DESIGN AND CONTROL OF LARGE-SCALE GRID-CONNECTED PHOTOVOLTAIC POWER PLANT WITH FAULT RIDE-THROUGH

ALI QASEM SALEH AL-SHETWI

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor’s Signature)

Full Name : IR.DR. MUHAMAD ZAHIM BIN SUJOD
Position : SENIOR LECTURER
Date : JAN 2019
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : ALI QASEM SALEH AL-SHETWI
ID Number : PEE15007
Date : JAN 2019
DESIGN AND CONTROL OF LARGE-SCALE GRID-CONNECTED PHOTOVOLTAIC POWER PLANT WITH FAULT RIDE-THROUGH

ALI QASEM SALEH AL-SHETWI

Thesis submitted in fulfillment of the requirements for the award of the degree of
Doctor of Philosophy

Faculty of Electrical & Electronics Engineering
UNIVERSITI MALAYSIA PAHANG

JANUARY 2019
ACKNOWLEDGEMENTS

First and foremost, all thanks and glory are due to “ALLAH” the Almighty, who gave me the power, the health and patience to accomplish this research.

It is my great fortune to have Ir. Dr. Ing. Muhamad Zahim Bin Sujod as the supervisor during my Ph.D. I would like to express my warmest appreciation, gratitude and sincere thanks to him for his guidance, encouragement, support, kind help and sound advice throughout the period of this research. Dr. Zahim’s technical expertise, and energy have been invaluable during my study and I am truly honored to have worked with a world class researcher such as him.

I would like to acknowledge the Faculty of Electrical and Electronic Engineering, University Malaysia Pahang for providing the facilities to conduct this research. Also, I am very grateful to the Ministry of Higher Education Malaysia (MOHE) for their financial support of this research through the Fundamental Research Grant Scheme (RDU 150125). Also, I wish to acknowledge the support of UMP Post Graduate Research Grant Scheme (PGRS1703106).

Moreover, I am very grateful to University Malaysia Pahang for financial support through the Doctoral research Scheme (DRS) to cover my living cost in Malaysia during two years of my study.

Lastly, I would like to express my deepest gratitude and greatest appreciation to my parents, wife, children, brothers, and sisters for their enormous love, inspiration, and prayers. They always respect what I want to do and give me their full support. Encouragement over the years. I just want to say that I love you all very much and that dedicated this thesis to all of you. I am also forever grateful to my lovely wife for all her unconditional love, sacrifices and endless patience during the past three years, and all thanks to my sweet daughter Hadil and my son Laith for adding a sugary flavor to my life.
ABSTRACT

Over the recent years, the installation of photovoltaic (PV) system and integration with electrical grid has become more widespread worldwide. With the significant and rapid increase of photovoltaic power plants (PVPPs) penetration to the electric grid, the power system operation and stability issues become crucial and this leads to continuous evaluation of grid interconnection requirements. For this purpose, the modern grid codes (GCs) require a reliable PV generation system that achieves fault ride-through (FRT) requirements. Therefore, the FRT capability becomes the state of art as one of the challenges faced by the integration of large-scale PV power stations into electrical grid that has not been fully investigated. This research proposes FRT requirements for the connection of PVPPs into Malaysian grid as new requirements. In addition, presents a comprehensive control strategy of large-scale PVPPs to enhance the FRT capability based on modern GCs connection requirements. In order to meet these requirements, there are two major issues that should be addressed. The first one is the ac over-current and dc-link over-voltage that may cause disconnection or damage to the grid inverter. The second one is the injection of reactive current to assist the voltage recovery and support the grid to overcome the voltage sag problem. To address the first issue, the dc-chopper brake controller and current limiter are used to absorb the excessive dc-voltage and limits excessive ac current, respectively, and therefore protect the inverter and ride-through the faults smoothly. After guaranteeing that the inverter is kept connected and protected, this control strategy can also ensure a very important aspect which is the reactive power support through the injection of reactive current based on the standard requirements. Feed-forward decoupling strategy based-dq control is used for smooth voltage fluctuation and reactive current injection. Furthermore, to keep the power balance between both sides of the inverter, PV array can generate a possible amount of active power according to the rating of grid inverter and voltage sag depth by operating in two modes, which are normal and FRT modes. These two modes of operation require fast and precise sag detection strategy to switch the system from normal mode to a faulty mode of operation for an efficient FRT control. For this purpose, RMS detection method has been used. In this research, the large-scale PV plant connected to the MV side of the utility grid, taking the compliance of TNB technical regulations for PVPPs into consideration has been modelled using MATLAB/Simulink with nominal rated peak power of 1500 kW. Analyses of the dynamic response for the proposed PVPP under various types of symmetrical and asymmetrical grid faults also had been investigated. As a conclusion, the PVPP connected to the power grid provided with FRT capability has been developed. The sizing of the suggested PV array is achieved in which the simulation results matched the sizing calculation results. Moreover, the results at the point of common coupling show that the proposed PVPP is compatible with TNB requirements, including the PV-grid connection method, PV inverter type, nominal voltage operating range, total harmonic distortion less than 5%, voltage unbalance less than 1%, frequency fluctuation within ± 0.1 Hz, and power factor higher than 0.9. In addition, the control simulation results presented demonstrate the effectiveness of the overall presented FRT control strategy, which aims to improve the capability of ride-through during grid faults safely, to keep the inverter connected, to ensure the safety of the system equipment, to ensure all values return to pre-fault values as soon as the fault is cleared within almost zero second as compared to the strategy without FRT control which needs around 0.25s, and to provide grid support through active and reactive power control at different types of faults based on the FRT standard requirements.
ABSTRAK

Dalam tahun-tahun kebelakangan ini, pemasangan sistem fotovoltaik (PV) dan integrasi dengan grid elektrik telah menjadi semakin meluas di seluruh dunia. Dengan peningkatan ketara dan pesat penyambungan loji janakuasa fotovoltaik (PVPPs) ke grid elektrik, isu-isu berkaitan operasi sistem kuasa dan kestabilan menjadi lebih penting dan membawa kepada penilaian berterusan terhadap syarat penyambungan ke grid. Untuk tujuan ini, baru-baru ini, kod grid moden (GCs) memerlukan sistem penjanaan PV yang boleh dipercayai dengan mencapai keperluan melangkaui ganguan (FRT). Oleh itu, keupayaan FRT menjadi sebagai salah satu cabaran yang dihadapi oleh stesen kuasa PV berskala besar bagi penyambungan ke grid elektrik yang belum disiasat sepenuhnya. Kajian ini mencadangkan keperluan FRT untuk sambungan PVPP ke grid Malaysia sebagai keperluan baru. Di samping itu, membentangkan strategi kawalan komprehensif PVPP berskala besar untuk meningkatkan keupayaan FRT berdasarkan keperluan sambungan GC moden. Untuk memenuhi keperluan penyambungan ini, terdapat dua isu utama yang perlu ditangani. Yang pertama adalah arus ulang alik (ac) terlebih arus serta arus terus (dc) terlebih voltan yang boleh menyebabkan pemotongan atau kerosakan pada penyongsang grid. Yang kedua ialah suntikan arus reaktif untuk membantu pemulihan voltan dan menyokong grid mengatasi masalah sag voltan. Untuk menangani isu pertama, pengawal brek dc-chopper dan penghad arus digunakan untuk menyerap voltan dc yang berlebihan dan mengehadkan arus ac berlebihan, membolehkan melindungi penyongsang dan melangkau gangguan elektrik dengan lancar. Selepas menjamin bahawa penyongsang terus disambungan dan dilindungi, strategi kawalan ini juga boleh memastikan ciri yang sangat penting iaitu memastikan arus dan voltan yang diupayakan berdasarkan kepada penarafan grid penyongsang dan kedalaman voltan sag dengan dalam operasi dua mod iaitu mod biasa dan FRT. Kedua-dua mod operasi ini memerlukan strategi pengesahan yang cepat dan tepat yang penting bagi sistem untuk beralih dari mod operasi normal ke mod operasi kawalan FRT. Untuk tujuan ini, kaedah pengesahan RMS telah digunakan. Dalam kajian ini, loji PV berskala besar yang disambungkan ke sisi MV grid utiliti, yang mengambil pematuhan peraturan TNB mengenai penyambungan PVPP telah dimodelkan menggunakan MATLAB/Simulink dengan nominal kuasa puncak tertinggi 1500 kW. Analisa tindak balas dinamik untuk PVPP yang dicadangkan di bawah pelbagai jenis gangguan grid simetri dan bukan simetri juga telah dijalankan. Sebagai kesimpulan, reka bentuk lengkap PVPP yang disambungkan kepada grid kuasa yang disediakan di bawah pelbagai jenis gangguan grid simetri dan bukan simetri juga telah mendapat pelbagai jenis gangguan grid dinyatakan sebagai keperluan FRT telah dilakukan dengan keupayaan FRT telah dilaksanakan. Reka bentuk saiz PV yang dicadangkan berdasarkan pengiraan ukuran telah dicapai. Selain itu, keputusan di titik gandingan bersama menunjukkan bahawa PVPP yang dicadangkan adalah bersesuaian dengan syarat keperluan TNB termasuk kaedah sambungan PV-grid, jenis penyongsang PV, rangkaian operasi voltan nominal, jumlah harmonik gangguan kurang daripada 5%, ketidaklambangan voltan kurang dari 1%, jula frekuensi dalam ± 0.1 Hz, dan factor kuasa lembih tinggi daripada 0.9. Di samping itu, hasil simulasi kawalan yang dibentangkan menunjukkan keberkesan strategi kawalan yang dicadangkan secara keseluruhan, meningkatkan keupayaan melangkaui gangguan elektrik grid dengan selamat, memastikan penyongsang sentiasa terhubung, memastikan keselamatan peralatan sistem, semua nilai kembali kepada nilai pra-gangguan sebaik sahaja gangguan dibersihkan dalam masa hampir sifar saat berbanding tanpa kawalan yang memerlukan sekitar 0.25s, dan juga memberi sokongan kepada grid melalui kawalan kuasa aktif dan reaktif pada pelbagai jenis gangguan elektrik berdasarkan syarat keperluan FRT.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xv

LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Motivation and Significance of Study 4

1.3 Problem Statement 7

1.4 Objectives of Research 8

1.5 Contributions of the Study 9

1.6 Scope of Research 10

1.7 Outline of the Thesis 11

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Types of Solar PV System Configuration 13
2.3 Current Energy Situation Used in Power Sector in Malaysia
 2.3.1 Potential of solar energy in Malaysia
2.4 Grid-Connected PV Power Plants
 2.4.1 Configuration of grid-connected PV system
 2.4.2 The size of GCPPPs: classification
 2.4.3 The basic structure of the inverter control based GCPPP
2.5 Fault Types
 2.5.1 Symmetrical faults
 2.5.2 Unsymmetrical faults
2.6 Voltage Sag
 2.6.1 Voltage sags detection methods
 2.6.2 Voltage sags mitigation techniques
2.7 Global Standard Requirements Concerning the Integration of PVPPs
 2.7.1 National grid technical regulation concerning PV penetration
 2.7.2 International and national standard requirements compliance studies
2.8 Modern Grid Codes Requirements
 2.8.1 FRT as new requirements in grid codes for PV system connection
2.9 Global Trend of FRT Capability in GCs as New Requirements
 2.9.1 FRT or LVRT capability requirements
 2.9.2 FRT requirements in different GCs
 2.9.3 Reactive current support
2.10 FRT Capability Control Strategies – Gap Analysis
2.11 Summary

CHAPTER 3 DESIGN OF THE PROPOSED LARGE-SCALE PVPP-CONNECTED TO THE UTILITY GRID

3.1 Introduction
3.2 Research Methodology 46
- 3.2.1 Planning phase 46
- 3.2.2 Design and Implementation Phase 48
- 3.2.3 Evaluation Phase 49

3.3 Modelling and Design of the Single-stage Three Phase PV System 49
- 3.3.1 Design, sizing and modelling of the PV array 50
- 3.3.2 Perturb and observe MPPT algorithm 56

3.4 Inverter Control Strategy of the Grid-Connected PVPP 58
- 3.4.1 Current control structures of the inverter 60
- 3.4.2 Sinusoidal pulse width modulation 65
- 3.4.3 Phase locked loop (PLL) and grid synchronization 67

3.5 The Distribution System: A Case Study 68

3.6 Technical Requirements Concerning of Grid-Connected PVPPs 69
- 3.6.1 PV-grid connection scheme and interconnection method 70
- 3.6.2 Nominal voltage operating range 71
- 3.6.3 Short circuit level 71
- 3.6.4 Harmonics and voltage unbalance 71
- 3.6.5 MV penetration and PV inverter 76
- 3.6.6 Frequency, synchronization, and power factor 76

3.7 Summary 77

CHAPTER 4 FAULT RIDE-THROUGH CAPABILITY CONTROL 78

4.1 Introduction 78

4.2 Voltage Sag 79

4.3 Fault Ride-Through Requirements 80

4.4 Proposed Malaysian FRT Requirements 81
4.5 Overview of the Developed FRT Control 82
 4.5.1 Grid fault detection method 84
 4.5.2 Excessive ac current protection 85
 4.5.3 Protection from excessive dc voltage for FRT 86
 4.5.4 Reactive power injection control during voltage sag 88

4.6 Summary 91

CHAPTER 5 RESULTS & DISCUSSION 92

5.1 Introduction 92
5.2 Overview of the PVPP Connected to Utility Grid with FRT 93
 5.2.1 Modelling of the PV module 94
 5.2.2 Matlab/Simulink PV array sizing results with MPPT 96
5.3 Grid-Connected PV Inverter 99
 5.3.1 The dc-link voltage 100
 5.3.2 Inverter simulation results 100
5.4 TNB Technical Regulation Compatibility of the Developed Grid-Connected PVPP 102
5.5 Dynamics of the GCPPP under Different Fault Conditions 111
5.6 Fault Ride-Through Capability Control for Inverter-Based Grid Connected Photovoltaic Power Plant 116
5.7 Results Comparison 131
5.8 Summary 135

CHAPTER 6 CONCLUSION 136

6.1 Introduction 136
6.2 Conclusions 136
6.3 Attainment of research objectives 138
6.4 Future Recommendations 140

REFERENCES 141

APPENDIX A 154

APPENDIX B 155

APPENDIX C 159

LIST OF PUBLICATIONS 161
LIST OF TABLES

Table 1.1 Annual & cumulative PV installed capacity: top 10 countries in 2016.

Table 2.1 LVRT requirements in different international grid codes.

Table 2.2 Technical, economy, and complexity comparison of FRT methods.

Table 3.1 TopSun TS-S400 PV module specifications.

Table 3.2 Operational way of the P&O MPPT algorithm.

Table 3.3 The main parameters of the inverter-connected grid.

Table 3.4 Typical equipment ratings in the distribution network.

Table 3.5 Current distortion limits.

Table 3.6 Voltage distortion limits % at PCC.

Table 3.7 The required synchronization parameters.

Table 5.1 Parameters values of the PVPP during fault period (0.15–0.25s) at different types of faults.

Table 5.2 GCPPPs parameter values with and without FRT controller.
LIST OF FIGURES

Figure 1.1 Global cumulative installed wind and solar PV capacity 2005-2016. 2
Figure 2.1 An average of annual solar radiation for different states in Malaysia. 17
Figure 2.2 A typical schematic diagram of single-stage PV system topology. 18
Figure 2.3 A typical schematic diagram of two-stage PV system topology. 18
Figure 2.4 MPP for PV module at different level of radiation and temperature. 21
Figure 2.5 Share of the current- and voltage-controlled inverters in GCPPPs. 24
Figure 2.6 Symmetrical fault. 26
Figure 2.7 Unsymmetrical fault. 26
Figure 2.8 Global cumulative installed solar PV capacity 2005-2016. 31
Figure 2.9 Italian LVRT requirement during grid faults. 34
Figure 2.10 Comparison of LVRT requirement at different GCs. 36
Figure 2.11 Reactive current injection requirement of FRT(a) German, and (b) Spain. 37
Figure 2.12 Single line diagram of the test bench. 39
Figure 2.13 Categorization of prior-art control methods to enhance the FRT performance for grid-connected PV systems. 43
Figure 3.1 The study framework. 47
Figure 3.2 PV power station connected to the power grid. 50
Figure 3.3 Equivalent circuit of a solar cell. 52
Figure 3.4 PV array power curve characteristic. 57
Figure 3.5 Flowchart diagram of the P&O MPPT method. 58
Figure 3.6 Schematic diagram of a three-phase inverter with synchronous rotating frame control (dq-control). 59
Figure 3.7 Grid connected voltage source inverter; three-phase view. 61
Figure 3.8 The d-q Coordinates. 63
Figure 3.9 Inner loop control mode of the inverter. 64
Figure 3.10 DC-link voltage control scheme. 64
Figure 3.11 The principle of sinusoidal PWM control for VSI. 65
Figure 3.12 Sample of sine wave points via corresponding PWM modulated signal. 66
Figure 3.13 The structure of the SRF-PLL. 67
Figure 3.14 The schematic diagram of PVPP system connected to ‘A–S/S–Z–D/L’ distribution system. 68
Figure 5.17 PF of the PV power system at rated inverter output power.
Figure 5.18 Dynamics behaviour of the system frequency.
Figure 5.19 THD level of the current waveform at STC before filtering.
Figure 5.20 THD level of the voltage waveform at STC before filtering.
Figure 5.21 THD level of the current waveform at STC after filtering.
Figure 5.22 THD level of the voltage waveform at STC after filtering.
Figure 5.23 The three-phase waveform of the current at PCC: (a) before using RL filter and (b): after the implementation of RL filter.
Figure 5.24 THD level of the current waveform at 500 W/m² solar irradiation.
Figure 5.25 THD level of the voltage waveform at 500 W/m² solar irradiation.
Figure 5.26 Voltage unbalance factor of the PVPP-connected grid at STC.
Figure 5.27 Voltage unbalance factor of the PVPP-connected grid at 500 W/m².
Figure 5.28 The effect of SLG fault at PCC with 25% voltage drop: (a) positive sequences of the grid voltage; (b) grid voltage; (c) grid current; and (d) active and reactive power.
Figure 5.29 The effect of LL fault at PCC with 50% voltage drop: (a) positive sequences of the grid voltage; (b) grid voltage; (c) grid current; and (d) active and reactive power.
Figure 5.30 The effect of 2LG fault at PCC with 60% voltage drop: (a) positive sequences of the grid voltage; (b) grid voltage; (c) grid current; and (d) active and reactive power.
Figure 5.31 The effect of 3-ph fault at PCC with 85% voltage drop: (a) positive sequences of the grid voltage; (b) grid voltage; (c) grid current; and (d) active and reactive power.
Figure 5.32 Simulation response of the PVPP with 70% voltage sag (SLG) and 30% voltage drop without current limiter: (a) positive sequence of grid voltage; (b) grid voltage; and (c) grid current.
Figure 5.33 Simulation response of the PVPP when applying 70% (SLG) voltage sag and 30% voltage drop with adding current limiter: (a) positive sequence of grid voltage; (b) grid voltage; and (c) grid current.
Figure 5.34 Simulation response of the PVPP with 50% three-phase voltage sag without dc chopper FRT: (a) grid voltage; (b) dc-link voltage; (c) PV array current; and (d) PV array output power.
Figure 5.35 Simulation response of the PVPP with 50% three-phase voltage sag with applying of dc chopper control: (a) dc-link voltage; (b) PV array current; and (c) PV array output power.
Figure 5.36 Simulation results of a LVRT control strategy with an unsymmetrical SLG fault when the voltage drop by 30% from the nominal voltage in the affected phase (voltage sag 70%) for 150 ms.
Figure 5.37 Simulation results of a LVRT control strategy with a symmetrical 3-phase fault when the voltage drop by 85% from the nominal voltage (voltage sag 15%) for 150 ms.

Figure 5.38 Simulation results of a LVRT control strategy with an unsymmetrical LL fault when the voltage drop by 8% from the nominal voltage in the affected phases (voltage sag 92%) for 150 ms.

Figure 5.39 Simulation results of a LVRT control strategy with an unsymmetrical 2LG fault when the voltage drop by 60% from the nominal voltage in the affected phases (voltage sag 40%) for 625 ms.

Figure 5.40 Simulation results of a LVRT control strategy with a symmetrical 3-phase fault when the voltage drop by 30% from the nominal voltage (voltage sag 70%) for 625 ms.

Figure 5.41 GCPPP parameters at steady state condition: (a) PV array voltage; (b) PV array current; (c) PV array output power; (d) grid current; (e) active and reactive current; and (f) active and reactive power.

Figure 5.42 GCPPPs at the occurrence of 3-ph faults (50% sag) without FRT controller: (a) grid voltage; (b) PV array voltage; (c) PV array current; (d) PV array output power; (e) grid current; (f) active and reactive current; and (g) active and reactive power.

Figure 5.43 GCPPPs at the occurrence of 3-ph faults (50% sag) with FRT controller: (a) grid voltage; (b) PV array voltage; (c) PV array current; (d) PV array output power; (e) grid current; (f) active and reactive current; and (g) active and reactive power.

Figure 5.44 Simulation results of the SCESS control.

Figure 5.45 The FRT results proposed by K. Li et al.(2015) and Manikanta et al. (2017).

Figure 5.46 The response of using STATCOM device for LVRT when the voltage at PCC drops to 15% for 625ms: (a)dc-link Voltage, and (b) injected RC by STATCOM.

Figure 5.47 Simulation results of a LVRT control strategy (a) grid voltage, (b) speed of the wind, (c) Voltage of the dc-link, and (d) the injected active and reactive power.
LIST OF SYMBOLS

C_{dc} DC-link capacitor
CO_2 Carbon dioxide
d/q Components of that variable in SRF
f Grid frequency
f_c Switching frequency
$f_{carrier}$ Carries frequency
G Sun irradiation
i_{abc} Grid currents
$i_{ia} i_{ib} i_{ic}$ Inverter three-phase current
I_D Diode current of the PV cell
I_d Active current injected to the grid
I^*_d Active current reference
i_{dref} Active current reference of the inverter
i_{dref} Output active current reference of the current limiter
I_{max} Maximum current of the photovoltaic array
I_{mpp} Current of the PV module/array at the maximum power point
I_n Normal value of the inverter-rated current
I_P Shunt current of the solar module
I_{Ph} Photo current of the solar module
I_q Reactive current injected to the grid
I^*_q Reactive current reference
I_{qr} Ratio of injected reactive current to the nominal current
I_{sat} Reverse saturation current of the solar module
I_{sc} Short circuit current
I_{THD} Current total harmonic distortion
k_{p}, k_{i} PI parameter of current loop
k_{p}, k_{i} PI parameter of the voltage loop
L Filter of the inverter
m Modulation index
N_{cell} Numbers of cells per module
N_{pv} Total numbers of PV array modules (generators)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{prs}</td>
<td>Number of PV modules in series</td>
</tr>
<tr>
<td>N_{pvest}</td>
<td>Number of the parallel strings</td>
</tr>
<tr>
<td>P</td>
<td>Instantaneous active power</td>
</tr>
<tr>
<td>P_{inj}</td>
<td>Active power injected to the grid</td>
</tr>
<tr>
<td>P_{max}</td>
<td>The maximum available output power</td>
</tr>
<tr>
<td>P_{mpp}</td>
<td>Power of the PV array at the maximum power point</td>
</tr>
<tr>
<td>P_{pv}</td>
<td>Generated power by the PV array</td>
</tr>
<tr>
<td>Q</td>
<td>Instantaneous reactive power</td>
</tr>
<tr>
<td>Q_{inj}</td>
<td>Injected reactive power to the grid</td>
</tr>
<tr>
<td>R</td>
<td>Filter of the inverter</td>
</tr>
<tr>
<td>R_{ch}</td>
<td>Chopper resistance</td>
</tr>
<tr>
<td>R_P</td>
<td>Equivalent parallel resistance of the solar module</td>
</tr>
<tr>
<td>R_S</td>
<td>Equivalent series resistance of the solar module</td>
</tr>
<tr>
<td>T</td>
<td>The Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time in second</td>
</tr>
<tr>
<td>V^+</td>
<td>Positive sequence of the voltage</td>
</tr>
<tr>
<td>V^-</td>
<td>Negative sequence of the voltage</td>
</tr>
<tr>
<td>V_{abc}</td>
<td>Grid voltage</td>
</tr>
<tr>
<td>V_d</td>
<td>Active voltage in SRF</td>
</tr>
<tr>
<td>V'_d</td>
<td>Active voltage reference in SRF</td>
</tr>
<tr>
<td>V_{dc}</td>
<td>Dc-link voltage</td>
</tr>
<tr>
<td>V_{gn}</td>
<td>Nominal grid voltage</td>
</tr>
<tr>
<td>V_{ia}, V_{ib}, V_{ic}</td>
<td>inverter voltage</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum voltage of the photovoltaic array</td>
</tr>
<tr>
<td>V_{mpp}</td>
<td>Voltage of the PV module/array at the maximum power point</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open circuit voltage</td>
</tr>
<tr>
<td>V_{pg}</td>
<td>Present grid voltage before faults</td>
</tr>
<tr>
<td>V_q</td>
<td>Reactive voltage in synchronous reference frame.</td>
</tr>
<tr>
<td>V'_q</td>
<td>Reactive voltage reference</td>
</tr>
<tr>
<td>V_T</td>
<td>The thermal voltage</td>
</tr>
<tr>
<td>V_{THD}</td>
<td>Voltage total harmonic distortion</td>
</tr>
<tr>
<td>ω</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>ΔP</td>
<td>Change in the power of MPPT</td>
</tr>
</tbody>
</table>
\(\alpha/\beta \) Components of that variable in stationary frame
\(\theta_{PLL} \) Phase angle of the PLL
\(\alpha_v \) Temperature coefficients of open circuit voltage
\(\alpha_i \) Temperature coefficients of short circuit current
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-ph</td>
<td>Three phase</td>
</tr>
<tr>
<td>ac</td>
<td>Alternating current</td>
</tr>
<tr>
<td>AEMC</td>
<td>Australian Energy Market Commission</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>DCL</td>
<td>Adaptive dc-link</td>
</tr>
<tr>
<td>BDEW</td>
<td>German Association of Energy and Water Industries</td>
</tr>
<tr>
<td>CC</td>
<td>Constant current</td>
</tr>
<tr>
<td>CSI</td>
<td>Current Source Inverters</td>
</tr>
<tr>
<td>CV</td>
<td>Constant voltage</td>
</tr>
<tr>
<td>DB</td>
<td>Dead beat</td>
</tr>
<tr>
<td>dc</td>
<td>Direct current</td>
</tr>
<tr>
<td>DG</td>
<td>distribution generator</td>
</tr>
<tr>
<td>DPGS</td>
<td>Distributed power generation systems</td>
</tr>
<tr>
<td>DSO</td>
<td>Distribution system operators</td>
</tr>
<tr>
<td>DVR</td>
<td>Dynamic voltage restorer</td>
</tr>
<tr>
<td>DVS</td>
<td>Dynamic voltage support</td>
</tr>
<tr>
<td>ECM</td>
<td>Energy Commission Malaysia</td>
</tr>
<tr>
<td>FACTS</td>
<td>Flexible ac transmission system</td>
</tr>
<tr>
<td>FDP</td>
<td>Fuel diversification policy</td>
</tr>
<tr>
<td>FF</td>
<td>Fill factor</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier transform</td>
</tr>
<tr>
<td>FiT</td>
<td>Feed-in-Traffic</td>
</tr>
<tr>
<td>FL</td>
<td>Fuzzy logic</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy logic control</td>
</tr>
<tr>
<td>FLS</td>
<td>Feedback linearization strategy</td>
</tr>
<tr>
<td>FL-GA</td>
<td>Fuzzy logic-genetic algorithm</td>
</tr>
<tr>
<td>FRT</td>
<td>Fault ride through</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>GB/T</td>
<td>Guobiao Standards/ recommended (Chinese national standards)</td>
</tr>
<tr>
<td>GC</td>
<td>Grid code</td>
</tr>
<tr>
<td>GCPPPs</td>
<td>Grid-connected photovoltaic power plants</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GCPVS</td>
<td>Grid-connected photovoltaic system</td>
</tr>
<tr>
<td>GTO</td>
<td>Gate turn-off thyristor</td>
</tr>
<tr>
<td>GW</td>
<td>Giga watt</td>
</tr>
<tr>
<td>HC</td>
<td>Hill climbing</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electro-technical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated-gate bipolar transistor</td>
</tr>
<tr>
<td>INC</td>
<td>Incremental conductance</td>
</tr>
<tr>
<td>IPP</td>
<td>Independent Power Producers</td>
</tr>
<tr>
<td>LL</td>
<td>Line to line</td>
</tr>
<tr>
<td>LLG</td>
<td>Line to line to ground</td>
</tr>
<tr>
<td>LV</td>
<td>Low voltage</td>
</tr>
<tr>
<td>LVVRT</td>
<td>Low voltage ride-through</td>
</tr>
<tr>
<td>MDS</td>
<td>Main distribution substation</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal oxide semiconductor field effect transistor</td>
</tr>
<tr>
<td>MPP</td>
<td>Maximum power point</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum power point tracking</td>
</tr>
<tr>
<td>MV</td>
<td>Medium voltage</td>
</tr>
<tr>
<td>MVA</td>
<td>Mega volt-ampere</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>P&O</td>
<td>Perturb and observe</td>
</tr>
<tr>
<td>p.u</td>
<td>Per unit</td>
</tr>
<tr>
<td>PCC</td>
<td>Point of common coupling</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional integral</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional integral derivative</td>
</tr>
<tr>
<td>PF</td>
<td>Power factor</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase locked loop</td>
</tr>
<tr>
<td>PPU</td>
<td>Pencawang pembahagian utama-main distribution substation</td>
</tr>
<tr>
<td>PR</td>
<td>Proportional resonant</td>
</tr>
<tr>
<td>PSO</td>
<td>Power system operator</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>PVPP</td>
<td>Photovoltaic power plants</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse width modulation</td>
</tr>
<tr>
<td>RC</td>
<td>Repetitive current</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable energy</td>
</tr>
<tr>
<td>RM</td>
<td>Malaysian ringgit</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>SAPVS</td>
<td>Stand-alone photovoltaic system</td>
</tr>
<tr>
<td>SCESS</td>
<td>Supercapacitor energy storage system</td>
</tr>
<tr>
<td>SDBR</td>
<td>Series dynamic breaking resistor</td>
</tr>
<tr>
<td>SEDA</td>
<td>Sustainable energy development authority</td>
</tr>
<tr>
<td>SGCT</td>
<td>Symmetrical gate commutated thyristor</td>
</tr>
<tr>
<td>SLG</td>
<td>Single line to ground</td>
</tr>
<tr>
<td>sq km</td>
<td>Square kilometre</td>
</tr>
<tr>
<td>SRF-PLL</td>
<td>Synchronous reference frame phase-locked loop</td>
</tr>
<tr>
<td>STATCOM</td>
<td>Static compensator</td>
</tr>
<tr>
<td>STC</td>
<td>Standard test conditions</td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAR compensator</td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
</tr>
<tr>
<td>TNB</td>
<td>Tenaga Nasional Berhad</td>
</tr>
<tr>
<td>USANAERC</td>
<td>United States-north American electric Reliability Corporation</td>
</tr>
<tr>
<td>USAPREPA</td>
<td>United States-Puerto Rico Electric Power Authority</td>
</tr>
<tr>
<td>VAR</td>
<td>Volt-ampere reactive</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage controlled oscillator</td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage source inverters</td>
</tr>
<tr>
<td>VUF</td>
<td>Voltage imbalance factor</td>
</tr>
<tr>
<td>WPP</td>
<td>Wind power plant</td>
</tr>
<tr>
<td>ZVRT</td>
<td>Zero voltage ride through</td>
</tr>
</tbody>
</table>
REFERENCES

Center, F. S. E. (2001). Grid-connected photovoltaic system design review and approval: FSEC-CP.

Li, Y., Li, R., Liu, H., Cai, H., & Dong, J. China’s Distributed Generation of Electric Power-Current Situation And Prospect.

Magoro, B., & Khoza, T. (2012). Grid connection code for renewable power plants connected to the electricity transmission system or the distribution system in South Africa. no. November.

