 

Step 8: Check termination criterion of 𝒌𝒎𝒂𝒙 or 𝒏𝒇𝒆𝒎𝒂𝒙 

Determine whether 𝑘 = 𝑘𝑚𝑎𝑥  or 𝑛𝑓𝑒 = 𝑛𝑓𝑒𝑚𝑎𝑥. If not, then repeat from Step 3. 

 

Step 9: Generate Pareto-front. 

Figure 3.4 Pseudocode of MOSDA-NS. 
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In Step 4 and Step 5, the mutation and crossover then will be applied to these 

populations. However, only 𝑝𝑜𝑝 and 𝑝𝑜𝑝1 are involved and not all agents are mutated 

and crossover. These agents are simultaneously mutated and crossover for only their best 

5 and worst 5 agents. This is aimed to reduce the computation cost of the algorithm. Once 

the operations were finished, NS procedures will take over. This time, the algorithm will 

find all possible 𝑃𝑂𝑆 in all populations generated from the previous 𝑝𝑜𝑝, 𝑝𝑜𝑝1, 𝑝𝑜𝑝2. 

The new updated 𝑝𝑜𝑝 will be saved and sorted in ascending order. This sorting will leave 

only 50 bests 𝑃𝑂𝑆. This 𝑝𝑜𝑝 will be looped for the next round of iteration, which also 

will be used as the reference to next loop of searching.  

Step 8 will check the termination criterion, whether 𝑘𝑚𝑎𝑥  or 𝑛𝑓𝑒𝑚𝑎𝑥, which one 

are achieved at first. However, in this thesis 𝑘𝑚𝑎𝑥  is secondary compared to 𝑛𝑓𝑒𝑚𝑎𝑥. 

𝑁𝐹𝐸 is chosen as the termination criteria, which will provide a fair comparison among 

the tested algorithm in the thesis. After the algorithm detect 𝑁𝐹𝐸 = 𝑛𝑓𝑒𝑚𝑎𝑥, then the 

process will be stopped and Pareto-front graph will be generated. For better visualisation, 

MOSDA-NS is also can be figured out in the flowchart in Figure 3.5.  
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START 

Initialization 

Create a population of individuals size 

of 𝑛𝑝𝑜𝑝. Evaluate agent for their cost 

value, determine non-domination and 

rank the 𝑃𝑂𝑆. 

Apply Spiral Dynamics Model 

Move the agents a step ahead in spiral 

step.  

 

Evaluate Fitness 

 

Combine parents and children. 

Combine parent and children to form 

new population. The previous parents 

and children will compete each other. 

Apply non-dominated sort, crowding 

distance and crowd comparison 

operator. Rank the 𝑷𝑶𝑺. 
 

Select 𝒎 individuals. 

 

𝒌𝒎𝒂𝒙? 

 

Plot Pareto Front 

 

END 

NO 

 

YES 

 

Figure 3.5 Flowchart for MOSDA-NS. 
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3.3.3 MOSDA-A: Archived-based Spiral Dynamic Algorithm 

3.3.3.1 Introduction 

This section introduces extension of SDA to solve 𝑀𝑂  problem by adopting 

Archive-method (AM). To find the solution for the problems, the Pareto-ranking scheme 

which previously explained by David E. Goldberg is adopted to the SDA. By that way, 

Pareto-dominance also applied to determine the flight direction of a particle, which will 

be explained well in next subsections. For some refreshment, this method is taken from 

MOPSO.  

Equal with MOSDA-NS, a population of searching agents will be generated. Each 

agent will have specific characteristics as shown in Table 3.3. The best experience 

obtained by each agent will be saved in “Global Best” entity, while “Domination” is to 

save binary information; 0 for dominated and 1 for non-dominated. Grid Index and its 

Sub Grid Index are the information on the specific location of the agent, in term of 𝑥 and 

𝑦. This location will be used to create vertices of the grid.  

Table 3.3  The entities for each designated agents in a population in MOSDA-A. 

An agent characteristic, 𝒎 

1 Position 

2 Cost 

3 Global best 

4 Domination 

5 Grid Index 

6 Sub Grid Index 

 

There are eight steps in MOSDA-A. To briefly explain, the procedures that take 

place in MOSDA-A are quite similar to MOPSO. In addition, there are addition of 

elements to create more randomness in the searching agents is among the improvement. 

The elements are including mutation and crossover operators which taken from NSGAII. 

These operators chosen as their strategy is adaptable to various condition, universal and 

effective.  
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3.3.3.2 Descriptive Main Loop of MOSDA-A 

This explanation is based on the Figure 3.6. In Step 0, the algorithm needs some 

information. Most of the information are similar required in MOSDA-NS. The user needs 

to define 𝑚, 𝑟 and 𝜃 of  𝑆𝑛(𝑟, 𝜃), 𝑘𝑚𝑎𝑥, 𝑛𝑓𝑒𝑚𝑎𝑥 , 𝑚𝑢𝑡𝑟𝑎𝑡𝑒 and crossover rate. Other than 

Step 0: Preparation  

Select the number of search agents, 𝑚 ≥ 2, number of variables, 𝑛, parameters of 

𝑆𝑛(𝑟, 𝜃), radius, 𝑟 and angle of convergence, 𝜃, maximum number of iterations, 𝑘𝑚𝑎𝑥 

and maximum number of function evaluation, 𝑛𝑓𝑒𝑚𝑎𝑥. Denote that, 𝑚 = 𝑛𝑝𝑜𝑝 and 

set mutation rate, 𝑚𝑢𝑡𝑟𝑎𝑡𝑒, number of grid division, 𝑛𝐺𝑟𝑖𝑑 and crossover rate.  

 

Step 1: Initialization 

Create a population of agents with position 𝑥𝑖(0) ∈ 𝑅𝑛 which 𝑖 = 1, 2, 3… ,𝑚. These 

agents will spread randomly in the feasible region. 

The agents will be evaluated to determine their fitness.  

𝐶𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

Determine domination (𝐷𝐷) of each agent using procedure in Figure 2.23.  

𝑃𝑂𝑆 = 𝐷𝐷(𝐶𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒) 

Save 𝑃𝑂𝑆 found in global repository, 𝑟𝑒𝑝. 
𝑟𝑒𝑝(0) = 𝑃𝑂𝑆(0) 

Create grid and update the grid index for each 𝑃𝑂𝑆.  

 

Step 2: Define the centre of the spiral, 𝒙∗. 

The first-ranked agent in 𝑟𝑒𝑝 will be set as the centre of the spiral, 𝑥∗.  
 

Step 3: Apply spiral equation. 

Update the position of every agents. The agents move in spiral step towards 𝑥∗. The 

new updated agents of 𝑖 = 1, 2, 3, … ,𝑚. 

𝑥𝑖(𝑘 + 1) = 𝑆𝑛(𝑟, 𝜃)𝑥𝑖(𝑘) − 𝑆𝑛(𝑟, 𝜃) − 𝐼𝑛)𝑥∗
 

Determine the fitness of the 𝑥𝑖(𝑘 + 1) of 𝑖 = 1, 2, 3, … ,𝑚. 

𝐶𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑓𝑛(𝑥𝑖(𝑘 + 1)) 

 

Step 4: Apply mutation and crossover. 

Mutate and crossover first 2 agents and last 2 agents in 𝑟𝑒𝑝. Calculate cost value. 

 

Step 5: Update 𝑷𝑶𝑺 in 𝒓𝒆𝒑. 

𝑟𝑒𝑝(𝑘 + 1) = 𝑃𝑂𝑆(𝑘) ∪ 𝑃𝑂𝑆(𝑘 + 1) 

 

Step 6: Update grid index and sub-grid index of each agents in 𝒑𝒐𝒑. 

 

Step 7: Check termination criterion of 𝒌𝒎𝒂𝒙 or 𝒏𝒇𝒆𝒎𝒂𝒙. 

Determine whether 𝑘 = 𝑘𝑚𝑎𝑥  or 𝑁𝐹𝐸 = 𝑛𝑓𝑒𝑚𝑎𝑥. If not, then repeat from Step 2. 

 

Step 8: Generate Pareto-front. 

Figure 3.6 Pseudocode of MOSDA-A 
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that, the user also needs to set desired number of grid division, 𝑛𝐺𝑟𝑖𝑑. At the initialization 

of algorithm in Step 1, it will spread the searching agents in the feasible regions. These 

agents also will be randomly spread in this searching area at random manner between the 

𝑀𝑂 problem search range. At this same phase, the agents will be evaluated. The cost 

value will be calculated using 𝑀𝑂 problem and this property will be stored into each 

agent entities. By the calculated cost value, the algorithm will determine domination. 

Each agent will be evaluated and those which found 𝑃𝑂𝑆 will be separated in external 

memory or global repository, 𝑟𝑒𝑝. As stated before, 𝑟𝑒𝑝 will only store 𝑃𝑂𝑆. The process 

will be continued to create grid. This grid also known as geographically-based system 

will be used to divide the current found 𝑃𝑂𝑆 area into several sections with boundaries. 

The system will create grid between the most negative and positive outermost of found 

position of 𝑃𝑂𝑆.  

The procedure continued to choose a centre of the spiral, 𝑥∗ in Step 2. The first-

ranked best agents stored in 𝑟𝑒𝑝 will be chosen to be 𝑥∗. At the next Step 3, the algorithm 

will update the current position of agents in 𝑝𝑜𝑝. Similar to MOSDA-NS, at this step the 

spiral equation will be applied to move the agents a step ahead. This new position then 

furthered will be evaluated by calculating its cost value.  

The next procedure in Step 4 is to apply crossover and mutation operation. This 

both operations are the same operations adopted in MOSDA-NS. By this operation, the 

new agents will be created and again to be evaluated to get its cost value. After this 

process done, the algorithm will update the 𝑃𝑂𝑆 in 𝑟𝑒𝑝. At the meanwhile, the algorithm 

will update the grid and grid-index of each agents. This is stated in Step 6. Next, the 

process will be restarted from Step 2 as long as the termination criterion of 𝑘𝑚𝑎𝑥 or 

𝑛𝑓𝑒𝑚𝑎𝑥 are not achieved. If the 𝑘 = 𝑘𝑚𝑎𝑥 or 𝑁𝐹𝐸 = 𝑛𝑓𝑒𝑚𝑎𝑥, then the algorithm will be 

terminated and Pareto-front graph will be generated.  

To be clearer, flowchart of MOSDA-A also figured out in Figure 3.7.  
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START 

Initialization 

Create a group of agents with size of 

𝑛𝑝𝑜𝑝. Determine domination, generate 

grid and store 𝑃𝑂𝑆 in repository. 

 

Apply Spiral Equation 

Move the agents with spiral equation a 

step ahead. Select a leader for each 

particle and update the cost value with 

objective function.  

 

Apply Mutation and Crossover 

 

Evaluate Particles 

Evaluate the new mutated and crossover 

agents with objective function. 

Update Best Experience/ Global Best 

 

Update Leaders in Repository and 

Select Leader 

Create grid and select the best 𝑃𝑂𝑆. 

 

𝒌𝒎𝒂𝒙? 

 

Plot Pareto Front 

 

END 

NO 

 

YES 

 

Figure 3.7 Flowchart of MOSDA-A. 
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3.4 Computer Simulation Setup 

3.4.1 Hardware 

The simulation was performed on a computer with Intel Core i5-4440 CPU 

processor which running at 3.10GHz, 8Gb of RAM and a hard drive of 2Tb. The 

MOSDAs were coded in MATLAB and several parts of the codes were programmed in 

C++ language. The operating system of the PC used is Windows 8.1 Pro 64bit. This 

specification summarized in Table 3.4. To compare the results, a fair evaluation must be 

performed. Therefore, all of the tests are supposedly conducted on the same computer. 

About the development, both MOSDAs will be programmed in MATLAB and all 

experiment will be conducted on this specified hardware. 

Table 3.4 The specification of computer used. 

Processor Intel Core i5-4440 @ 3.10GHz 

Hard drive 2 Tb 

Installed RAM 8.00 Gb 

System type 64-bit operating system, x64-based processor 

Windows edition Windows 8.1 Pro 64bit 

MATLAB version MATLAB Simulink R2013a 

 

3.4.2 Parameters Comparison 

The selection of the user-define parameters is important in determining the 

performance of these algorithms. So, the preparation parameters for MOPSO and 

NSGAII are set-up at their best (Deb et.al., 2000; Coello et.al.,  2006). These parameter 

values are taken from their papers and journals. Table 3.5 and 3.6 shows the initialization 

parameters of these two algorithms.  

On the other hand, the same parameters of NSGAII and MOPSO, which used in 

MOSDA-NS and MOSDA-A are also chosen from the best of both their predecessors 

(Coello et.al.,  2002; Zhao et.al., 2009; Liu et.al., 2013; Hoseini et.al., 2016). For 

instance, it is really important to notify the comparison of these parameter. The number 

of search points in SDA, 𝑚 is equivalent to number of populations, 𝑛𝑃𝑜𝑝 in MOPSO and 

NSGAII. It is set for 50. For more detailed comparison, the parameter comparison shown 

in Table 3.7. 
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Table 3.5 Best initialization parameter for MOPSO. 

Initialization parameter Value 

Number of population, 𝑛𝑃𝑜𝑝 50 

Number of repository, 𝑛𝑅𝑒𝑝 50 

Number of grid per dimension, 𝑛𝐺𝑟𝑖𝑑 7 

Mutation rate, 𝑚𝑢𝑡𝑟𝑎𝑡𝑒 0.1 

 

Table 3.6 Best initialization parameter for NSGAII. 

Initialization parameter Value 

Number of population, 𝑛𝑃𝑜𝑝 50 

Crossover ratio, 𝑝𝑐 0.8 

Mutation ratio, 𝑝𝑚 0.3 

 

Table 3.7 Comparison of user-defined parameters. 

Parameters MOPSO MOSDA-A 
MOSDA-

NS 
NSGAII 

Number of individuals in a 

population,  𝑚 = 𝑛𝑝𝑜𝑝 
50 50 50 50 

Size of repository, 𝑛𝑅𝑒𝑝 50 50 - - 

Number of grids per dimension, 

𝑛𝐺𝑟𝑖𝑑 
7 7 - - 

Mutation rate, 𝑚𝑢𝑡𝑟𝑎𝑡𝑒 0.1 0.1 - - 

Leader selection pressure, 𝛽 2 2 - - 

Crossover ratio, 𝑝𝑐 - - 0.8 0.8 

Mutation ratio, 𝑝𝑚 - - 0.3 0.3 

Inertia weight, 𝜔 0.5 - - - 

Inertia weight damping rate, 

𝜔𝑑𝑎𝑚𝑝 
0.99 - - - 

Personal learning coefficient, 𝑐1 1 - - - 

Global learning coefficient, 𝑐2 2 - - - 

Radius, 𝑟 - 0.5 0.5 - 

Theta, 𝜃 - 
𝜋

4
 

𝜋

4
 - 

 

3.4.3 Stopping Criterion 

For stopping criterion, number of function evaluation (𝑁𝐹𝐸) is used rather than 

number of iterations (𝑁𝑂𝐼). This 𝑁𝐹𝐸 is not same as 𝑁𝑂𝐼 because problem function can 

be recalled for more than once in a single iteration. Furthermore, 𝑁𝐹𝐸 is preferred rather 

than 𝑁𝑂𝐼 because it could provide more information of the problem. Thus, if the 𝑁𝐹𝐸 is 

set limited, then the amount of information that can be provided by the algorithm for a 

problem is also will be limited. This is better fair way on how to compare algorithms. So, 

for our study it was to be ran for the same number of maximum fitness evaluation. The 



79 

more times for the algorithm evaluating a problem, it has more chances to provide a better 

solution. 𝑁𝐹𝐸 for each benchmark function is summarized in Table 3.8 (Umair et.al., 

2017; Engelbrecht et.al., 2014). 

Table 3.8 𝑁𝐹𝐸 for each benchmark function. 

Notation Benchmark Function  Maximum 

Dimension 

𝑵𝑭𝑬 

𝒇𝟏 Schaffer 2 30,000 times 

𝒇𝟐 Schaffer N2 2 30,000 times 

𝒇𝟑 Fonseca 2 100,000 times 

𝒇𝟒 Poloni 2 30,000 times 

𝒇𝟓 Kursawe 3 30,000 times 

𝒇𝟔 ZDT1 30 30,000 times 

𝒇𝟕 ZDT2 30 30,000 times 

𝒇𝟖 ZDT3 30 30,000 times 

𝒇𝟗 ZDT4 10 30,000 times 

𝒇𝟏𝟎 ZDT6 10 30,000 times 

The method to set 𝑁𝐹𝐸  is by observing the Pareto-front graphically and by 

looking at the number of 𝑃𝑂𝑆 found, which denotes its convergences toward the optimal 

Pareto-front. However, if the algorithm could not find 𝑃𝑂𝑆 for certain 𝑀𝑂 problems, 

therefore, the 𝑁𝐹𝐸 then increased to a number in which all algorithm could find the 𝑃𝑂𝑆 

at quickest. This 𝑁𝐹𝐸 will be minimum 𝑁𝐹𝐸, which is 30,000 times. From the Table 3.8, 

all algorithm set with 30,000 times of 𝑁𝐹𝐸s except for Kursawe. Kursawe function which 

is only a three-dimensional 𝑀𝑂  problem however not a fast-converging problem. 

MOSDA-A requires 100,000 times of 𝑁𝐹𝐸  to come out with a well Pareto-front. 

Therefore, all optimization for this problem will be set with this amount of 𝑁𝐹𝐸. This 

step is to ensure a fair comparison of performance for all of the algorithms.  

It is important to stress that all of these parameters are set for all the test ran. They 

are required to be rightly chosen in order to make an equal comparison of all algorithm 

involved. The unsuitable values of parameters chosen would affect the analysis on the 

algorithm performance badly.  

3.4.4 Performance Metric 

Throughout this research, performance of the algorithms only goes to the aspect 

of metric measurement for the approximation sets in Pareto-front. These metrics are 

grouped in three, which are: 
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1) Accuracy metrics: Directly to measure the convergence of 𝑃𝑂𝑆. To be clear, 

this metrics indicates how far is true-Pareto-front from produced- Pareto-front   

(Jiang et.al., 2014).  

2) Diversity metrics: Stressed that distribution and spread are two related 

entities closely. However, they are not too completely same. Spread referring 

the range of values covered by Pareto-front, some defined spread as the extent 

of the 𝑃𝑂𝑆. Distribution directly refers to relative distance among the 𝑃𝑂𝑆 

along the Pareto-front (Jiang et.al., 2014).  

3) Cardinality metrics: Refers to the number of 𝑃𝑂𝑆 found in a search. The 

best is a larger amount of found 𝑃𝑂𝑆 (Jiang et.al., 2014).  

In this experiment, the performance metrics: generational distance (𝐺𝐷), diversity 

metric delta (𝐷𝑀𝐷), metric of spacing (𝑀𝑂𝑆) and hyper-volume indicator (𝐻𝑉) are 

applied for quantitative and qualitative evaluation for the performance. Denote that, 𝐺𝐷 

is to a type of accuracy metric while 𝐷𝑀𝐷 and 𝑀𝑂𝑆 are types from diversity metrics. At 

the meanwhile, 𝐻𝑉  is the performance measurement covering both accuracy and 

diversity. However, there are no evaluation based on the cardinality metrics because the 

number of required 𝑃𝑂𝑆 is initially set or defined by the user.  

3.4.4.1 Use of Performance Metric 

For instance, the Pareto-front or also known as attainment surfaces could provide 

a good visual qualitative assessment tool in terms of graphical. However, to provide a 

more formal assessment, these algorithms should be compared and analyse by using 

statistical testing procedure. This is very important in order to define whether the 

algorithms are improved or comparable.  

In this research, the inspection by observing the visual in Pareto-front plot will be 

done. Result will be reported in two-dimensional plots and the test will be stated in the 

tables, plus the statistically significant of any comparison will be also described. 

𝐺𝐷,𝐷𝑀𝐷,𝑀𝑂𝑆,𝐻𝑉 and 𝑇𝑂C are all useful as they allow another form of comparison 

between two or more algorithms. 
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3.4.4.2 Generational Distance (𝑮𝑫) 

For explanation, Figure 3.7 shows the illustration for 𝐺𝐷. 𝐺𝐷 is a parameter to 

measure the convergence between the true-Pareto-front and produced-Pareto-front. 𝐺𝐷 is 

actually the average of Euclidian distance between these two both of true- and produced-

Pareto-front. This measurement proposed by Veldhuizen (Jiang et.al., 2014). In term of 

mathematical formulation, the derivation of 𝐺𝐷 is shown in Equation 3.2. 

 

𝐺𝐷 =
ቀ∑ 𝑑𝑖

𝑝|𝑄|
𝑖=1 ቁ

1
𝑝

|𝑄|
 

3.2 

 

𝑑𝑖
𝑝 = min

𝑘∈|𝑃∗|
√∑(𝑓𝑛

𝑖 − 𝑓𝑛
∗𝑖)

2
𝑁

𝑛=1

 3.3 

From the Equation 3.2 and 3.3, Q is the produced Pareto-front, p is the number of 

comparing Pareto-front sets, 𝑑𝑖
𝑝
 is Euclidian distance, 𝑖 is specified number of produced 

NDS, 𝑃∗ is true-Pareto-front, 𝑓𝑛
∗𝑖 is 𝑛𝑡ℎ objective function of 𝑘𝑡ℎ member in 𝑃∗. For 𝑝 =

2, the Euclidian distance, 𝑑𝑖 between the NDS 𝑖 = 𝑄 and the nearest 𝑃∗, in the searching 

Figure 3.8 Illustration of 𝐺𝐷. 
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space is in Equation 3.3. By this definition, the algorithm which has smaller 𝐺𝐷 value 

produces Pareto-front solution with better accuracy. 

3.4.4.3 Diversity Metric Delta 

In 𝑀𝑂 optimization, rather than achieving the accurate Pareto-front, the other 

main concern is to have a set of 𝑃𝑂𝑆 that spans the entire Pareto-front. The diversity 

metric delta (𝐷𝑀𝐷) is the tool to measure the extent of spread achieved along the Pareto-

front (Hien, N. T.,  et.al.,  2006; Jiang et.al., 2014). Mathematical formulation for 𝐷𝑀𝐷 

is defined in Equation 3.4. 

𝐷𝑀𝐷 =
∑ 𝑑𝑛

𝑒𝑁
𝑛=1 + ∑ |𝑑𝑖 − �̅�|𝑄

𝑖=1

∑ 𝑑𝑛
𝑒𝑁

𝑛=1 + 𝑄 �̅�
 

3.4 

From the equation, 𝑄 is the produced Pareto-front, 𝑑𝑖  is Euclidian distance 

between two consecutives 𝑃𝑂𝑆 , �̅�  is the mean for all distance and  

𝑑𝑛
𝑒  is the distance between extreme solution of both true- and produced-Pareto-front 

respect to 𝑛𝑡ℎ objective. The Figure 3.9 shows the illustration of 𝐷𝑀𝐷. In the figure, the 

extreme solution is the two outermost 𝑃𝑂𝑆 found. By the above mathematical definition, 

the spread of Pareto-front will be better if 𝐷𝑀𝐷 test computed a small value. Thus, the 

smaller the value, the better the spread. 
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3.4.4.4 Metric of Spacing 

 Metric of spacing (𝑀𝑂𝑆) will calculate relative distance measure between 

consecutive solution in the gained 𝑃𝑂𝑆 (Jiang et.al., 2014). To be clear, 𝑀𝑂𝑆 is actually 

representing the measurement of standard deviation of different 𝑑𝑖. Figure 3.8 illustrates 

the 𝑀𝑂𝑆 graphically.  

The mathematical formulation of 𝑀𝑂𝑆 is as in Equation 3.5. 

𝑀𝑂𝑆 = √
1

𝑄
∑(𝑑𝑖 − �̅�)

2

𝑄

𝑖=1

 
3.5 

Where 𝑑𝑖 is defined as in Equation 3.6. 

𝑑𝑖 = min
𝑘∈𝑄 ∧ 𝑘≠𝑖 

{∑ |𝑓𝑚
𝑖 − 𝑓𝑚

𝑘|

𝑀

𝑚=1

} 
3.6 

and the mean value of the distance measure, �̅� is stated in Equation 3.7. 

�̅� =
∑ 𝑑𝑖

𝑄
𝑖=1

𝑄
 

3.7 

Euclid 

distance, d 

True-PF produced-PF 

𝑑𝑚
𝑒  

𝑓1 

𝑓2 

Figure 3.9 𝐷𝑀𝐷 and 𝑀𝑂𝑆 illustration. 
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The �̅� is the minimum value of sum of the absolute difference in fitness value 

between the 𝑖𝑡ℎ solution with any of other solution in the produced 𝑃𝑂𝑆. Bold that, this 

�̅� is not same with the minimum value of the Euclidian distance between two 𝑃𝑂𝑆. 

As it is a standard deviation, the smaller value of 𝑀𝑂𝑆 indicate that the 𝑃𝑂𝑆 

solution are uniformly better distributed along the Pareto-front. 

3.4.4.5 Hypervolume Indicator 

One of the test applied to these algorithm is hyper-volume indicator (𝐻𝑉) 

(Bradstreet, 2011; Cao et.al., 2015). This tool in a combined sense computes a qualitative 

measure of both accuracy and diversity. Last but not least, this indicator useful to obtain 

a better overall picture of algorithm performance alongside with 𝐺𝐷 and 𝐷𝑀𝐷. 

𝐻𝑉, also known as the hyper-area or 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒-measure, which covering the 

entire objective space or feasible region that contain the approximate sets. The hyper-

volume metric is also in other way can be defined as a measurement of the volume of the 

enclosed space between a reference point defined by the user and the weakly dominated 

portion of the objective space ( Hien, N. T., et. al., 2006; Riquelme et. al.,  2015). The 

𝐻𝑉 operation is started by selecting a reference point, 𝐺 and the solution 𝑖. Solution 𝑖 will 

be the vertices of the hypercube. At the meanwhile, reference point, 𝐺 is selected by 

constructing a vector of worst fitness value. For the mathematical formulation, 𝐻𝑉 can 

be defined as in Equation 3.8. 

𝐻𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 (⋃𝑣𝑖

Q

𝑖=1

) 3.8 

The example is shown in Figure 3.8, two hyper-volumes A and B are generated 

from two different Pareto-fronts, which both are true and produced-Pareto-front 

respectively. In this example, 𝐻𝑉 𝐵  is better than 𝐴 since 𝐵 ’s 𝐻𝑉  is larger (Angus, 

2008). The larger 𝐻𝑉  indicates that the Pareto-front is closer to 0 and better in its 

accuracy and diversity.  
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The indicator will provide the best 𝐻𝑉 if the value is getting larger. In the setup 

program, 𝐻𝑉  will compare between the true-Pareto-front and produced-Pareto-front. 

Therefore, the value provides by 𝐻𝑉 will be in ratio of 1 respect to true-Pareto-front. That 

means, the maximum value indicated by 𝐻𝑉 will be 1 while the worst value will be 0. 

3.4.4.6 Time of Computation 

In this research, time to computation (𝑇𝑂𝐶) is also take into account. Time is 

crucial in many ways, including in this optimization area. The time is measured from the 

first iteration to any set maximum iteration. The techniques in this research is to measure 

the whole of iterations for each of run. Important to denote that, the total number of tests 

for each 𝑀𝑂 problem are 25 runs. From the data obtained from the runs, the average then 

calculated. Denote that the time measured is not for the specific 𝑁𝑂𝐼, by means actually 

it is the period measured to generate Pareto-front for specified 𝑁𝐹𝐸. Even though the 

number of 𝑁𝐹𝐸 is same for all algorithms, the time taken for each of them might be 

different. This caused by the different or complex procedures need to be ran by the 

algorithms. Some complex procedures that involved might extend the time. Therefore, 

the more complex the algorithms, the longer times needed.  

Hyper-area/ 

𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒 

measure 

𝑓1 

𝑓2 

A 

B 

Reference Point, 𝐺 

Figure 3.10 Illustration of hypervolume operators. 
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3.4.5 Benchmark Function 

3.4.5.1 Introduction 

For the benchmark study, the standard 𝑀𝑂𝑃 are 𝑓1 to 𝑓5. These functions are the 

low-dimension 𝑀𝑂 problems. At the meanwhile, high-dimension 𝑀𝑂𝑃 used to test all 

𝑀𝑂 algorithm are ZDTs. ZDTs is a broad and well-known set of 𝑀𝑂 problems used to 

benchmarking the performance of 𝑀𝑂 algorithm in category PoM (Chase, et.al., 2009). 

Furthermore, each of ZDTs’ 𝑀𝑂 problems consist of specific character that represent the 

real-world application, in which might be face a harsh challenge in convergence towards 

the Pareto-front. 

3.4.5.2 Standard Function 

1) 𝒇𝟏: Schaffer 

Schaffer is a one-dimensional benchmark function. It is very simple test function 

for MOA (Schaffer, 1985). Even though this function is a simple problem, it is always 

has been applied to test the new developed algorithm and it is the best option to 

investigate the diversity of the population along the Pareto-front (Zitzler et.al., 1998). 

The definition of objective functions is shown in Equation 3.9 and 3.10. 

𝑓1(𝑥) = 𝜃2 3.9 

𝑓2(𝑥) = (𝜃 − 2)2 3.10 

It has search ranges between 5 ≤ 𝑥 ≤ 5. 

From theoretical solution, it has a Pareto-front that continuous. From theory, the 

result forms a continuous curve which range from 0.0 <  𝑥 <  4.0 and 0.0 <  𝑦 <  4.0. 

2) 𝒇𝟐: Schaffer N2  

Schaffer N2 is a two-dimensional 𝑀𝑂 problem. It has a discontinuous front. The 

definition of objective functions is shown in Equation 3.11 and 3.12. 
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𝑓1(𝑥) = {

−𝑥, 𝑖𝑓 𝑥 ≤ 1
𝑥 − 2, 𝑖𝑓 1 < 𝑥 ≤ 3
4 − 𝑥, 𝑖𝑓 3 < 𝑥 ≤ 4

𝑥 − 4, 𝑖𝑓 𝑥 > 4

 3.11 

𝑓2(𝑥) = (𝑥 − 5)2 3.12 

It has search range between −5 ≤ 𝑥 ≤ 5. 

3) 𝒇𝟑: Fonseca  

Fonseca is a two-dimensional functions (Fonseca et. al.,  1995). The definition of 

objective functions is shown Equation 3.13 and 3.14. 

𝑓1(𝑥) = 1 − 𝑒𝑥𝑝 (−∑ (𝑥𝑖 −
1

√𝑛
)

2𝑛

𝑖=1
) 3.13 

𝑓2(𝑥) = 1 − 𝑒𝑥𝑝 (−∑ (𝑥𝑖 +
1

√𝑛
)
2𝑛

𝑖=1
) 3.14 

It has the search ranges between  −4 ≤ 𝑥 ≤ 4, the  1 ≤ 𝑖 ≤ 𝑛. 

From its problem theoretical solution, it has a Pareto-front that continuous. 

Theoretically the function will provide a convex-curve pareto front that ranged between 

0.0 <  𝑥 <  1.0 and 0.0 <  𝑦 <  1.0. 

4) 𝒇𝟒: Poloni  

Poloni is a two-dimension function problem. The definition of objective functions 

is shown in Equation 3.15 and 3.16. 

𝑓1(𝑥, 𝑦) = [1 + (𝐴1 − 𝐵1(𝑥, 𝑦))2 + (𝐴2 − 𝐵2(𝑥, 𝑦))2] 3.15 

𝑓2(𝑥, 𝑦) = (𝑥 − 5)2 3.16 

Where 𝐴1, 𝐴2, 𝐵1 and 𝐵2 are defined and listed in Equations 3.17. 

𝐴1 = 0.5𝑠𝑖𝑛(1) − 2 cos(1) + sin(2) − 1.5cos (2) 

𝐴2 = 1.5𝑠𝑖𝑛(1) − cos(1) + 2 sin(2) − 0.5cos (2) 

3.17 
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𝐵1(𝑥, 𝑦) = 0.5 sin(𝑥) − 2 cos(𝑥) + sin(𝑦) − 1.5cos (𝑦) 

𝐵2(𝑥, 𝑦) = 1.5 sin(𝑥) − cos(𝑥) + 2 sin(𝑦) − 0.5cos (𝑦) 

The search range is between −𝜋 ≤ 𝑥, 𝑦 ≤ 𝜋 . From this problem theoretical 

solution, it has a Pareto-front that discontinuous. 

5) 𝒇𝟓: Kursawe  

Kursawe is a three-dimensional problem. Definition is shown in Equation 3.18 

and 3.19. 

𝑓1(𝑥) = ∑ [−10 exp (−0.2√𝑥𝑖
2 + 𝑥𝑖+1

2 )]   
2

𝑖=1
 3.18 

𝑓2(𝑥) = ∑ [|𝑥𝑖|
0.8 + 5 sin(𝑥𝑖

3)]
3

𝑖=1
 3.19 

The search ranges are between −5 ≤ 𝑥 ≤ 5 and 1 ≤ 𝑖 ≤ 3. From this problem 

theoretical solution, this 𝑀𝑂 problem has a Pareto-front that discontinuous. 

3.4.5.3 ZDT-based Function 

All of the functions in ZDT have two objectives. This feature is the usually used 

in engineering and economics, which also most common application of Pareto-efficiency.  

6) 𝒇𝟔: ZDT1 

The ZDT1 function has a convex Pareto-front. The definition of objective 

functions is shown in 3.20 to 3.23.  

𝑓1(𝑥) = 𝑥1 3.20 

𝑓2(𝑥) = 𝑔(𝑥) ℎ(𝑓1(𝑥), 𝑔(𝑥)) 3.21 

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2
 3.22 
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ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − ඨ
𝑓1(𝑥)

𝑔(𝑥)
 3.23 

The search range is between −0 ≤ 𝑥 ≤ 30. 

7) 𝒇𝟕: ZDT2 

The ZDT2 function has a non-convex Pareto-front. In this ZDT2 function, thirty 

design variables were chosen (𝑛 = 30). Each design variable ranged in value from 0 to 

1. The definition is as in Equation 3.24 to 3.27. 

𝑓1(𝑥) = 𝑥1 3.24 

𝑓2(𝑥) = 𝑔(𝑥) ℎ(𝑓1(𝑥), 𝑔(𝑥)) 3.25 

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2
 3.26 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)
2

 3.27 

It has the search range between −0 ≤ 𝑥 ≤ 30. 

 

8) 𝒇𝟖: ZDT3  

The ZDT3 function adds a discreteness feature to the front. Its Pareto-front 

consists of several non-contiguous convex parts. The introduction of a sine function in 

this objective function causes discontinuities in the Pareto-front, but not in the parameter 

space. In this ZDT3 function, thirty design variables were chosen (𝑛 = 30). Each design 

variable ranged in value from 0 𝑡𝑜 1. The definition of objective functions is in Equation 

3.28 to 3.31. 

𝑓1(𝑥) = 𝑥1 3.28 

𝑓2(𝑥) = 𝑔(𝑥) ℎ(𝑓1(𝑥), 𝑔(𝑥)) 3.29 
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𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2
 3.30 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − ඨ
𝑓1(𝑥)

𝑔(𝑥)
− (

𝑓1(𝑥)

𝑔(𝑥)
) 𝑠𝑖𝑛(10 𝜋𝑓1(𝑥))  3.31 

This 𝑀𝑂𝑃 has the search range between −0 ≤ 𝑥 ≤ 30. 

 

9) 𝒇𝟗: ZDT4  

The ZDT4 function has 21 local Pareto-fronts and therefore, it is highly multi-

modal. In this ZDT4 function, the maximum ten design variables are being chosen (𝑛 =

10). The design variable ranges are from -5 𝑡𝑜 5 for the last nine design variables and 0 

to 1 for 𝑥1 . The definition of objective functions is in Equation 3.28 and 3.29. 

𝑓1(𝑥) = 𝑥1 3.32 

𝑓2(𝑥) = 𝑔(𝑥) ℎ(𝑓1(𝑥), 𝑔(𝑥)) 3.33 

𝑔(𝑥) = 91 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠 (4𝜋𝑥𝑖))

10

𝑖=2
 3.34 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − ඨ
𝑓1(𝑥)

𝑔(𝑥)
 3.35 

This 𝑀𝑂𝑃 has the search range between −0 ≤ 𝑥 ≤ 10. 

 

10) 𝒇𝟏𝟎: ZDT6  

The ZDT6 function has a non-uniform search space, whereas the 𝑃𝑂𝑆 are non-

uniformly distributed along the global Pareto-front, and also the density of the solutions 

is lowest near the Pareto-front and highest away from the front. In this ZDT6 function, 

ten design variables were chosen (𝑛 = 10). The design variable ranges are from 0 to 1. 

The global Pareto-optimal front appears when 𝑔 =  1.0.  The definition of objective 

functions is in Equation 3.36 to 3.39. 
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𝑓1(𝑥) = 𝑥1 3.36 

𝑓2(𝑥) = 𝑔(𝑥) ℎ(𝑓1(𝑥), 𝑔(𝑥)) 3.37 

𝑔(𝑥) = 1 + 9 [
∑ 𝑥𝑖

10
𝑖=2

9
]

0.25

 3.38 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)
2

 3.39 

The search range is between −0 ≤ 𝑥 ≤ 10. 

3.5 Validation of Proposed Algorithm 

This chapter describes comprehensively all 10 𝑀𝑂 problems used to validate the 

performance of proposed MOSDA-NS and MOSDA-A. These benchmark functions are 

selected because of its significant contribution of past studies in this area.  They are coded 

in MATLAB alongside with proposed algorithms. For a fair comparison, NSGAII and 

MOPSO also ran again with these 𝑀𝑂  problems to obtain the results from same 

specification of hardware. To make the comparison, these algorithms executed the 𝑀𝑂 

problems in 25 independent runs. Additionally, the performance test will be furthered for 

a simulation of inverted pendulum (𝐼𝑃) system. All algorithms will be used to perform 

the optimization task for the 𝑃𝐷 -controller of this 𝐼𝑃  system. The results will be 

described in detail in the next sections.   
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

Several experiments that conducted to evaluate the performance of the proposed 

algorithms are presented in this chapter. The experiment will compare the performance 

of proposed algorithms with the original version of NSGAII and MOPSO. At first, it is 

important to highlight that NSGAII is the predecessor of MOSDA-NS while MOPSO is 

the predecessor of MOSDA-A. The comparison between new algorithms and their 

predecessor will be focussed. However, the overall comparison involving all four 

algorithms is also done. This comparison will be presented well. 

The experiments carried out involving all algorithms, 1) MOSDA-NS, 2) 

MOSDA-A, 3) MOPSO and 4) NSGAII. To clarify, MOPSO and NSGAII are also run 

again in order to make a fair comparison by using the same hardware specification.    All 

of the algorithms test depends on the characteristic of the 𝑀𝑂  problem. Some 𝑀𝑂 

problem are simple and easy to solve while some are complex structured. The 

mathematical formulation of the 𝑀𝑂  problem justify the complexity of themselves, 

including their number of dimensions. To stress is, all function is tested with their 

maximum dimensions. To organized the analysis, these 𝑀𝑂 problem are divided into two 

groups; 1) Two-dimension 𝑀𝑂  problem and 2) More-than-three dimensional 𝑀𝑂 

problem.  

 In this section, all of the experiments-gained data will be described well. The 

simplest way to analyse an optimization solution is by looking at the generated Pareto-

front. The Pareto-front or also known as attainment surface is plotted in 2-D graph. The 

closer the values to zero, the better the solution. Besides that, from this graphical 

observation, the user also can define how good the distribution. However, for some case, 
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the solution provided by algorithms are seem equal. To differentiate them, numerical 

method or mathematical approach is required to do statistical analysis. That is the use of 

the performance metrics discussed in the previous chapter.  

For 𝐺𝐷,𝐷𝑀𝐷,𝑀𝑂𝑆 and 𝐻𝑉 , a reference set that can accurately represent the 

true-Pareto-front for each problem is required. Denote that, this true-Pareto-front could 

be obtained for benchmark functions only, but nearly impossible for real-world 

application problems. In the statistical analysis, the mean value of the best solution based 

on 25 independent runs are utilised for the performance and non-parametric test. To 

verify the performance of the proposed algorithm, the mean of 𝐺𝐷,𝐷𝑀𝐷,𝑀𝑂𝑆 and 𝐻𝑉 

of those 25 independent runs are used to compare the diversity and accuracy of the Pareto-

front produced respectively. Notify that a small value of 𝐺𝐷, 𝐷𝑀𝐷 and 𝑀𝑂𝑆 correspond 

the high accuracy and better diversity of the produced-Pareto-front compared to true-

Pareto-front, while the large value of 𝐻𝑉 indicates that the solution has better accuracy 

and diversity in combined sense. Last but not least, 𝑇𝑂𝐶 also put into the analysis.  

In order to know the variation or consistency of the generated solution, the 

standard deviation (𝑆𝐷) are calculated. To examine 𝑆𝐷 of each performance metric, low 

𝑆𝐷 indicates that the solution has less variation and the generated solution are really close 

to the mean value. 𝑆𝐷 also indicates the robustness of the algorithm to find the solution. 

To see whether the algorithm able to reach optimum point within the search area, the best 

and worst of all performance metrics are also recorded.  

4.2 Simulation Result 

4.2.1 Pareto-front 

First of all, this discussion is based on the figures illustrated in Figure 4.1 to 4.10. 

Denote that, true-Pareto-front is however also plotted in red-line, Pareto-front by 

MOSDA-NS is blue-star-dot, MOSDA-A is red-hollow-round, NSGAII is green-cross 

and MOPSO in brown-dot. Generally, for two-dimension 𝑀𝑂 problems, each algorithm 

seems able to find the Pareto-front successfully. By graphical analysis, all algorithm 

found correct Pareto-front for Schaffer, Schaffer N2, Fonseca and Poloni with a great 

performance. However, for more-than-two-dimension algorithms, the results are varied.  
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From Figure 4.1, all algorithms succeed to produce correct Pareto-front for 

function 𝑓1. They managed to find all 50 𝑃𝑂𝑆 after ran according to the desired 𝑛𝑓𝑒 of 

30,000 times.  From this figure, all of the Pareto-fronts produced are almost accurate to 

the true- Pareto-front. Other than that, they also provide the 𝑃𝑂𝑆 in theoretical solution 

ranges which is 0 ≤ 𝑥 < 4 and 0 ≤ 𝑦 < 4. As seen, NSGAII found outermost 𝑃𝑂𝑆 on 

RHS while MOSDA-A found outermost 𝑃𝑂𝑆 in LHS.  

The produced Pareto-fronts for 𝑀𝑂 problem 𝑓2 is shown in Figure 4.2. For this 

𝑓2, all algorithms succeed to find all 50 𝑃𝑂𝑆 after ran according to desired 𝑛𝑓𝑒 of 30,000 

times. They also produced 𝑃𝑂𝑆 in which spans on the true-Pareto-front successfully. 

From the figure, algorithms seem obtained a fair performance of Pareto-fronts. NSGAII 

again provided outermost 𝑃𝑂𝑆  in RHS. At the meanwhile, MOSDA-NS provided 

Figure 4.1 Produced-Pareto-front for 𝑓1. 

Figure 4.2 Produced-Pareto-front for 𝑓2.  
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outermost 𝑃𝑂𝑆  in LHS. Last but not least, they also provide the 𝑃𝑂𝑆  in theoretical 

solution ranges which is 0 ≤ 𝑥 < 1 and 0 ≤ 𝑦 < 16. 

Figure 4.3 shows the Pareto-fronts produced by algorithms for 𝑓3. By observing 

these produced-Pareto-fronts, all algorithms again can be concluded succeeded to 

produce the correct Pareto-fronts for 𝑓3. Compared to other algorithms, NSGAII was 

most superior as most of the 𝑃𝑂𝑆 it produced are located on the true-Pareto-front. In 

contra, some of 𝑃𝑂𝑆 produced by MOSDA-NS is located a little bit far from the true- 

Pareto-front. In terms of diversity, both MOSDA-NS and NSGAII provide the outermost 

𝑃𝑂𝑆 from both RHS and LHS.  

The next Figure 4.4 shows the comparison of Pareto-front-produced for function 

𝑓4. From this figure, all algorithms managed to produce Pareto-fronts same with the true- 

Pareto-front. In term of accuracy, all algorithms excluding MOSDA-NS manage to 

produce 𝑃𝑂𝑆  on the specified true-Pareto-front. However, compared to others, some 

𝑃𝑂𝑆 provided by MOSDA-NS between solution ranges of 0 ≤ 𝑥 < 2 and 0 ≤ 𝑦 < 30 is 

Figure 4.3 Produced-Pareto-front for 𝑓3. 

Figure 4.4 Produced-Pareto-front for 𝑓4. 
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not on the true-Pareto-front. By observing this figure, it also can be seen that MOPSO 

provided outermost 𝑃𝑂𝑆 on RHS and MOSDA-NS provided outermost 𝑃𝑂𝑆 on LHS.  

Function 𝑓5  is a three-dimensional 𝑀𝑂  problem and all Pareto-front solutions 

provided by all algorithms were illustrated in Figure 4.5. From the figure, all algorithms 

did not succeed to find accurate Pareto-fronts for 𝑓5 even though the 𝑛𝑓𝑒 for this function 

is increased to 100,000 times. They converged a little far away from the true-Pareto-front. 

Their Pareto-fronts also found out-of-range compared to the theoretical solution. 

However, to make comparison, MOSDA-NS provided most reliable Pareto-front as it is 

the most near to the true-Pareto-front. In contradiction, by observing the figure, MOSDA-

A provided worst Pareto-front in term of accuracy and diversity.  

Figure 4.5 Produced-Pareto-front for 𝑓5 

Figure 4.6 Produced-Pareto-front for 𝑓6. 
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Figure 4.6 shows the solutions for function 𝑓6. From the figure, it is clear to see 

that MOSDA-NS and MOPSO provided the best Pareto-front compared to others. This 

is because all of the 𝑃𝑂𝑆 found by them are located on the true-Pareto-front. MOSDA-

NS however is a quite better than MOPSO by providing the outermost 𝑃𝑂𝑆 for both RHS 

and LHS. In contrast to both MOSDA-NS and MOPSO, NSGAII and MOSDA-A 

however could not find better solution at this particular 𝑛𝑓𝑒 of 30,000 times.  

Figure 4.7 shows the Pareto-fronts produced for function 𝑓7. By observing this 

figure, not all algorithm could provide the Pareto-fronts for the 𝑛𝑓𝑒 of 30,000 times. both 

MOSDA-NS and MOPSO were again produced the best Pareto-fronts compared to 

others. Their 𝑃𝑂𝑆  were placed on the true-Pareto-front and at the correct ranges of 

theoretical solution. To emphasize, NSGAII again failed to provide better solution at the 

particular 𝑛𝑓𝑒 of 30,000 times for this 𝑓7. MOSDA-A in the meanwhile, produced better 

accurate solution compared to NSGAII however, did not better in term of diversity.  

Figure 4.7 Produced-Pareto-front for 𝑓7.   

Figure 4.8 Produced-Pareto-front for 𝑓8. 
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Function 𝑓8 in which evaluated in 30,000 of 𝑛𝑓𝑒. Figure 4.8 shows the produced 

Pareto-fronts. At the first glance, MOSDA-NS produced the best Pareto-front compared 

to others. MOPSO went second, MOSDA-A is third and worst is NSGAII. Denote that, 

NSGAII required more 𝑛𝑓𝑒  to find better solution. By looking at the figure, all 

algorithms succeed to find Pareto-front correctly in between 0 ≤ 𝑥 < 1. However, they 

differed in 𝑦 ranges, which theoretically is between 0 < 𝑦 ≤ 1.  

For function 𝑓9, the produced-Pareto-fronts were plotted in Figure 4.9. From this 

figure, it is clear that MOSDA-NS is most superior by providing the best Pareto-front in 

of accuracy and diversity. All 𝑃𝑂𝑆 produced by MOSDA-NS are located on the true- 

Pareto-front. Clearly MOPSO and NSGAII went to second and third best Pareto-fronts 

while MOSDA-A was looking worst as it failed to find the correct Pareto-front. From the 

figure, MOSDA-A even failed to find all 50 𝑃𝑂𝑆  and did not moved after certain 

particular iteration of the algorithm.  

Figure 4.9 Produced-Pareto-front for 𝑓9. 

Figure 4.10 Produced-Pareto-front for 𝑓10. 
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For the last function 𝑓10, the produced-Pareto-fronts are plotted in Figure 4.10. To 

discuss, MOSDA-NS and MOPSO were the best Pareto-front provider for this 𝑀𝑂𝑃. 

Most of their 𝑃𝑂𝑆  are located in theoretical ranges and true-Pareto-front. However, 

MOSDA-A and NSGAII did not able to find the correct Pareto-fronts for this 𝑓10. 

MOSDA-A however better in accuracy but not better in of diversity, at the meanwhile, 

Pareto-front by NSGAII contradicted compared to MOSDA-A.  

4.2.1.1 Pareto-front Analysis 

To discuss using the figures, MOSDA-NS are better than all of the compared 

algorithms. It produced Pareto-fronts with better accuracy and diversity. It can be seen 

when it produced better 7 Pareto-fronts out of 10 Pareto-fronts. MOSDA-NS 

outperformed other algorithms for 𝑓1, 𝑓2 , 𝑓6  to 𝑓10 . To compare MOSDA-NS against 

NSGAII, MOSDA-NS is better. For explanation, NS approach works well with SDA. 

Compare to GA, SDA is better in convergence speed. Therefore, MOSDA-NS could 

provide faster convergence compared to NSGAII. That is why MOSDA-NS provide 

better solution in the specified 𝑛𝑓𝑒.  

To discuss the performance of MOSDA-A by observing produced-Pareto-fronts 

for ZDTs, it is not better than its predecessor MOPSO. In ZDT1, ZDT2, ZDT3 and ZDT6, 

MOSDA-A however seems better in accuracy compared to NSGAII. This due to strategy 

of SDA which is provide better in convergence speed compared to GA. MOSDA-A at 

the meanwhile do not better in spread of Pareto-front compared to NSGAII. The strategy 

of archive-technique not preserve the 𝑃𝑂𝑆 better than NS. The different is in strategy of 

determine the front for each 𝑃𝑂𝑆 by calculating 𝐶𝐷. 𝐶𝐷 proved that it can preserve the 

location of 𝑃𝑂𝑆  better than grid generation strategy in Archiving-method (AM). 

Furthermore, the 𝑃𝑂𝑆 stored in archive-technique not based on the best spread but only 

based on the best cost value. In contrast, NS proved that its strategy to store 𝑃𝑂𝑆 with 

best cost value alongside with the better spread of location.  

By observing Pareto-front of ZDT4, obviously MOSDA-A failed to find the 

correct Pareto-front. The problem of getting trapped in local optima is occurred in solving 

this MOP. Throughout the test, the agents are observed stuck at the remote area. This 

happen at the middle of searching process. This problem could not be solved by adding 
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the 𝑁𝐹𝐸. However, the strategy to create more random of agents is really useful to avoid 

local optima.  

4.2.2 Numerical Result and Analysis 

On the other hand, in order to make numerical analysis, all performances metrics 

calculation was recorded. The results are stated in Table 4.1 to 4.4 of Appendix A. In these 

results, the mean value of the best solution is utilised to conduct the performance test. 

This mean is based on 25 independent runs. 

Important to denote that, “Best Solution” is the highest-rank solution provided 

after all runs, “Mean Solution” is the average value, “Worst Solution” is the lowest-rank 

solution. On the other side, standard deviation was also calculated in order to know 

consistency of the algorithms to provide result throughout the simulation. The smaller 

value of all of these indicates that the solution is better. 

Table 4.1 Mean and 𝑆𝐷 for 𝐺𝐷 Test (Accuracy) 

GD 

 MOSDA-A MOSDA-NS MOPSO NSGAII 

 Mean SD Mean SD Mean SD Mean SD 
𝑓1 0.00003 0.00000 0.00003 0.00003 0.38626 1.08108 0.00003 0.00000 

𝑓2 0.01305 0.01126 0.00635 0.00469 7.13371 4.06152 0.00671 0.00106 

𝑓3 0.00671 0.00126 0.00384 0.00217 0.16047 0.02040 0.00298 0.00066 

𝑓4 0.22939 0.08960 0.07212 0.01901 10.01847 1.79283 0.04132 0.01744 

𝑓5 0.89162 0.05604 0.87125 0.84445 3.69285 0.79187 0.83889 0.02631 

𝑓6 0.23244 0.06262 0.00020 0.00005 0.01101 0.00929 0.55284 0.12301 
𝑓7 0.02981 0.00976 0.00031 0.00004 0.01317 0.01986 0.74270 0.13946 
𝑓8 0.10767 0.05564 0.00085 0.00031 0.02258 0.01146 0.49459 0.10737 
𝑓9 2.49985 2.19254 0.00022 0.00005 6.24840 5.82666 0.88400 0.43433 
𝑓10 1.50050 0.72499 0.51001 0.00037 1.15807 1.55431 2.51095 0.17701 

Table 4.1 shows all mean and standard deviation (𝑆𝐷) for accuracy test result of 

the Pareto-front produced by the algorithms. At the first glance, MOSDA-NS provide the 

best accuracy of Pareto-front for 7 out of 10 benchmark functions. For the consistency, 

MOSDA-NS is at the same level with NSGAII when the test record that they have equal 

numbers of the best 𝑆𝐷 . NSGAII on the other hand is the second best in providing 

accurate Pareto-front as it provides the best Pareto-front for the rest number of the 

benchmark functions. This test also shows that there is no solution is better than both 

MOSDA-NS and NSGAII provided by both MOSDA-A and MOPSO.  
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Table 4.2  Mean and 𝑆𝐷 for 𝐷𝑀𝐷 Test (Spread/ Diversity) 

DMD 

  MOSDA-A MOSDA-NS MOPSO NSGAII 

  Mean  SD Mean  SD Mean  SD Mean  SD 
𝑓1 0.97613 0.00736 0.94268 0.00400 1.19029 0.08553 0.94366 0.00491 
𝑓2 1.21670 0.04596 0.99402 0.04188 1.19405 0.09413 1.02598 0.03405 

𝑓3 0.60920 0.05524 0.30406 0.02801 0.85320 0.06680 0.37230 0.04401 
𝑓4 1.08396 0.04428 0.94752 0.02498 0.80180 0.11615 0.95251 0.02135 

𝑓5 0.78320 0.05572 0.42605 0.02477 0.91350 0.14410 0.49966 0.03316 
𝑓6 0.77948 0.05470 0.37735 0.03265 0.87686 0.15002 0.66775 0.03848 
𝑓7 0.74892 0.06468 0.37597 0.04496 0.87204 0.10648 0.78494 0.05652 
𝑓8 0.83737 0.04387 0.61280 0.02105 0.98714 0.10371 0.66509 0.03285 
𝑓9 0.98647 0.06254 0.38232 0.02715 1.38231 0.45381 0.99332 0.19190 
𝑓10 1.09237 0.09889 1.03046 0.32551 0.82066 0.16549 0.94279 0.06461 

Table 4.2 shows all mean and 𝑆𝐷  for diversity test result of the Pareto-front 

produced by all algorithms. From the table, it is clear that MOSDA-NS produced best 

Pareto-front in term of solution spread. MOSDA-NS dominated the best solution when it 

outperformed other three algorithms when it provided eight best spread solution from 10 

benchmark functions which are tested. Simultaneously, MOSDA-NS also provide most 

consistent solution among all algorithms. At the meanwhile, MOPSO only able to 

produce best spread for 𝑓4 and 𝑓10. NSGAII however only recorded best consistencies for 

some benchmark function while MOSDA-A not better than other in this 𝐷𝑀𝐷 test.  

Table 4.3 Mean and 𝑆𝐷 for 𝑀𝑂𝑆 Test (Uniform Diversity) 

MOS 

  MOSDA-A MOSDA-NS MOPSO NSGAII 

  Mean  SD Mean  SD Mean  SD Mean  SD 
𝑓1 0.58060 0.08926 0.56530 0.09089 5.13189 3.81951 0.55698 0.06876 

𝑓2 4.39079 0.78486 6.02684 0.78035 10.72165 5.47564 5.86543 0.71732 

𝑓3 0.06902 0.01362 0.09709 0.01203 0.23703 0.02953 0.08640 0.01373 
𝑓4 5.76308 1.52475 7.24592 1.13053 11.83993 2.38658 6.62243 0.85178 

𝑓5 0.93879 0.18902 1.61812 0.18598 4.13892 1.06886 1.63236 0.15456 

𝑓6 0.07238 0.01778 0.07310 0.01013 0.08927 0.01791 0.23311 0.09851 
𝑓7 0.05449 0.01908 0.07776 0.00995 0.09144 0.01539 0.15599 0.04970 
𝑓8 0.18406 0.03923 0.28254 0.03384 0.34392 0.07419 0.42223 0.09257 
𝑓9 0.26551 0.45243 0.07699 0.01221 6.17681 5.22888 0.36961 0.23263 
𝑓10 0.67768 0.28524 0.57464 0.26006 0.50059 0.57806 0.22213 0.10535 

Table 4.3 shows the best mean and 𝑆𝐷  for 𝑀𝑂𝑆  test. Denote that 𝑀𝑂𝑆  is to 

recognize algorithms in term of uniformity of diversity. From the table, MOSDA-A 

produced the best uniform diversity. It outperformed other algorithm when tested for 𝑓2 

to 𝑓8 . However, the NSGAII is the most consistent to provide the uniform diversity 

followed by MOSDA-NS. Nevertheless, MOPSO is not better to compare with others in 

this 𝑀𝑂𝑆 test.  
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Table 4.4  Mean and 𝑆𝐷 for 𝐻𝑉 Test (Accuracy and Diversity) 

HV 

  MOSDA-A MOSDA-NS MOPSO NSGAII 

  Mean  SD Mean  SD Mean  SD Mean  SD 
𝑓1 0.4272 0.0489 0.9992 0.0028 0.2092 0.1045 0.4080 0.0499 
𝑓2 0.8248 0.0323 1.0000 0.0000 0.5608 0.1239 0.8220 0.0459 
𝑓3 0.6876 0.0465 0.9992 0.0028 0.6276 0.0626 0.7020 0.0334 
𝑓4 0.0008 0.0028 0.9688 0.0169 0.0000 0.0000 0.0020 0.0065 
𝑓5 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

𝑓6 0.7380 0.0564 0.9996 0.0020 0.8072 0.0386 0.7180 0.0583 
𝑓7 0.6480 0.0539 1.0000 0.0000 0.7140 0.0629 0.6744 0.0676 
𝑓8 0.8012 0.0355 1.0000 0.0000 0.7716 0.0567 0.7816 0.0389 
𝑓9 0.7880 0.1136 1.0000 0.0000 0.7260 0.0850 0.6820 0.0655 
𝑓10 0.6028 0.0477 0.9944 0.0065 0.6584 0.1008 0.5940 0.0764 

Table 4.4 shows the best mean and 𝑆𝐷 of 𝐻𝑉 test on the produced Pareto-front 

by all algorithms. Denote that, 𝐻𝑉 indicator is the test to measure both accuracy and 

spread in a combine sense. As a matter of fact, 𝐻𝑉 test shows that MOPSO is most 

superior after evaluate by the 𝐻𝑉 indicator. Interestingly, six Pareto-front produced are 

better compared to others. Instead of that, MOSDA-NS provide the most consistent 

results. NSGAII followed MOPSO providing the best 𝐻𝑉 for 𝑓6, 𝑓9 and 𝑓10. In particular, 

from the table also shown that 𝐻𝑉 indicator could not evaluate the correct solution for 

𝑓5 caused by far away produced-Pareto-front from the true-Pareto-front.  

Table 4.5 Mean and 𝑆𝐷 for 𝑇𝑂𝐶 Test (Time of Computation) 

TOC 

  MOSDA-A MOSDA-NS MOPSO NSGAII 

  Mean SD Mean SD Mean SD Mean SD 
𝑓1 25.71 1.18 123.34 1.33 30.26 1.15 58.45 0.15 

𝑓2 16.82 0.81 125.11 48.01 22.41 1.31 50.84 0.24 

𝑓3 16.11 0.38 117.88 0.61 6.17 0.41 51.78 0.18 

𝑓4 174.95 4.73 235.32 606.15 6.13 0.61 51.24 0.15 

𝑓5 181.87 35.59 383.47 24.81 16.07 2.02 51.23 0.18 

𝑓6 55.29 3.45 111.20 0.90 21.39 1.14 50.71 0.13 

𝑓7 49.62 3.06 113.54 0.75 17.41 2.56 51.14 0.19 

𝑓8 114.30 5.52 110.23 0.64 20.13 1.19 50.97 0.13 

𝑓9 34.75 4.24 117.14 2.22 15.59 2.08 51.74 0.14 

𝑓10 91.35 9.27 119.31 2.19 17.91 2.33 108.41 0.34 

Last but not least, Table 4.5 shows the mean and 𝑆𝐷 of computation time 𝑇𝑂𝐶 

for the runs. Obviously, MOPSO produced the Pareto-fronts in shortest time for most 

benchmark functions which is 𝑓3 to 𝑓10. MOSDA-A come at second by providing the 

quickest Pareto-front for 𝑓1 and 𝑓2 . On the other hand, 𝑆𝐷  calculation indicates that 

NSGAII recorded the most consistent period in producing Pareto-fronts. Inevitably, it is 

also notably that MOSDA-NS required most multiple of period compared to MOPSO.  
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  Further statistical analysis involving Friedman and Wilcoxon tests are required to 

determine the significant value of the different or changes to the MOSDA-A and 

MOSDA-NS compared to their predecessor MOPSO and NSGAII. For instance, those 

tests can be conducted using parametric or non-parametric test.  Parametric test is 

important to compare the optimization algorithm. However, the limitation of parametric 

test is the needs of three assumption, which are independent, normality and 

homoscedascity. If the case is violated, then the produced result is not accurate. The 

alternative is by conducting the non-parametric test, if the stated assumption is not 

satisfied.  

4.2.3 Friedman and Wilcoxon Test 

By definition, Friedman test (Levine et.al., 2011) is applied to compare the 

performance of multiple numbers of algorithm, while Wilcoxon test (Shier, 2004) 

identified as the test to compare the performance of two algorithms. Friedman useful to 

define the ranking number of each algorithm while Wilcoxon used to measure the 

significant level of differences between two compared parameters. In this work, both tests 

are employed. 

Friedman test conducted in this study based on the 0.05/5% degree of significant, 

8 degree of freedom for 25 runs. The obtained result are mean rank, rank number (in 

bracket), two-tailed value, 𝜌 and gamma-square, 𝛾2  (in bracket). For 0.95/95% 

confidence interval, the improvement or the difference is determined as significant, if the 

probability value less than 0.05. The result of this Friedman test are stated as in Appendix 

B.  

First of all, all the algorithm recorderd two-tailed value, 𝑝 less than 0.0001 which 

mean that there are significant different between all solution generated. Denotes that, 

MOSDA-NS provide most accurate solution among them when it performed optimization 

on Schaffer N2 and all ZDTs. Hence shows that its domination to provide accurate 

solution. Furthermore, MOSDA-NS also provide the best spread Pareto-front for all 𝑀𝑂 

problems except for Poloni and ZDT6. In term of MOS, Friedman test show that 

MOSDA-NS is not better than other. The domination between these algorithms are quiet 

equal. 
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Wilcoxon test was conducted to test the significant improvement level of each 

couple algorithm for comparison (Daniel, 1990; Theodorsson-Norheim, E., (1987); 

Haynes, W., 2013). Table in Appendix C  show the comparison of the between the 

possible couples of algorithms based on the statistical result. In the table, 𝑅+is sum of the 

positive rank, 𝑅−  is the negative rank and 𝑝  is the two-tailed value. To know the 

significant level of different, is by looking at this 𝑝 value less than 0.05. Rather than 

indicate the different, this value also indicates the improvement. In the table, the result 

that bold are for 𝑝 value greater than 0.05. Notice that, the 𝑝 value of 𝐷𝑀𝐷 test between 

MOPSO and MOSDA-A is greater than 0.05, therefore the performance is determined as 

no improvement. At the meanwhile by observing the 𝑝 value of 𝐺𝐷 between MOSDA-A 

and MOSDA-NS is greater than 0.05, therefore there is not different between the 

accuracy of these both two Pareto-front or their performance are at the same level.  Notice 

that there are a lot of significant different between NSGAII and MOSDA-NS. MOSDA-

NS outperformed NSGAII in term of accuracy for 𝑓1, 𝑓5  and all 𝑓6 to 𝑓10 while in terms 

of diversity, it defeated NSGAII except for 𝑓1 and 𝑓4.  For the MOS test, MOSDA-NS 

also record a significant improvement level in performing all functions except 𝑓2 and 𝑓5. 

In comparison, MOSDA-NS also outperformed MOPSO in all test except for 𝑓10, in 

which most of the test performed show that they are at the same level of performance.  

On the other hand, there are a lot of variation when comparing MOPSO and MOSDA-A. 

Overall, MOSDA-A did not show a significant improvement but some of the test show 

that MOSDA-A is not better than MOPSO. However, MOSDA-A could perform better 

for two-dimensional MOP to provide accurate Pareto-front. In comparison between 

NSGAII and MOSDA-A, overall can be said that MOSDA-A is comparable. Finally, for 

MOSDA-NS, most of the test show that it outperformed both NSGAII and MOPSO while 

MOSDA-A is not better than other. 

4.2.4 Discussion and Analysis 

First of all, this discussion will be divided into two sub-sections. First is for two-

dimensional 𝑀𝑂  problem and second for more-than-two dimensional 𝑀𝑂  problems. 

Then, the discussion in this section will completely using tables in Appendix D as the 

reference. Denote that, brackets containing number after algorithm wrote are the ranks of 

the algorithms in a certain descripted performance test. 
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4.2.4.1 Two-dimensional Benchmark Analysis 

This section outlines the discussion of all algorithms applied to solve benchmark 

problem or 𝑀𝑂 problem that has only two decision variables. This 𝑀𝑂 problem include 

𝑓1, 𝑓2, 𝑓3, and 𝑓4. As these problems are only two dimensions, then the 𝑛𝑓𝑒𝑚𝑎𝑥 was set 

only for 30,000 times.  

For the first function 𝑓1, overall MOSDA-NS has shown the best performance. 

𝐺𝐷 test shows that MOSDA-NS (2nd) has lower accuracy of Pareto-front compared to 

NSGAII (1st). At the meanwhile, MOSDA-A is ranked at third place and MOPSO at last 

place. For the 𝐷𝑀𝐷  spread test, MOSDA-NS and NSGAII were ranked at first and 

second place respectively with no significant difference. This signed that both of them 

have very slight difference of performance and can be said as comparable. For this 

𝑓1, MOSDA-A (3rd) also improved in term of 𝑃𝑂𝑆  spread when beat MOPSO (4th). 

Surprisingly, MOSDA-NS (1st) has provided the best Pareto-front in term of accuracy 

and diversity according to the 𝐻𝑉 test. Because of the complexity, MOSDA-NS (4th) also 

performed at the longest time period to finish all the 𝑛𝑓𝑒. Overall, MOSDA-A has been 

performing at the average levels. MOSDA-A however performed better compared to its 

predecessor MOPSO in all test 𝐺𝐷,𝐷𝑀𝐷,𝑀𝑂𝑆 and 𝐻𝑉 for this 𝑀𝑂 problem. 

For 𝑓2 function, in general MOSDA-NS outperformed all of the algorithms in 

term of accuracy and diversity. For 𝐺𝐷 test, MOSDA-NS and NSGAII were ranked at 

first and second place respectively. However, Wilcoxon test show that there is no 

significant difference between both them. Therefore, they are comparable. In term of 

spread, MOSDA-NS (1st) improved significantly compared to NSGAII (2nd). At the 

meanwhile, MOSDA-A (4th) recorded the worst spread but no significant difference to 

MOPSO in third place. The 𝐻𝑉 test also indicated that MOSDA-NS (1st) has the best 

performance. However, MOSDA-NS (3rd) could not provide better 𝑀𝑂𝑆  value or 

uniform distribution compared to MOSDA-A (1st) and NSGAII (2nd). MOSDA-A again 

show that it has the average performance compared to other, however better than MOPSO 

for most of the tests.  

The third function tested is 𝑓3 . The result show that the performance of the 

algorithm is varied. In 𝐺𝐷  test, NSGAII (1st) outperformed others with significant 

different to MOSDA-NS (2nd) at the next ranking. However, MOSDA-A (3rd) performed 



106 

better than MOPSO (4th) to provide accurate solution. For 𝐷𝑀𝐷 and 𝐻𝑉 test, MOSDA-

NS (1st) is more superior compared to NSGAII (2nd). These both tests show that MOSDA-

NS provide the significant improvement of the Pareto-front compared to its predecessor 

NSGAII. For the uniform distribution, MOSDA-A is the best. After this 𝑓3 test, MOSDA-

A also can be concluded that it can performed better than MOPSO. In term of time, 

MOPSO (1st) iterated in shortest time at the meanwhile, MOSDA-NS (4th) is the worst 

performer.  

From the table, 𝐺𝐷 test shows that NSGAII (1st) has the best accuracy. However, 

there are no such a significant different compared to MOSDA-NS (2nd). For the first time, 

MOPSO (1st) outperformed other algorithms in term of solution spread while NSGAII 

(2nd), MOSDA-NS(3rd) and MOSDA-A(4th). On the contrary, 𝐻𝑉 indicator shows that 

MOSDA-NS outperformed others. Primarily, small slight difference of 𝐺𝐷 and 𝐷𝑀𝐷 

between the algorithms cause this result, which contra to 𝐺𝐷  and 𝐷𝑀𝐷  test for this 

function. The 𝐻𝑉  indicator also indicates that the result between NSGAII (2nd) and 

MOSDA-A(3rd) are comparable. For this 𝑓4 𝑀𝑂 problem, MOPSO (1st) provided the best 

solution of best diversity. 𝐷𝑀𝐷 test for MOSDA-NS (2nd) and NSGAII (3rd) also define 

us that they have the same performance to provide the diverse Pareto-front. At the 

meanwhile, MOSDA-A (1st) produced the best uniform diversity, which shown in the 

𝑀𝑂𝑆 test.   

Overall, in this category of 𝑀𝑂 problem, MOSDA-NS is superior compared to 

others. These 𝑀𝑂 problems are the simplest functions that can be applied to test the 𝑀𝑂 

algorithm. The performance of the algorithms on these functions then can be a guide to 

solve real application which has more complex structure of problems. MOSDA-NS could 

provide the best Pareto-front in longest period of time. At the meanwhile, MOSDA-A is 

the best in  𝑀𝑂𝑆  tests. Therefore, MOSDA-A can be concluded as has the average 

performance among these other three algorithms.  

4.2.4.2 More-than-two Benchmark Analysis 

This section outlines the discussion of all algorithms applied to the more-than-

two decision variables of 𝑀𝑂 problem. For this type of functions, 𝑓5 , 𝑓6, 𝑓7, 𝑓8, 𝑓9  and 

𝑓10were used.  
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𝑓5  is a three-dimensional 𝑀𝑂  problem. For 𝐺𝐷 test, NSGAII (1st), MOSDA-

NS(2nd) and MOSDA-A (3rd) have the same level of performance in term of accuracy. 

MOPSO (4th) show the least performance compared to these three algorithms. In term of 

diversity, 𝐷𝑀𝐷 test show that MOSDA-NS (1st) is the best. It has the significant different 

between NSGAII (2nd), MOSDA-A (3rd) and MOPSO (4th) at the ascending order 

respectively. For the uniform distribution, MOSDA-A (1st) provide the best Pareto-front. 

At the meanwhile, MOSDA-NS at the second place, with no significant level compared 

to third place NSGAII. 𝐻𝑉  indicator is not valid for this function because all of the 

algorithm scored zeros for most of the run test. For time, the MOPSO (1st) take the 

shortest, while MOSDA-NS (4th) is the last. 

𝑓6  is a 30-dimensional 𝑀𝑂 problem. For 𝐺𝐷  and 𝐷𝑀𝐷  test, MOSDA-NS (1st) 

provided the smallest values indicate that it provided most accurate and well spread 

Pareto-front. In this 𝐺𝐷 test, MOPSO (2nd) is better than MOSDA-A (3rd). Surprisingly, 

NSGAII could not provide better accuracy in this certain setup 𝑛𝑓𝑒. However, NSGAII 

placed at second ranking for spread 𝐷𝑀𝐷 test. For 𝐻𝑉 test, MOPSO at the first rank, at 

the meanwhile, MOSDA-NS at the second place. Last but not least, MOSDA-A has 

provided the most uniform Pareto-front among the algorithm. Clearly, MOPSO (1st) took 

the fastest time to solve 𝑓6 followed by NSGAII (2nd), MOSDA-A (3rd) and MOSDA-NS 

(4th). 

𝑓7 is the seventh tested 𝑀𝑂 problem. For this problem, MOSDA-NS (1st) clearly 

produced the smallest value of 𝐺𝐷 and 𝐷𝑀𝐷 indicates that it produced best accuracy and 

diverse Pareto-front solution. It also has the largest 𝐻𝑉 among these algorithms but no 

significant difference compared to MOPSO. MOPSO (2nd) stands at second rank for 𝐺𝐷 

test while MOSDA-A (2nd) for 𝐷𝑀𝐷 test. MOSDA-A however stands at the average 

level of the performance when defeated several times by MOPSO and NSGAII. MOSDA-

A (3rd) in term of accuracy. However, as expected MOSDA-A has provided the best 

uniform Pareto-front after providing smallest value of 𝑀𝑂𝑆. Significantly, the MOSDA-

NS stand at the second place for this 𝑀𝑂𝑆 test. For 𝑇𝑂𝐶, MOPSO (1st) is the quickest, 

while MOSDA-NS (4th) took the longest time to solve the 𝑀𝑂 problem. 

For the eighth 𝑀𝑂  problem is 𝑓8 . It is a 30-dimensional decision variables 

function. For this 𝑀𝑂 problem, MOSDA-NS (1st) solved it by providing the Pareto-front 
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with significantly the best accuracy, diversity and uniform distribution. MOPSO (2nd) 

came at second rank for 𝐺𝐷  test while NSGAII (2nd) came at second for 𝐷𝑀𝐷 

performance test. MOSDA-A provide third ranked in term of accuracy compared to its 

predecessor MOPSO. The best value of 𝐻𝑉 for MOSDA-NS (1st) strengthen the fact it 

produced the best performance among the algorithms. At the meanwhile, for 𝐻𝑉 

indicator, MOSDA-A (2nd) and NSGAII (3rd) has a comparable result. MOSDA-A (3rd) 

also beat MOPSO for the well diverse Pareto-front.  

The ninth 𝑀𝑂  problem is 𝑓9  with 10 decision variables. For this problem, 

MOSDA-NS (2nd) could not beat NSGAII (1st) for the accurate Pareto-front. On the other 

hand, MOSDA-NS (1st) has provided the best diversity of Pareto-front and largest HV 

among another algorithm. Specifically, for this problem, MOSDA-NS (1st) also produced 

the most uniform distribution Pareto-front compared to others. At the meanwhile, 

MOSDA-A (4th) cannot find the solution for this problem and failed to find the right 

solution even though 𝑛𝑓𝑒  has been increased. However, 𝑀𝑂𝑆  test recorded that 

MOSDA-A (2nd) able to produce uniform distribution of Pareto-front after beat NSGAII 

(2nd) and MOPSO (3rd). However, this advantage is not meaningful as the accuracy and 

the graph pattern is totally out of form compared to theoretical Pareto-front.  

𝑓10 is another 10-dimensional 𝑀𝑂 problem tested with these all four algorithms. 

MOSDA-NS (1st) produced the best accuracy Pareto-front alongside the largest 𝐻𝑉 

value. On the other hand, MOSDA-NS produced third ranked Pareto-front with uniform 

diversity. However, it cannot produce a well-diverse solution after ranked number fourth 

for 𝐷𝑀𝐷 test. MOSDA-A also performed at low performance for this problem. It placed 

third in 𝐺𝐷,𝐻𝑉 and 𝐷𝑀𝐷 test while number fourth for 𝑀𝑂𝑆.  

These functions are categorized as more complex 𝑀𝑂 problem. MOSDA-A and 

MOSDA-NS are successfully performed these problems even some of the Pareto-front 

are cannot be found. For ZDTs’ family 𝑀𝑂 problems, MOSDA-A at initial iterations are 

trapped in local optima. This situation can be seen when the search agents were remained 

stationary at the certain areas with certain stationery amount of found 𝑃𝑂𝑆 during the 

searching process. However, at the end of the process it can find the solution but with 

less accuracy and diversity. Exceptional for 𝑓9  and 𝑓10 , MOSDA-A are kept to get 

trapped in local optima even the mutation operator is applied at 2 stages of the procedure. 

From the Pareto-front produced per test run, the users can observe that the search agent 
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are remain stationary at most points. This situation remains occurred when the algorithm 

adjusted with more 𝑁𝐹𝐸 and more randomness operator inserted. This problem could be 

solved by adding another element of strategy to SDA. In term of computation time, 

MOPSO against remains at first ranks compared to others. NSGAII take the longest time 

for most 𝑀𝑂𝑃.  

Table 4.6 Rank for compared algorithms based on Friedman vs Wilcoxon test. 

(Note: Marks (Ranks)). 

 MOSDA-A MOPSO MOSDA-NS NSGAII 

GD 25(3) 25(3) 13(1) 21(2) 

DMD 27(3) 31(4) 13(1) 20(2) 

MOS 15(1) 34(4) 22(2) 24(3) 

HV 19(2) 20(3) 12(1) 19(2) 

TOC 24(2) 12(1) 37(4) 27(3) 

Table 4.6 above shows the ranking of the algorithm according to Friedman vs 

Wilcoxon test. For instance, clearly MOSDA-NS has outperformed all another three 

algorithms for accuracy and diversity. It also indicated as the best when tested with 𝐻𝑉 

indicator. Its predecessor NSGAII is ranked second for 𝐺𝐷, 𝐻𝑉 and 𝐷𝑀𝐷 tests. Hence, 

MOSDA-NS is concluded has better strategy than NSGAII. MOSDA-A and MOPSO is 

draw and ranked third for accuracy. However, compared to MOPSO, MOSDA-A has 

better Pareto-front distribution, if 𝐷𝑀𝐷 and 𝑀𝑂𝑆 is took into the account. MOSDA-A 

also iterates faster than MOSDA-NS and NSGAII. Thus, the strategy of AM is simpler 

compared to NS.   

4.3 Application of The Proposed Algorithms 

In this section, system modelling of an inverted pendulum (IP) is described and a 

Proportional-Derivative (PD) controller has been used to stabilize the pendulum. The 

system is of a classical IP consisting two moving masses. These two bodies will be 

controlled while sliding on a horizontal plane. In this chapter, the results of the system 

with PD-controller are shown. The main objective of this chapter is to optimize PD-

controller using the proposed algorithms and analyse the performance of the optimization 

by comparing them against the PD-controller optimized by NSGAII and MOPSO 

respectively. 
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4.3.1 Inverted Pendulum 

Inverted pendulum (IP) is a classic control problem which widely used in control 

studies around the world (Nasir, 2007). Its high-non-linearities and lack of stability make 

it suitable to test new-developed prototype controllers. An IP system consist of an 

inverted pole with a specific mass (𝑚𝑝𝑒𝑛) hinged at certain angle (𝜃𝑝𝑒𝑛) from vertical 

axis on a cart with mass, 𝑀𝑝𝑒𝑛 and free to move horizontally (Torres-Pomales et. al.,  

1996; Brisilla et. al.,  2015).  

In year 2012, a researcher managed to balance an IP using PD-controller (Hasan, 

2012). In this work, the author tested the frequency responses by proposing different 

proportional and derivatives gains. They also drew a root locus diagram to verify the 

stability. However, there are limitation in this technique. The vibration, slip of wheel and 

insufficient current were the problem faced by them.  

The case study will be described in this thesis will be based on the IP system 

which setup in MATLAB-Simulink. At first glance, the modelling is according to the real 

hardware. The first phase of this case study is to design the mathematical model of the 

system.  

IP is unstable. The pendulum will fall downward caused by the gravitational force 

acting on the pendulum mass. This pendulum needs to be kept vertically inverted upwards 

position. To do this, a motor connected to the pendulum need to be controlled using a 

closed-loop system. The feedback or input device to locate the current position of the 

pendulum is required. To control the pendulum at this position, the PD-controller has 

𝜃 

Motor 

𝑙 

𝑚 

𝐹 𝑀 

𝑥𝑐 , 𝑦𝑐 
𝑥 = 𝑥 + 𝑙 𝑠𝑖𝑛 𝜃 

𝑦 = 𝑙 𝑐𝑜𝑠 𝜃 

Figure 4.11 Inverted pendulum system. 
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been selected. This controller has been identified as the simplest control technique to 

apply in this research thesis.  

The free-body diagram of this IP is shown in Figure 4.11. It illustrates an IP 

system used for the test platform in this work. It consists of a pole that can freely rotate 

360 degrees and a cart that can move back and forth in a translational direction. One end 

of the pole is pivoted on a body of the cart while another end is left free. The pivoted pole 

moves linearly while the cart is in motion and at the same time, one end of the cart that 

is left free rotates around pivoted end of the pole. Under a static condition, the pole is 

pointing downward. IP is a single-input multi-output system that is normally used as a 

platform to test a newly developed controller. Often, a voltage is considered as the input 

to the system, while the linear position of the cart and the angle of the pole are considered 

as the outputs of the system.  

Table 4.7 IP parameters and their corresponding value. 

Parameter Values 

Mass of cart, 𝑀𝑝𝑒𝑛 0.1kg 

Mass of pendulum, 𝑚𝑝𝑒𝑛 0.05kg 

Friction or cart, 𝑓𝑐𝑎𝑟𝑡 0.1𝑁𝑚−1𝑠−1 

Length of pendulum, 𝑙 0.3m 

Inertia of the pendulum, 𝐼 0.006 𝑘𝑔 𝑚2 

Motor torque constant, 𝐾𝑚 4.9 𝑁𝑐𝑚 𝐴−1 

Motor back 𝑒𝑚𝑓 constant, 𝐾𝑏 0.0507 𝑉 𝑟𝑎𝑑−1𝑠−1 

Motor armature resistant, 𝑅 0.3Ω 

 

4.3.2 Motion Derivation of IP 

Mathematical model of the system usually presented by the Newtonian or Euler-

Lagrangian equations. IP is a classical problem in dynamics and control theory. It has 

been used widely in experimenting the control algorithms such PD or etc. 

In IP system, rotation power of the motor will be converted into straight line 

motion. This is done through the mechanical system of ball screw which vertically control 

the angle of the pendulum by the cart translation. The straight-line motion is transferred 

to the cart which connected to the ball screw. Therefore, the coordinate of the centroid of 

the pendulum are 𝑥𝑐  and 𝑦𝑐. 𝑥𝑐  and 𝑦𝑐 are defined as in Equation 4.1 and 4.2 respectively.  



112 

𝑥𝑐 = 𝑥 + 𝑙 𝑠𝑖𝑛 𝜃 4.1 

𝑦𝑐 = 𝑙 𝑐𝑜𝑠 𝜃 4.2 

These both centroids are used to express formula for force and moment. 

Therefore, Equation 4.3 and 4.4 were produce. In Equation 4.3, ∑𝐹 is the summation of 

force while ∑𝑀 is the summation of moment generated from the motor. The formulation 

of this force is expressed as follow: 

∑𝐹 ∶ 𝑀�̈� + 𝑏𝑥ሶ + 𝑚𝑥�̈� = 𝐹 4.3 

∑𝑀 ∶ 𝑚𝑥�̈�𝑙 𝑐𝑜𝑠 𝜃 − 𝑚�̈�𝑐𝑙 𝑠𝑖𝑛 𝜃 = 𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 4.4 

From the theoretical, torque, 𝑇 from motor is expressed in Equation 4.5. 

𝑇 = 𝐾𝑚𝑖 4.5 

From Equation 4.5, 𝑖 is the current that entered into the motor. The relation of 

𝑇 and 𝐹 is expressed in Equation 4.6. 

𝐹 =
2𝜋𝑇

𝑟
 4.6 

Hence, when substitute Equation 4.5  into Equation 4.6, 𝐹  is expressed in 

Equation 4.7. 

𝐹 =
2𝜋 𝐾𝑚𝑖

𝑟
 4.7 

At the meanwhile, the relation between voltage, 𝑉 and 𝑖 is as in Equation 4.8. 

𝑉 = 𝑖𝑅 + 𝐾𝑏𝜃ሶ  4.8 

The angle speed of the motor and the cart speed is expressed in Equation 4.9.  

𝜃ሶ =
2𝜋

𝑟
𝑥ሶ  4.9 

Substitute angle speed, 𝜃ሶ  into 𝑉, then Equation 4.10 is formulated as follow.  
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𝑉 = 𝑖𝑅 + 𝐾𝑏 (
2𝜋

𝑟
𝑥ሶ) 4.10 

Then, 𝑖 is expressed in Equation 4.11. 

𝑖 =
𝑉

𝑅
−

𝐾𝑏

𝑅

2𝜋

𝑟
𝑥ሶ  4.11 

Substitute 𝑖 into 𝐹, the general expression of 𝐹 in Equation 4.12. 

𝐹 =
2𝜋

𝑟

𝐾𝑚

𝑅
(𝑉 −

2𝜋𝐾𝑏

𝑟
𝑥ሶ) 4.12 

Supposed that 𝜃 = 0 . Linearized the formula 𝐹 and 𝑀 , then substitute the 

formula into Equation 4.3. Therefore Equation 4.13 is formulated.  

(𝑀 + 𝑚)�̈� + 𝑚𝑙�̈� + (𝑏 + (
2𝜋

𝑟
)

2 𝐾𝑚𝐾𝑏

𝑅
)𝑥ሶ =

2𝜋

𝑟

𝐾𝑚

𝑅
 𝑉 4.13 

𝑚�̈� + 𝑚𝑙 �̈� = 𝑚𝑔 𝜃 4.14 

𝐹𝑟 and 𝐹𝑣 are formulated as in Equation 4.15.  

𝐹𝑟 = 𝑏 + (
2𝜋

𝑟
)

2 𝐾𝑚𝐾𝑏

𝑅
 𝑎𝑛𝑑 𝐹𝑉 =

2𝜋

𝑟

𝐾𝑚

𝑅
 4.15 

Substitute Equation 4.15 into Equation 4.16 and 4.17, is expressed. 

(𝑀 + 𝑚)�̈� + 𝑚𝑙 �̈� + 𝐹𝑟𝑥ሶ = 𝐹𝑉𝑉 4.16 

𝑚�̈� + 𝑚𝑙 �̈� = 𝑚𝑔 𝜃 4.17 

Formulate the state space equation from the final equation. Let 𝑥1 = 𝜃, 𝑥2 =

𝜃ሶ , 𝑥3 = 𝑥 ሶ and 𝑥4 = �̈�. Then, let 𝑢 = 𝑉 in the formulation. From that, Equation 4.18 and 

4.19 is derived.  
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[

𝑥ሶ1
𝑥ሶ2
𝑥ሶ3
𝑥ሶ4

] =

[
 
 
 
 
 

0 1
(𝑀 + 𝑚)𝑔

𝑀𝑙
0

0 0

0
𝐹𝑟

𝑀𝑙
0 0

−
𝑚𝑔

𝑀
0

0 1

0 −
𝐹𝑟

𝑚]
 
 
 
 
 

[

𝑥1

𝑥2
𝑥3

𝑥4

] +

[
 
 
 
 
 

0

−
𝐹𝑉

𝑀𝑙
0
𝐹𝑉

𝑀 ]
 
 
 
 
 

𝑢 

𝑦 = [
1 0 0 0
0 0 1 0

] [

𝑥1

𝑥2
𝑥3

𝑥4

] 

4.18 

[

𝑥ሶ1
𝑥ሶ2
𝑥ሶ3
𝑥ሶ4

] = [

0 1
29.4200 0

0 0
0 0.3090

0 0
−196.1330 0

0 1
0 −12.3615

] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [

0
−1.2121

0
48.4844

] 𝑢 

𝑦 = [
1 0 0 0
0 0 1 0

] [

𝑥1

𝑥2
𝑥3

𝑥4

] 

4.19 

4.3.3 Optimization Setup 

PD is the abbreviation for proportional-derivatives. PD is the type of controller 

which has the feedback whose output a control variable is based on the error between the 

user-defined set point and some gained or measured process variable (A.N.K, 2007). The 

block diagram shown in the Figure 4.12 below.  

 

𝑒𝑎(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 4.20 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐾𝑝 + 𝑠𝐾𝑑 𝐼𝑃(𝑠) 

𝐸(𝑠) 

𝐼𝑛𝑝𝑢𝑡 

− 
+ 

PD Inverted Pendulum 

Optimization 

Figure 4.12 Block diagram PD system. 
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From the figure, the PD control will be optimized by algorithm is shown. The 

formulation of PD control is stated as in Equation 4.20. At the meanwhile, the illustrated 

IP system will be represented by the mathematical derivation from Equation 4.18 and 

4.19. These objective functions of the system are expressed in terms of the minimum 

mean square error (𝑀𝑆𝐸) of the linear and angular velocities respectively as in Equation 

4.21 and 4.22. 

From the equation 4.21 and 4.22, 𝐶 is cart position, 𝑃 is pendulum angle, 𝐶𝑀𝑆𝐸 is 

mean-square-root of 𝐶 , 𝑃𝑀𝑆𝐸  is mean-square-root of 𝑃,  𝐶𝑎𝑐𝑡  is the actual 𝐶 , 𝐶𝑑𝑒𝑠  is 

desired 𝐶, 𝑃𝑎𝑐𝑡 is actual 𝑃, 𝑃𝑑𝑒𝑠 is desired 𝑃, and 𝑁 is the number of iterations. Important 

to emphasize, the algorithm will optimise these both Equation 4.21 and 4.22 

simultaneously. All algorithms will be integrated into the system simulation files to 

optimise the overall 𝑀𝑆𝐸 of the system for both linear and angular velocity of the IP.  

The selected parameter for all algorithms is as in Table 3.7. Here, the comparison 

of parameters for all algorithms will be crucial to make a fair performance measurement. 

Most of the parameters selected are however not much differ to the parameters used for 

benchmark function tests because they are the best selected parameters for the algorithms. 

These parameters are measured by analysing the performance of the algorithms when 

solving the benchmark functions.  

From the table, all algorithms will have same size of individuals in the population, 

which is 𝑌 = 50. For the related MOSDA-A and MOPSO, the size repository will be 50, 

𝑛𝑟𝑒𝑝 = 50. The same number of grid is set by 7, 𝑛𝐺𝑟𝑖𝑑 = 7  while mutation rate, 

𝑚𝑢𝑡𝑟𝑎𝑡𝑒 = 0.1 and leader selection pressure, 𝛽 = 2. For the related MOSDA-NS and 

NSGAII, the crossover ratio, 𝑝𝑐 = 0.8 and mutation ratio is 𝑝𝑚 = 0.3. Other than that, 

both MOSDA-A and MOSDA-NS will use radius of step, 𝑟 = 0.5 and 𝜃 =
𝜋

4
 for the 

spiral model, 𝑆(𝑟, 𝜃).  For the rest of the parameters including which are used for 

𝑓11 = 𝐶𝑀𝑆𝐸 = min [
1

𝑁
∑(𝐶𝑎𝑐𝑡 − 𝐶𝑑𝑒𝑠)

2

𝑁

𝑖=1

] 4.21 

𝑓12 = 𝑃𝑀𝑆𝐸 = min [
1

𝑁
∑(𝑃𝑎𝑐𝑡 − P𝑑𝑒𝑠)

2

𝑁

𝑖=1

]  4.22 
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MOPSO, the same parameter as stated in papers are applied. These all parameters will be 

used to setup the algorithm for the IP control system optimization process.  

The IP was simulated to move the pendulum in upright position at setup distance 

from the centre to evaluate its speed to achieve these desired positions. The simulation is 

again conducted by using MATLAB/Simulink environment and the model completely 

used the derivation from the previous section. The algorithms were in integrated and 

simulated with 30,000 times of 𝑁𝐹𝐸 has successfully produced Pareto-front with desired 

number of decisions NDS within 23-40 iterations. The result will be shown at the next 

sub-section.  

4.3.4 Result of PD-Controller Optimization 

4.3.4.1 Pareto-front 

Figure 4.13 shows the comparison of all Pareto-front produced by each algorithm 

for PD-controller optimization. From the figure, all 𝑀𝑂 algorithms succeed to find the 

correct Pareto-front for the PD-controller problems. The result ranges are between 0 ≤

𝑓11 < 1and 0 ≤ 𝑓12 < 2.5 × 10−5. The legend at the top-right-corner shows the different 

𝑓12 

𝑓11 

 

Figure 4.13 Result for PD-controller optimization by all algorithm. 
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marks for each algorithm. Then, the significant different of Pareto-fronts produced by 

algorithms are zoomed in the figure.  

In this figure, MOSDA-A shows it can provide better 𝑃𝑂𝑆 as some part of them 

are located closer to zero. This shows that the 𝑃𝑂𝑆 is simultaneously smaller and can 

produces better functioning PD-controller for the IP system. Therefore, obviously can be 

conclude that MOSDA-A is the best algorithm to solve the optimization problem for this 

case study.  

4.3.4.2 Numerical Result and Analysis  

Simulation of IP optimization was done for 25 runs. These data were used to 

calculate the volume of the objective space enclosed by an approximation set and a 

reference point. To calculate the volume, HV test was used by using 2D reference point 

of (2.5 × 10−5, 1). In the figure, this point is marked as red-dot. As shown in Figure 4.13, 

this reference point was chosen because the outermost 𝑃𝑂𝑆 found were located at these 

points. Table 4.8 below shows the mean, best, worst and standard deviation of all 25 

simulation runs for IP problem.  

Table 4.8 Mean, best, worst and SD result for HV Test (Accuracy and Diversity) 

 MOSDA-A MOSDA-NS NSGAII MOPSO 

Mean 0.4272 0.4112 0.408 0.2092 

Best 0.53 0.48 0.52 0.44 

Worst 0.34 0.34 0.29 0.03 

SD 0.048 0.034 0.049 0.104 

From the table, the best performer was written in bold and MOSDA-A provide 

best mean for the problem. Other than that, MOSDA-A also provide the largest volume 

for this 𝑀𝑂 problem. On the other hand, the worst volume was produced by MOPSO and 

MOSDA-NS produced most consistent volume followed by MOSDA-A. Nevertheless, 

MOSDA-NS at the second place for the best mean.  
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4.3.4.3 Close-loop Response 

At the meanwhile, this section also presents the result of the performance test 

performed by all algorithms to optimize PD controller for the IP. Pareto-front graph 

produced by these four algorithms are shown in Figures 4.14.  

Justified that all of the algorithms managed to find the Pareto-front solution for 

the parameters of the PD-controller. In term of performance, all algorithms provide 

almost the similar accuracy and diversity. From the figure, the smoothed-blue line 

represents the angle and dotted-purple line represent the cart position. As the figure 

shown, all algorithms succeed to optimize the PD controller for the IP system. 

By this figure, it can be concluded that graphically MOSDA-A provide best 

performance of PD optimization for the IP system, followed by MOSDA-NS. MOSDA-

NS however is slower than MOSDA-A.  PD which optimized by MOPSO at the 

meanwhile cannot achieve the desired position till 23rd seconds of the simulation. For 

instance, NSGAII optimized products achieved the desired position but not stable at a 

long time.  

However, the further analysis should be constructed in order to find the 

differences numerically. The result of the analysis is done at stated in the Table 4.9 below. 

Figure 4.14 Closed-loop response produced by all optimized parameter of algorithms. 
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Table 4.9 Performance of algorithms to optimize PD-controller. 

For steady state analysis, MOSDA-A and MOSDA-NS produced best optimized-

PD-controller. The percentages are the smallest among all algorithms with 0.11% and 

0.17 for MOSDA-A and MOSDA-NS respectively, compared to -1% and 7.45% for both 

NSGAII and MOPSO respectively.  

Analysis also shows that MOSDA-A could provide the optimized value to make 

fastest response of PD-controller. It took only 0.27 seconds to achieve desired position. 

There is only slightly different of rising time between MOSDA-NS and NSGAII. 

Therefore, both of them can be said has comparable performance in this term.  

For the fourth analysis, MOSDA-NS and MOSDA-A both settled the desired 

position faster than NSGAII and MOPSO. This analysis how stable the optimized-PD-

controller provided by both MOSDAs. NSGAII (73secs) and MOPSO (83 seconds) took 

very long time to stable.   

4.4 Overall Performance of Proposed Algorithms 

To conclude SDA, it is a deterministic type of metaheuristic algorithm. It is 

deterministic due to the movement of the search agents within the search space and its 

performance determined by the parameter’s radius, 𝑟 and angular displacement, 𝜃. 

Denote that all of the 𝑟 and 𝜃 set, all of the search agents will be end at a location. For 

clearer explanation, SDA adapting the swarm behaviour during the process. Rather than 

that, these both parameters also affect how far the search agents stepped and located from 

the centre, at the end of each iteration. All search agents in SDA will settle at a point at 

certain number of iterations. However, this not solved even by further adding the iteration 

number. Therefore, the algorithm will not get any better in converging to the higher 

accuracy of solution. This characteristic also affects the performance of its extended 

MOSDA-NS and MOSDA-A as it can be seen in the benchmark functions test. Then, the 

algorithm may be inferior in this term. The solution provided by SDA may be not global 

 MOSDA-A MOSDA-NS NSGAII MOPSO 

Steady state 

error 
0.0011 0.0017 0.01 0.0745 

% of steady 

state error 
0.11 0.17 1 7.45 

Rising time 0.27 0.31 0.3 1.27 

Settling time 35.5 35.3 73 83 
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optimum instead it is trapped in local optima. Another aspect, SDA performs spiral model 

involving composition of matrix, 𝑏 × 𝑐. Thus, as the number of variables increased, the 

spiral model become larger and the computation time will also increase. 

For overview in term of 𝑇𝑂𝐶, MOSDA-NS need the longest time to iterates the 

solution for most 𝑀𝑂  problem. The complex structure of MOSDA-NS lead this to 

happen. However, for most of the 𝑀𝑂 problem, MOSDA-NS can produce better Pareto-

front with the better performance. MOSDA-A seems performed at the average level. To 

emphasize, MOSDA-A can beat NSGAII in term of time of iteration. MOSDA-A also 

can be concluded as superior than its predecessor MOPSO after tested with these 𝑀𝑂 

problem. Overall, for this stage of research, SDA-based version of 𝑀𝑂  algorithm is 

successfully developed. Through a study of existing MOPSO and NSGAII, a general 

descriptive framework for 𝑀𝑂 -type SDA were developed, called MOSDA-NS and 

MOSDA-A respectively. MOSDA-A developed incorporating the AM from MOPSO 

while MOSDA-NS incorporating NS method from NSGAII. AM and NS method had 

also been proven to be efficient in maintaining the accuracy and diversity of the Pareto-

front produced, even in small population of search agents.  

To test these algorithms, a benchmark study was conducted that compared the 

performance of four multi-objective optimization algorithms on a set of standard test 

problems, called the Schaffer, Poloni, Kursawe and ZDTs-based functions. All of the 

algorithms studied are direct methods and have some common characteristics. However, 

some of other aspects of these methods are significantly different. To validate the 

performance of these four algorithms, an empirical analysis of these novel 

implementations was presented using the stated benchmark functions. For revision, these 

benchmark functions are chosen since they demonstrate obviously the advantages and 

disadvantages of the randomization or mutation operator, which included in the 

developed algorithms structure. In each of the benchmark function test, MOSDA-A 

outperforms NSGAII and MOPSO in term of uniform distribution while and MOSDA-

NS obviously had an improved performance in both diversity and accuracy. Its 

predecessor NSGAII at first outperforms MOSDA-NS in time taken to iterate and 

calculate. Through the empirical result also, the results indicated that the use of these two 

methods are improving some of the parameters while offering no substantial advantages 

to others.  
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MOSDA-NS: There is no doubt that SDA is faster than GA for 𝑆𝑂 problem. It is 

same going to MOSDA-NS if compared to NSGAII. At the same time of iteration term, 

the MOSDA-NS also parallel to MOSDA-A in which the matrix space dimension should 

be initialized according to the size of the 𝑀𝑂 problem. The larger the size then the longer 

it takes to iterate. MOSDA-NS for this stage concluded also much better than NSGAII 

and MOPSO. In term of accuracy, MOSDA-NS are much improved from NSGAII and 

MOPSO whereas it also at the higher level of hypervolume compared to NSGAII and 

MOPSO. It also better in diversity compared to MOPSO. For Pareto-front, MOSDA-NS 

able to find all of the solution and it able to provide the approximate Pareto-front and 

close to true-Pareto-front. Unlike MOSDA-A, MOSDA-NS able to overcome the 

problem of local optima for all 𝑀𝑂 problems. 𝐶𝐷 operator avoid the located 𝑃𝑂𝑆 not too 

gathering at a point. This operator will make sure the best-found 𝑃𝑂𝑆  alone in its 

location.  

MOSDA-A: SDA is faster than PSO in single-objective decision making. Unlike 

in SO-type, MOPSO is faster than MOSDA-A in multi-objective decision making. The 

first thought is MOSDA-A could provide faster result than MOPSO, however the time 

taken is directly proportional to the size of matrix space. From observation, MOSDA-A 

provide a shorter time to iterate up-to-two-dimensional 𝑀𝑂 problem compared to more-

than-two-dimensional 𝑀𝑂 problem. MOSDA-A however concluded as comparable to 

MOPSO and NSGAII in its performances. Obviously, MOSDA-A saw a marked increase 

in the uniform distribution but less in computational efficiency. MOSDA-A also can be 

seen as able to provide an approximate Pareto-front which was close to the true-Pareto-

front. The algorithm could achieve this as the SDA search the solution in spiral step, 

which in every step it will find the better and better solutions. However, due to this 

strategy, MOSDA-A could have trapped in local optima, like occurred for case ZDT4. 

The strategy involving spiral step cause the agents intensifies in only a small region. The 

random strategy that adopted to solve this problem however also failed to get through 

this problem. The size of grid, also affect the diversity of the solution. The optimum 

number of this grid is really important as if it is too low then the solution would be really 

low in diversity and vice versa. However, if this number is too big, then it will take longer 

time to iterate. Hence the number of grids, which taken from the original best setup of 

MOPSO has provide the best dimension for grid for MOSDA-A. 
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Finally, the PD-controller are designed successfully in MATLAB. The swinging 

of the pendulum can be adjusted by manipulating the angle and position of motor shaft. 

The balancing of the IP is done with PD-controller. This PD-controller will perform better 

if the optimum constant parameters are used. The application of MOSDA-NS and 

MOSDA-A to optimize the controller proved that both of them are capable to defeat the 

superior algorithms of MOPSO and NSGAII. The simulation result was plotted and 

summarized in tables. Both of them provide better control of the IP compared to their 

predecessors. Therefore, MOSDAs is a new algorithm which still at the preliminary 

development, might be useful to solve problem.  
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Conclusion 

In Chapter 2, single-objective and multi-objective algorithm have been reviewed. 

The strength of SDA, MOPSO and NSGAII have been discussed as well. For now, there 

are some researchers who employed Archived-method (AM) and Non-dominated Sorting 

(NS) in 𝑀𝑂 algorithm with a great intention to maximize the potential performance of 

algorithms. SDA is new algorithm and yet there were only a few enhancements that have 

been made to SDA. Furthermore, AM and NS still have not been applied to SDA in order 

to make it able to deal with 𝑀𝑂 problems.  

Chapter 3 explained the project flow. Other than that, MOSDA-NS and MOSDA-

A are introduced by applying NS and AM in order to change the strategy of SDA to deal 

with 𝑀𝑂 problems. In MOSDA-NS and MOSDA-A, they create a population which 

consist number of individuals. These individuals then will be spread into the feasible 

region and the solution found will be sorted according to NS and AM respectively. 

Additionally, in MOSDA-NS, there will be two more populations that generated in order 

to give more chance in having more better 𝑃𝑂𝑆. This chapter also discussed about all the 

computer simulation setup and benchmark functions.  

In Chapter 4, the performance of both proposed algorithms was evaluated and 

discussed. These simulations involved all proposed algorithm including NSGAII and 

MOPSO. The data analysis from the algorithm simulations were recorded and compared 

to each other. Performance test measured the accuracy (GD), diversity (DMD) and 

uniformity of diversity (MOS) of the Pareto front that produced by all algorithms. The 

smaller the value that provided by the performance metric tests, the better their ability. In 
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this chapter also discussed about the optimization of PD-controller for IP system. The 

observation and analysis of this optimization have been also well described.  

MOSDA-NS has shown that it is more superior than NSGAII. This is due to the 

best of strategy in SDA. Other than that, the better random strategy of searching the 

solution in feasible region has minimize the risk of search agents to fall in local optima. 

After comparison, MOSDA-NS has shown a great improvement in accuracy and diversity 

in its Pareto-front. However, the generation of solution took slightly a longer period. 

MOSDA-A on the other way were not much better in solving high dimension benchmark 

functions. However, it performed the best in optimizing PD-controller for IP system. This 

result shows that MOSDA-A is very dependable in solving low dimension problems, 

especially two dimensions.  

5.2 Thesis Contribution 

It is very important to denote that the first contribution of this thesis was the 

review about a lot of 𝑀𝑂 optimization which focused on the identification of the common 

to convert 𝑆𝑂-type algorithm to 𝑀𝑂 algorithm. The aim for these reviews was to use the 

methodology of the existing 𝑀𝑂 algorithm, which focused on the 𝑀𝑂 algorithm that 

derived from 𝑆𝑂 algorithm. The methodology then summarized to use the similarities 

between these existing algorithms to developed SDA-based 𝑀𝑂  algorithms. This 

framework delivers a new perspective of existing algorithms, while allowing the 

improvement and developments of the new algorithms. 

The second contribution was the development of two new SDA-based 𝑀𝑂-type 

algorithm which named as MOSDA-NS and MOSDA-A. There is still no discovery of 

this gap which very important to know the performance of SDA when it applied to solve 

𝑀𝑂 problem. MOSDA-A which present SDA in archiving setup provide best uniform 

diversity of the solution whereof the decision maker can choose the solution that fits best 

to their preferences. MOSDA-A however did not too consistent to solve 𝑀𝑂 problem. 

This consistency issue can be observed by looking at the performance of the algorithms 

when solving 𝑀𝑂 problem, in which some problems solved with great performance while 

it cannot find correct Pareto-front for other some of problems. MOSDA-NS however 

differ significant with MOSDA-A in which it is superior in its accuracy and diversity. 

Furthermore, MOSDA-NS is much improved compared to NSGAII and MOPSO in many 
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parameters’ performance test for each 𝑀𝑂 problems. MOSDA-NS also outperformed 

NSGAII in terms of time taken to iterates. Thus, MOSDA-NS has improved from its 

NSGAII if the time to iterate is also taken into the account. 

5.3 Future Works 

From the conclusion, the future work that could be done to improve MOSDA is 

summarized as follows. 

1) MOSDA-A had fell into a problem of local optima which limit its 

performance. However, this only happen to a 𝑀𝑂  problem, ZDT4. The 

presence of a hybrid or mathematical-novel method could make the SDA 

changes in its search strategy. To-date there very limited 𝑀𝑂-type of SDA, 

then it is very widely open for researchers to do discovery in new hybrid-

MOSDA. 

2) Other than that, MOSDAs can be applied to test other real-world applications 

whichever areas or field in order to further know and measure its actual 

performances. 
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APPENDIX A 

BEST, MEAN, WORST AND STANDARD DEVIATION FOR ALL ALGORITHM 

Table 1  Summary of statistical optimization result obtained by MOSDA-NS for all reported 𝑀𝑂 problems. 

MOSDA-NS 
 Best Solution Mean Solution Worst Solution Standard Deviation 
 GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC 

𝑓1 0.0000 0.9332 0.3603 1.00 120.28 0.0000 0.9427 0.5653 1.00 123.34 0.0000 0.9497 0.7745 0.99 125.78 0.0000 0.0040 0.0909 0.00 1.33 

𝑓2 0.0047 0.9394 4.2139 1.00 113.99 0.0063 0.9940 6.0268 1.00 125.11 0.0094 1.0636 7.2006 1.00 355.54 0.0013 0.0419 0.7804 0.00 48.01 

𝑓3 0.0022 0.2586 0.0741 1.00 116.99 0.0038 0.3041 0.0971 1.00 117.88 0.0066 0.3669 0.1273 0.99 119.51 0.0009 0.0280 0.0120 0.00 0.61 

𝑓4 0.0190 0.9134 5.0725 1.00 110.18 0.0721 0.9475 7.2459 0.97 235.32 0.3339 1.0280 9.4783 0.93 3144.82 0.0795 0.0250 1.1305 0.02 606.15 

𝑓5 0.8445 0.3775 1.2070 1.00 377.43 0.8712 0.4261 1.6181 1.00 383.47 0.9078 0.4708 2.0178 1.00 502.53 0.0170 0.0248 0.1860 0.00 24.81 

𝑓6 0.0000 0.3293 0.0541 1.00 109.78 0.0002 0.3773 0.0731 1.00 111.20 0.0014 0.4520 0.0876 0.99 113.90 0.0003 0.0327 0.0101 0.00 0.90 

𝑓7 0.0000 0.3058 0.0607 1.00 112.35 0.0003 0.3760 0.0778 1.00 113.54 0.0020 0.4970 0.0940 1.00 115.10 0.0006 0.0450 0.0099 0.00 0.75 

𝑓8 0.0003 0.5712 0.2217 1.00 109.29 0.0009 0.6128 0.2825 1.00 110.23 0.0020 0.6494 0.3345 1.00 111.98 0.0004 0.0211 0.0338 0.00 0.64 

𝑓9 0.0000 0.3224 0.0546 1.00 114.53 0.0002 0.3823 0.0770 1.00 117.14 0.0009 0.4377 0.1015 1.00 120.15 0.0003 0.0272 0.0122 0.00 2.22 

𝑓10 0.0004 0.2750 0.0772 1.00 114.46 0.5100 1.0305 0.5746 0.99 119.31 0.9580 1.2819 0.9643 0.98 121.90 0.2848 0.3255 0.2601 0.01 2.19 

Table 2  Summary of statistical optimization result obtained by MOSDA-A for all reported 𝑀𝑂 problems. 

MOSDA-A 
 Best Solution Mean Solution Worst Solution Standard Deviation 
 GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC 

𝑓1 0.0000 0.9604 0.3936 0.53 23.77 0.0000 0.9761 0.5806 0.43 25.71 0.0000 0.9901 0.7240 0.34 26.78 0.0000 0.0074 0.0893 0.05 1.18 

𝑓2 0.0049 1.1285 2.9710 0.89 15.90 0.0131 1.2167 4.3908 0.82 16.82 0.0484 1.3045 5.8625 0.77 18.42 0.0113 0.0460 0.7849 0.03 0.81 

𝑓3 0.0046 0.5258 0.0447 0.79 15.28 0.0067 0.6092 0.0690 0.69 16.11 0.0097 0.7325 0.1001 0.57 16.97 0.0013 0.0552 0.0136 0.05 0.38 

𝑓4 0.0430 1.0170 2.8245 0.01 167.06 0.2294 1.0840 5.7631 0.00 174.95 0.3851 1.2004 8.3166 0.00 185.53 0.0896 0.0443 1.5247 0.00 4.73 

𝑓5 0.7794 0.6844 0.7190 1.00 138.08 0.8916 0.7832 0.9388 1.00 181.87 0.9703 0.9111 1.3591 1.00 284.38 0.0560 0.0557 0.1890 0.00 35.59 

𝑓6 0.1265 0.6529 0.0369 0.84 48.27 0.2324 0.7795 0.0724 0.74 55.29 0.3580 0.8994 0.1069 0.61 60.16 0.0626 0.0547 0.0178 0.06 3.45 

𝑓7 0.0170 0.6395 0.0215 0.73 38.89 0.0298 0.7489 0.0545 0.65 49.62 0.0627 0.8463 0.0914 0.57 52.85 0.0098 0.0647 0.0191 0.05 3.06 

𝑓8 0.0272 0.7571 0.0905 0.85 105.92 0.1077 0.8374 0.1841 0.80 114.30 0.2494 0.9404 0.2514 0.70 127.67 0.0556 0.0439 0.0392 0.04 5.52 

𝑓9 0.9323 0.8943 0.0151 0.99 32.03 2.4999 0.9865 0.2655 0.79 34.75 11.3244 1.1479 2.3279 0.52 47.39 2.1925 0.0625 0.4524 0.11 4.24 

𝑓10 0.4727 0.9373 0.2253 0.71 68.52 1.5005 1.0924 0.6777 0.60 91.35 3.0748 1.3160 1.1995 0.52 102.48 0.7250 0.0989 0.2852 0.05 9.27 
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 Table 3 Summary of statistical optimization result obtained by MOPSO for all reported 𝑀𝑂 problems. 
MOPSO 

 Best Solution Mean Solution Worst Solution Standard Deviation 
 GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC 

𝑓1 0.0000 1.0365 0.8684 0.44 27.63 0.3863 1.1903 5.1319 0.21 30.26 4.5932 1.3644 18.0255 0.03 31.37 1.0811 0.0855 3.8195 0.10 1.15 

𝑓2 1.2398 1.0610 3.5618 0.79 19.73 7.1337 1.1941 10.7217 0.56 22.41 20.0895 1.4885 30.3463 0.36 24.35 4.0615 0.0941 5.4756 0.12 1.31 

𝑓3 0.1338 0.6585 0.1770 0.78 5.08 0.1605 0.8532 0.2370 0.63 6.17 0.2120 0.9630 0.2883 0.50 7.18 0.0204 0.0668 0.0295 0.06 0.41 

𝑓4 7.1915 0.6235 7.3924 0.00 4.97 10.0185 0.8018 11.8399 0.00 6.13 13.8856 1.1619 15.6853 0.00 7.41 1.7928 0.1161 2.3866 0.00 0.61 

𝑓5 2.1659 0.6796 2.6053 1.00 11.76 3.6929 0.9135 4.1389 1.00 16.07 5.0683 1.2302 7.2504 1.00 19.89 0.7919 0.1441 1.0689 0.00 2.02 

𝑓6 0.0020 0.6516 0.0523 0.89 18.09 0.0110 0.8769 0.0893 0.81 21.39 0.0424 1.3649 0.1098 0.74 23.28 0.0093 0.1500 0.0179 0.04 1.14 

𝑓7 0.0006 0.6190 0.0614 0.86 12.03 0.0132 0.8720 0.0914 0.71 17.41 0.0739 1.1222 0.1203 0.60 21.48 0.0199 0.1065 0.0154 0.06 2.56 

𝑓8 0.0037 0.7948 0.1957 0.87 17.01 0.0226 0.9871 0.3439 0.77 20.13 0.0498 1.1563 0.5012 0.63 22.91 0.0115 0.1037 0.0742 0.06 1.19 

𝑓9 0.0000 0.5403 0.0402 0.89 12.13 6.2484 1.3823 6.1768 0.73 15.59 19.8761 1.9147 17.4421 0.59 20.14 5.8267 0.4538 5.2289 0.09 2.08 

𝑓10 0.0002 0.6309 0.0683 0.92 12.55 1.1581 0.8207 0.5006 0.66 17.91 4.9236 1.2379 2.4785 0.46 21.48 1.5543 0.1655 0.5781 0.10 2.33 

 

Table 4  Summary of statistical optimization result obtained by NSGAII for all reported 𝑀𝑂 problems. 

NSGAII 
 Best Solution Mean Solution Worst Solution Standard Deviation 
 GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC GD DMD MOS HV TOC 

𝑓1 0.0000 0.9329 0.4422 0.52 58.12 0.0000 0.9437 0.5570 0.41 58.45 0.0000 0.9519 0.7303 0.29 58.71 0.0000 0.0049 0.0688 0.05 0.15 

𝑓2 0.0051 0.9788 4.6006 0.93 50.47 0.0067 1.0260 5.8654 0.82 50.84 0.0091 1.0959 7.4375 0.73 51.75 0.0011 0.0340 0.7173 0.05 0.24 

𝑓3 0.0022 0.2833 0.0588 0.76 51.35 0.0030 0.3723 0.0864 0.70 51.78 0.0046 0.4574 0.1220 0.64 52.14 0.0007 0.0440 0.0137 0.03 0.18 

𝑓4 0.0225 0.9167 5.1002 0.03 50.85 0.0413 0.9525 6.6224 0.00 51.24 0.1088 0.9963 8.4902 0.00 51.44 0.0174 0.0213 0.8518 0.01 0.15 

𝑓5 0.7840 0.4476 1.3100 1.00 50.78 0.8389 0.4997 1.6324 1.00 51.23 0.8947 0.5581 1.9877 1.00 51.50 0.0263 0.0332 0.1546 0.00 0.18 

𝑓6 0.3660 0.5738 0.0901 0.84 50.46 0.5528 0.6678 0.2331 0.72 50.71 0.8088 0.7179 0.4273 0.60 51.06 0.1230 0.0385 0.0985 0.06 0.13 

𝑓7 0.5079 0.6778 0.0859 0.84 50.86 0.7427 0.7849 0.1560 0.67 51.14 0.9849 0.9110 0.2590 0.55 51.87 0.1395 0.0565 0.0497 0.07 0.19 

𝑓8 0.2789 0.6127 0.2669 0.86 50.76 0.4946 0.6651 0.4222 0.78 50.97 0.7063 0.7380 0.6206 0.73 51.36 0.1074 0.0329 0.0926 0.04 0.13 

𝑓9 0.4569 0.6841 0.0335 0.84 51.47 0.8840 0.9933 0.3696 0.68 51.74 2.3735 1.6674 1.0161 0.59 51.96 0.4343 0.1919 0.2326 0.07 0.14 

𝑓10 2.2114 0.8838 0.1134 0.80 107.83 2.5109 0.9428 0.2221 0.59 108.41 2.9254 1.1386 0.4939 0.49 109.09 0.1770 0.0646 0.1053 0.08 0.34 
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APPENDIX B 

FRIEDMAN TEST 

 

Function Parameter 
Friedman Test 

MOPSO MOSDA-NS MOSDA-A NSGAII 

𝑓1 

GD 
Mean rank 3.76 2.08 2.36 1.8(1) 

𝜌(𝛾2) 0.00001(34.104) 

DMD 
Mean rank 4 1.32(1) 3 1.68 

𝜌(𝛾2) 0.00001(68.472) 

MOS 
Mean rank 4 2 2.12 1.88(1) 

𝜌(𝛾2) 0.00001(45.432) 

HV 
Mean rank 1.04(1) 4 2.56 2.4 

𝜌(𝛾2) 0.00001(66.460) 

TOC 
Mean rank 2 4 1(1) 3 

𝜌(𝛾2) 0.00001(75.000) 

𝑓2 

GD 
Mean rank 4 1.64(1) 2.56 1.8 

𝜌(𝛾2) 0.00001(52.248) 

DMD 
Mean rank 3.28 1.36(1) 3.68 1.68 

𝜌(𝛾2) 0.00001(59.592) 

MOS 
Mean rank 3.68 2.68 1.32(1) 2.32 

𝜌(𝛾2) 0.00001(42.744) 

HV 
Mean rank 1(1) 4 2.52 2.48 

𝜌(𝛾2) 0.00001(67.512) 

TOC 
Mean rank 2 4 1(1) 3 

𝜌(𝛾2) 0.00001(75.000) 

𝑓3 

GD 
Mean rank 4 1.76 2.96 1.28(1) 

𝜌(𝛾2) 0.00001(67.464) 

DMD 
Mean rank 4 1(1) 3 2 

𝜌(𝛾2) 0.00001(75.000) 

MOS 
Mean rank 4 2.6 1.28(1) 2.12 

𝜌(𝛾2) 0.00001(58.392) 

HV 
Mean rank 1.32(1) 4 2.24 2.44 

𝜌(𝛾2) 0.00001(56.841) 

TOC 
Mean rank 1(1) 4 2 3 

𝜌(𝛾2) 0.00001(75.000) 

𝑓4 

GD 
Mean rank 4 1.68 2.88 1.44(1) 

𝜌(𝛾2) 0.00001(62.856) 

DMD 
Mean rank 1.2(1) 2.48 3.96 2.36 

𝜌(𝛾2) 0.00001(57.624) 

MOS 
Mean rank 3.88 2.64 1.52(1) 1.96 

𝜌(𝛾2) 0.00001(68.564) 

HV 
Mean rank 1.9(1) 4 2.02 2.08 

𝜌(𝛾2) 0.00001(68.564) 

TOC 
Mean rank 1(1) 3.04 3.96 2 

𝜌(𝛾2) 0.00001(73.848) 
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Function Parameter 
Friedman Test 

MOPSO MOSDA-NS MOSDA-A NSGAII 

𝑓5 

GD 
Mean rank 4 2.2 2.48 1.32(1) 

𝜌(𝛾2) 0.00001(55.992) 

DMD 
Mean rank 3.8 1(1) 3.2 2 

𝜌(𝛾2) 0.00001(70.200) 

MOS 
Mean rank 4 2.4 1(1) 2.6 

𝜌(𝛾2) 0.00001(67.800) 

HV 
Mean rank 2.5 2.5 2.5 2.5 

𝜌(𝛾2)  

TOC 
Mean rank 1(1) 4 3 2 

𝜌(𝛾2) 0.00001(75.000) 

𝑓6 

GD 
Mean rank 2 1(1) 3 4 

𝜌(𝛾2) 0.00001(75.000) 

DMD 
Mean rank 3.56 1(1) 3.32 2.12 

𝜌(𝛾2) 0.00001(62.856) 

MOS 
Mean rank 2.64 1.76 1.68(1) 3.92 

𝜌(𝛾2) 0.00001(48.840) 

HV 
Mean rank 2.82 4 1.78 1.4(1) 

𝜌(𝛾2) 0.00001(62.207) 

TOC 
Mean rank 1(1) 4 2.88 2.12 

𝜌(𝛾2) 0.00001(71.832) 

𝑓7 

GD 
Mean rank 2.12 1.04(1) 2.84 4 

𝜌(𝛾2) 0.00001(69.624) 

DMD 
Mean rank 3.64 1(1) 2.6 2.76 

𝜌(𝛾2) 0.00001(54.408) 

MOS 
Mean rank 2.88 2.04 1.2(1) 3.88 

𝜌(𝛾2) 0.00001(59.256) 

HV 
Mean rank 2.46 4 1.58(1) 1.96 

𝜌(𝛾2) 0.00001(51.462) 

TOC 
Mean rank 1(1) 4 2.36 2.64 

𝜌(𝛾2) 0.00001(68.088) 

𝑓8 

GD 
Mean rank 2 1(1) 3 4 

𝜌(𝛾2) 0.00001(75.000) 

DMD 
Mean rank 3.88 1.04(1) 3.12 1.96 

𝜌(𝛾2) 0.00001(70.680) 

MOS 
Mean rank 3.04 2.16 1.08(1) 3.72 

𝜌(𝛾2) 0.00001(58.680) 

HV 
Mean rank 1.82(1) 4 2.32 1.86 

𝜌(𝛾2) 0.00001(47.891) 

TOC 
Mean rank 1(1) 3.24 3.76 2 

𝜌(𝛾2) 0.00001(69.528) 
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Function Parameter 
Friedman Test 

MOPSO MOSDA-NS MOSDA-A NSGAII 

𝑓9 

GD 
Mean rank 2.32 1.16(1) 3.32 3.2 

𝜌(𝛾2) 0.00001(44.856) 

DMD 
Mean rank 3.56 1(1) 2.72 2.72 

𝜌(𝛾2) 0.00001(52.056) 

MOS 
Mean rank 3.32 1.32(1) 2.48 2.88 

𝜌(𝛾2) 0.00001(33.144) 

HV 
Mean rank 1.9 4 2.48 1.62(1) 

𝜌(𝛾2) 0.00001(50.976) 

TOC 
Mean rank 1(1) 4 2 3 

𝜌(𝛾2) 0.00001(75.000) 

𝑓10 

GD 
Mean rank 2 1.6(1) 2.76 3.64 

𝜌(𝛾2) 0.00001(36.408) 

DMD 
Mean rank 1.64(1) 3.2 3.16 2 

𝜌(𝛾2) 0.00001(28.728) 

MOS 
Mean rank 2.2 2.88 3.36 1.56(1) 

𝜌(𝛾2) 0.00001(27.864) 

HV 
Mean rank 2.44 4 2 1.56(1) 

𝜌(𝛾2) 0.00001(51.218) 

TOC 
Mean rank 1(1) 4 2 3 

𝜌(𝛾2) 0.00001(75.000) 
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APPENDIX C 

WILCOXON TEST 

  
MOPSO vs MOSDA-A MOPSO vs MOSDA -NS NSGAII vs MOSDA-A NSGAII vs MOSDA-NS MOSDA-A vs MOSDA-NS 

𝑅 + 𝑅 − 𝑝 𝑅 + 𝑅 − 𝑝 𝑅 + 𝑅 − 𝑝 𝑅 + 𝑅 − 𝑝 𝑅 + 𝑅 − 𝑝 

𝑓1 

GD 325 0 0 323 2 0 235 90 0.5118 323 2 0 172 153 0.79486 

DMD 325 0 0 325 0 0 0 325 0 210 115 0.20054 325 0 0 

MOS 325 0 0 325 0 0 168 157 0.88076 325 0 0 185 140 0.54186 

HV 1 324 0 0 325 0 124.5 151.5 0.6818 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓2 

GD 325 0 0 325 0 0 41 284 0.00108 202 123 0.28914 292 33 0.0005 

DMD 109 216 0.14986 325 0 0 0 325 0 246 79 0.02444 325 0 0 

MOS 324 1 0 315 10 0 309 16 0.00008 129 196 0.36812 14 311 0.00006 

HV 0 325 0 0 325 0 108.5 167.5 0.36812 0 325 0 0 325 0 

TOC 286 39 0.0009 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓3 

GD 325 0 0 325 0 0 1 324 0 49 276 0.00228 324 1 0 

DMD 325 0 0 325 0 0 0 325 0 325 0 0 325 0 0 

MOS 325 0 0 325 0 0 287 38 0.0008 70 255 0.01278 325 0 0 

HV 22 254 0.00042 0 325 0 192 133 0.42952 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓4 

GD 325 0 0 325 0 0 14 311 0.00006 95 230 0.06876 300 25 0.00022 

DMD 2 323 0 26 299 0.00024 0 325 0 173 152 0.77948 325 0 0 

MOS 324 1 0 322 3 0 305 16 0.00008 81 244 0.02852 23 302 0.00018 

HV 9.5 18.5 2 0 325 0 3 18 3 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓5 

GD 325 0 0 325 0 0 113 212 0.18352 325 0 0 229 96 0.07346 

DMD 294 31 0.0004 325 0 0 0 325 0 325 0 0 325 0 0 

MOS 325 0 0 325 0 0 325 0 0 189 136 0.47777 0 325 0 

HV Not valid  

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓6 

GD 0 325 0 325 0 0 325 0 0 325 0 0 325 0 0 

DMD 253 72 0.01468 325 0 0 3 322 0 325 0 0 325 0 0 

MOS 318 7 0 279 46 0.00174 298 27 0.00026 325 0 0 155 170 0.84148 
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HV 302.5 22.5 0.00016 0 325 0 73 227 0.0278 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓7 

GD 29 296 0.00034 324 1 0 312 13 0 325 0 0 325 0 0 

DMD 304 21 0.00014 325 0 0 220 105 0.12114 325 0 0 325 0 0 

MOS 309 16 0.00008 286 39 0.0009 280 45 0.00158 323 2 0 19 306 0.00012 

HV 306.5 18.5 0.0001 0 325 0 189 87 0.12114 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓8 

GD 0 325 0 325 0 0 324 1 0 325 0 0 325 0 0 

DMD 305 20 0.00012 325 0 0 0 325 0 323 2 0 325 0 0 

MOS 325 0 0 286 39 0.0009 325 0 0 323 2 0 1 324 0 

HV 119 134 0.81034 0 325 0 79.5 196.5 0.07508 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓9 

GD 254 71 0.0139 313 12 0 1 324 0 325 0 0 325 0 0 

DMD 277 48 0.00208 325 0 0 158 167 0.90448 325 0 0 325 0 0 

MOS 313 12 0 308 17 0.0001 188 137 0.4902 323 2 0 301 24 0.00002 

HV 70.5 229.5 0.0232 0 325 0 85.5 167.5 0.18352 0 325 0 0 325 0 

TOC 23 302 0.00018 0 325 0 325 0 0 0 325 0 0 325 0 

𝑓10 

GD 78 247 0.0232 205 120 0.25428 302 23 0.00018 325 0 0 320 5 0 

DMD 12 313 0 69 256 0.01174 13 312 0 95 230 0 132 193 0.41222 

MOS 81 244 0.02852 100 225 0.09296 0 325 0 15 310 0.00008 213 112 0.17384 

HV 168 108 0.36282 0 325 0 84 216 0.05876 0 325 0 0 325 0 

TOC 0 325 0 0 325 0 325 0 0 0 325 0 0 325 0 
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APPENDIX D 

FRIEDMAN VS WILCOXON 

Friedman Wilcoxon 

Function Parameter Rank Num. Algorithm 1 vs 2 2 vs 3 3 vs 4 

𝑓1 

GD   

1 NSGAII 
SIG 

  

2 MOSDANS 
NONSIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

DMD 

1 MOSDANS 
NONSIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

MOS  

1 NSGAII 
SIG 

  

2 MOSDANS 
NONSIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

HV 

1 MOSDANS 
SIG 

  

2 MOSDAA 
NONSIG 

  

3 NSGAII   
SIG 

4 MOPSO   

TOC 

1 MOSDAA 
SIG 

  

2 MOPSO 
SIG 

  

3 NSGAII   
SIG 

4 MOSDANS   

𝑓2 

GD   

1 MOSDANS 
NONSIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

DMD 

1 MOSDANS 
SIG 

  

2 NSGAII 
SIG 

  

3 MOPSO   
NONSIG 

4 MOSDAA   

MOS  

1 MOSDAA 
SIG 

  

2 NSGAII 
NONSIG 

  

3 MOSDANS   
SIG 

4 NSGAII   

HV 

1 MOSDANS 
SIG 

  

2 MOSDAA 
NONSIG 

  

3 NSGAII   
SIG 

4 MOPSO   

TOC 

1 MOSDAA 
SIG 

  

2 MOPSO 
SIG 

  

3 NSGAII   
SIG 

4 MOSDANS   
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Friedman Wilcoxon 

Function Parameter Rank Num. Algorithm 1 vs 2 2 vs 3 3 vs 4 

𝑓3 

GD   

1 NSGAII 
SIG 

  

2 MOSDANS 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

DMD 

1 MOSDANS 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

MOS  

1 MOSDAA 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDANS   
SIG 

4 MOPSO   

HV 

1 MOSDANS 
SIG 

  

2 NSGAII 
NONSIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

TOC 

1 MOPSO 
SIG 

  

2 MOSDAA 
SIG 

  

3 NSGAII   
SIG 

4 MOSDANS   

𝑓4 

GD   

1 NSGAII 
NONSIG 

  

2 MOSDANS 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

DMD 

1 MOPSO 
SIG 

  

2 NSGAII 
NONSIG 

  

3 MOSDANS   
SIG 

4 MOSDAA   

MOS  

1 MOSDAA 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDANS   
SIG 

4 MOPSO   

HV 

1 MOSDANS 
SIG 

  

2 NSGAII 
NONSIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

TOC 

1 MOPSO 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDANS   
SIG 

4 MOSDAA   
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Friedman Wilcoxon 

Function Parameter Rank Num. Algorithm 1 vs 2 2 vs 3 3 vs 4 

𝑓5  

GD   

1 NSGAII 
NONSIG 

  

2 MOSDANS 
NONSIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

DMD 

1 MOSDANS 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

MOS  

1 MOSDAA 
SIG 

  

2 MOSDANS 
NONSIG 

  

3 NSGAII   
SIG 

4 MOPSO   

HV 

1   
  

  

2   
  

  

3     
  

4     

TOC 

1 MOPSO 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOSDANS   

𝑓6  

GD   

1 MOSDANS 
SIG 

  

2 MOPSO 
SIG 

  

3 MOSDAA   
SIG 

4 NSGAII   

DMD 

1 MOSDANS 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

MOS  

1 MOSDAA 
NONSIG 

  

2 MOSDANS 
SIG 

  

3 MOPSO   
SIG 

4 NSGAII   

HV 

1 MOPSO 
SIG 

  

2 MOSDANS 
SIG 

  

3 MOSDAA   
SIG 

4 NSGAII   

TOC 

1 MOPSO 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOSDANS   
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𝑓7  

GD   

1 MOSDA-NS 
SIG 

  

2 MOPSO 
SIG 

  

3 MOSDA-A   
SIG 

4 NSGAII   

DMD 

1 MOSDA-NS 
SIG 

  

2 MOSDA-A 
NONSIG 

  

3 NSGAII   
SIG 

4 MOPSO   

MOS  

1 MOSDA-A 
SIG 

  

2 MOSDA-NS 
SIG 

  

3 MOPSO   
SIG 

4 NSGAII   

HV 

1 MOSDA-NS 
NONSIG 

  

2 MOPSO 
SIG 

  

3 NSGAII   
SIG 

4 MOSDA-A   

TOC 

1 MOPSO 
SIG 

  

2 MOSDA-A 
SIG 

  

3 NSGAII   
SIG 

4 MOSDA-NS   

𝑓8 

GD   

1 MOSDA-NS 
SIG 

  

2 MOPSO 
SIG 

  

3 MOSDAA   
SIG 

4 NSGAII   

DMD 

1 MOSDANS 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
SIG 

4 MOPSO   

MOS  

1 MOSDAA 
SIG 

  

2 MOSDANS 
SIG 

  

3 MOPSO   
SIG 

4 NSGAII   

HV 

1 MOSDANS 
SIG 

  

2 MOSDAA 
NONSIG 

  

3 NSGAII   
SIG 

4 MOPSO   

TOC 

1 MOPSO 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDANS   
SIG 

4 MOSDAA   
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𝑓9 

GD   

1 NSGAII 
SIG 

  

2 MOSDANS 
SIG 

  

3 MOPSO   
SIG 

4 MOSDAA   

DMD 

1 MOSDANS 
SIG 

  

2 MOSDAA 
SIG 

  

3 NSGAII   
SIG 

4 MOPSO   

MOS  

1 MOSDANS 
SIG 

  

2 MOSDAA 
SIG 

  

3 NSGAII   
SIG 

4 MOPSO   

HV 

1 MOSDANS 
SIG 

  

2 MOSDAA 
NONSIG 

  

3 MOPSO   
SIG 

4 NSGAII   

TOC 

1 MOPSO 
SIG 

  

2 MOSDAA 
SIG 

  

3 NSGAII   
SIG 

4 MOSDANS   

𝑓10 

GD   

1 MOSDANS 
NONSIG 

  

2 MOPSO 
SIG 

  

3 MOSDAA   
SIG 

4 NSGAII   

DMD 

1 MOPSO 
SIG 

  

2 NSGAII 
SIG 

  

3 MOSDAA   
NONSIG 

4 MOSDANS   

MOS  

1 NSGAII 
SIG 

  

2 MOPSO 
NONSIG 

  

3 MOSDANS   
NONSIG 

4 MOSDAA   

HV 

1 MOSDANS 
NONSIG 

  

2 MOPSO 
NONSIG 

  

3 MOSDAA   
SIG 

4 NSGAII   

TOC 

1 MOPSO 
SIG 

  

2 MOSDAA 
SIG 

  

3 NSGAII   
SIG 

4 MOSDANS   

 


