EXPERIMENTAL AND PREDICTION MODEL
OF LOW COMPRESSION MARINE DIESEL
ENGINE FUELLED WITH PALM BIODIESEL
BLENDS

CHE WAN MOHD NOOR BIN
CHE WAN OTHMAN

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor’s Signature)

Full Name : DR. RIZALMAN BIN MAMAT
Position : PROFESSOR
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : CHE WAN MOHD NOOR BIN CHE WAN OTHMAN
ID Number : PMM 14011
Date :
EXPERIMENTAL AND PREDICTION MODEL OF LOW COMPRESSION MARINE DIESEL ENGINE FUELLED WITH PALM BIODIESEL BLENDS

CHE WAN MOHD NOOR BIN CHE WAN OTHMAN

Thesis submitted in fulfillment of the requirements for the award of the degree of
Doctor of Philosophy

Faculty of Mechanical & Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

APRIL 2019
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful. All praises be to Allah, the Lord of the World; peace and blessings of Allah be upon the noblest of the Prophets and Messengers, our Prophet Mohammed and upon his family, companions and those who follow him until the last day.

First of all, I wish to express my sincere gratitude and deep appreciation to my esteemed Supervisor, Professor Dr. Rizalman Mamat, who has been a constant source of inspiration and guidance to me throughout my study.

I would like to thank the Ministry of Education, Malaysia and Universiti Malaysia Terengganu for the provision of financial assistance and study leave to realize this project.

Special thanks are also due to the staff of the Faculty of Mechanical & Manufacturing Engineering and the Institute of Postgraduate Studies, for the cooperation throughout this study. I thank all my friends and colleagues for their fruitful discussions, support, friendship and motivation.

I acknowledge my sincere indebtedness and gratitude to my parents, wife, kids and all family members for their sacrifices, prayers and endless support. Last but not least, I would like to convey my special thanks to the thesis examiners for their comments and suggestions to make this thesis more credible. Without the help and support of all these people, this thesis would not have been realised.
Enjin diesel marin menyediakan sumber kuasa utama untuk pengangkutan laut, tetapi pelepasan dari enjin adalah penyumbang besar kepada pencemaran udara terutama di kawasan pelabuhan dan pesisir pantai. Pengenalan bahan api alternatif seperti biodiesel dinilai sebagai penyelesaian yang menjanjikan untuk mengurangi pelepasan gas berbahaya dari enjin. Namun, kajian bahan bakar biodiesel terhadap enjin diesel masih terhad di mana kebanyakan kajian terdahulu menumpukan pada enjin nisbah mampatan tinggi. Bagaimana kesan biodiesel terhadap prestasi enjin marin mampatan rendah tidak diketahui dan perlu disiasat untuk menentukan kesesuaiannya. Oleh itu, projek ini bertujuan untuk mengkaji kesan komponen biodiesel pada enjin diesel marin mampatan rendah yang memfokuskan kepada ciri-ciri pembakaran bahan bakar, variasi kitaran enjin, prestasi enjin dan pelepasan ekzos. Selain daripada ujikaji, pendekatan dengan menggunakan model simulasi rangkaian neural buatan juga dibangunkan untuk meramalkan parameter prestasi enjin. Ujian enjin telah dilakukan ke atas enjin diesel marpat empat lejang, enam silinder sebaris (Cummin NT-855M) di makmal. Enjin ini mempunyai nisbah mampatan 14.5:1 dan isipadu sebaris sebesar 14 liter. Semua ujian dilakukan di bawah keadaan mantap pada beban enjin 10%, 30% dan 50%, dengan mengubah kelajuan enjin di antara 800–1600 rpm dan menggunakan nisbah campuran biodiesel sawit yang berbeza (10%, 20% dan 30%). Hasil ujian mendedahkan bahawa campuran biodiesel sawit berjaya digunakan dalam enjin diesel marin mampatan rendah dan setanding dengan bahanapi diesel. Peningkatan kepekatan biodiesel sawit dalam campuran telah mengurangkan kadar pelepasan haba dan kadar peningkatan tekanan sehingga 2.62% dan 2.77% masing-masing, semasa proses pembakaran. Progres dalam pecahan jisim pembakaran menunjukkan bahawa tempoh pembakaran menjadi lebih panjang sebanyak 1.50–2.14 °CA berbanding bahanapi diesel. Nilai pemanasan rendah dan kelikatan tinggi pada biodiesel sawit ditambah dengan silinder mampatan rendah telah mengurangkan kadar pembakaran premix, dengan itu memanjangkan tempoh pembakaran biodiesel. Kandungan tenaga yang kurang dalam campuran biodiesel sawit telah menurunkan sedikit kecepatan termal enjin (8.31%). Namun, di sisi positifnya, penggunaan campuran biodiesel sawit dalam enjin diesel marin mampatan rendah telah mengurangkan pelepasan gas berbahaya nitrogen oksida dan karbon monoksida sehingga 13.02% dan 66.67%, masing-masing. Peningkatan peratusan biodiesel sawit dalam campuran juga mengurangkan variasi kitaran enjin di mana campuran B30 menghasilkan variasi paling minim di antara bahan api yang diuji. Plot spektrum kuasa wavelet menunjukkan ayunan kekerapan yang rendah dalam variasi IMEP apabila beroperasi dengan campuran biodiesel sawit. Model ramalan enjin yang menggunakan kaedah rangkaian neural buatan menghasilkan korelasi yang sangat baik di antara data ramalan dan eksperimen seperti yang ditunjukkan oleh nilai R yang tinggi iaitu 0.9987–0.9999. Model rangkaian neural buatan sesuai untuk digunakan dalam masalah bukan linear kerana ia mampu memberikan ramalan prestasi enjin yang tepat dengan kesalahan yang minim (0.20–2.79%). Ujikaji dan model ramalan menggunakan campuran biodiesel sawit dalam enjin diesel marin mampatan rendah yang tidak dimodifikasi telah menyumbang kepada bidang pengetahunan dalam memahami ciri-ciri pembakaran dan prestasi enjin tersebut. Pengurangan dalam kadar pembakaran premixed, variasi kitaran enjin dan pelepasan ekzos yang diperoleh daripada campuran biodiesel sawit adalah penemuan yang paling penting dalam kajian ini.
ABSTRACT

Marine diesel engines provide primary power sources for sea transportation, but emissions from the engines are a major contributor to air pollution especially in port and coastal areas. The introduction of alternative fuels such as biodiesel is seen as a promising solution to reduce harmful gas emission from the engine. However, biodiesel fuel studies on marine diesel engines are still limited where most previous studies focus on high compression ratio engines. How the biodiesel effect on the performance of the low compression marine engine is unknown and should be investigated in order to determine its suitability. Therefore, this project aims to investigate the effects of palm biodiesel blends on low compression marine diesel engines focusing on fuel combustion, engine cyclic variations, engine performance and emissions characteristics. Apart from experiment, an approach by using artificial neural network simulation model was also developed to predict the performance parameters. Engine testing was performed using four strokes, in-line six-cylinder marine diesel engine (Cummin NT-855M) in the laboratory. The engine has 14.5:1 compression ratio and 14 litres displacement volume. All tests were performed under steady-state condition at 10%, 30% and 50% engine loads by varying the engine speed between 800–1600 rpm and fuelled with different palm biodiesel blends (B10, B20 and B30). The test results reveal that palm biodiesel blends are successfully used in low compression marine diesel engine and comparable to diesel fuel. Increase the concentration of palm biodiesel in blends has reduced the rate of heat release and the rate of pressure rise up to 2.62% and 2.77% respectively, during the combustion processes. Mass fraction burned progress indicated the combustion duration was longer by 1.50–2.14 °CA relative to diesel fuel. Low heating value and high viscosity of palm biodiesel coupled with low compression cylinder have reduced the premix combustion rate hence prolonged the biodiesel combustion duration. Lesser energy content in palm biodiesel blends has slightly reduced the engine thermal efficiency (8.31%). However, on the positive side, the use of palm biodiesel blends in low compression marine diesel engine has reduced harmful gas emissions of nitrogen oxides and carbon monoxide up to 13.02% and 66.67%, respectively. Increased palm biodiesel percentage in the blend also lowered the engine cyclic variations where the B30 blend produces the minimum variations among the tested fuels. The wavelet power spectrum plot shows lower frequency oscillations of IMEP when operated with palm biodiesel blends. The engine prediction model of using artificial neural network approach provides excellent correlation between predicted and experimental data as indicated by higher R-value of 0.9987–0.9999. An artificial neural network model is suitable for use in non-linear problems as the model provides accurate engine performance prediction with minimal errors (0.20–2.79%). Experimental and prediction model of using palm biodiesel blends in the unmodified low compression marine diesel engine has contributed to the body of knowledge in understanding the combustion and performance behaviours of the marine engine. Reduction in premixed combustion rate, engine cyclic variations and exhaust emission obtained from palm biodiesel blends are the most important findings in this study.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of the Study

1.2 Problem Statement

1.3 Objective of the Study

1.4 Scope of the Study

1.5 Organisation of Thesis

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.2 Diesel Engines

2.2.1 Diesel Engine History

2.2.2 Marine Diesel Engine
2.2.3 Low Compression Diesel Engine 12
2.2.4 Engine Working Principles 16
2.2.5 Diesel Engine Cycle 19

2.3 Biodiesel Overview 21
2.3.1 Advantages of Biodiesel 22
2.3.2 Limitations of Biodiesel 23
2.3.3 Palm Biodiesel 24

2.4 Biodiesel Properties 26
2.4.1 Density 27
2.4.2 Viscosity 27
2.4.3 Flash point 27
2.4.4 Cetane Number 28
2.4.5 Heating Value 28
2.4.6 Acid Value 28
2.4.7 Cloud and Pour Point 29
2.4.8 Oxidation Stability 29

2.5 Combustion Characteristics 29
2.5.1 In-cylinder Pressure 30
2.5.2 Rate of Heat Release (RoHR) 30
2.5.3 Ignition Delay 31

2.6 Engine Performance 31
2.6.1 Brake Power (BP) 32
2.6.2 Brake Specific Fuel Consumption (BSFC) 32
2.6.3 Brake Thermal Efficiency (BTE) 33
2.6.4 Exhaust Gas Temperature (EGT) 33

2.7 Exhaust Emission 34
2.7.1 Carbon Monoxide (CO) 35
2.7.2 Carbon Dioxide (CO₂) 35
2.7.3 Nitrogen Oxide (NOₓ) 37

2.8 Cyclic Variation 38

2.9 Artificial Neural Network 40
 2.9.1 ANN Architecture 42
 2.9.2 Past Research on ANN 44

2.10 Summary 45

CHAPTER 3 RESEARCH METHODOLOGY 46

3.1 Introduction 46

3.2 Fuel Properties Measurement 48
 3.2.1 Fuel Blending 49
 3.2.2 Density 49
 3.2.3 Viscosity 50
 3.2.4 Heating Value 51
 3.2.5 Fourier Transform Infrared Spectroscopy (FTIR) 53

3.3 Engine Test Setup 54
 3.3.1 Engine Specification 55
 3.3.2 Dynamometer 57
 3.3.3 Heat Exchanger 58
 3.3.4 Fuel Flowmeter 59
 3.3.5 Air Intake Flowmeter 60
 3.3.6 Power Supply 60
 3.3.7 Thermocouple 60
 3.3.8 Cylinder Pressure Transducer 61
3.3.9 Gas Analyser 63
3.3.10 Data Acquisition System 64
3.4 Combustion Analysis 65
3.5 Performance Analysis 66
3.6 Cyclic Variation Analysis 67
3.7 Wavelet Power Spectrum Analysis 68
3.8 Experimental Procedure 70
3.9 Engine Prediction Model 71
3.10 Summary 72

CHAPTER 4 RESULTS AND DISCUSSION 73

4.1 Introduction 73
4.2 Analysis of Fuel Properties 73
 4.2.1 FTIR Results 75
4.3 Analysis of Combustion 80
 4.3.1 In-cylinder Pressure 81
 4.3.2 Rate of Heat Release 83
 4.3.3 Rate of Pressure Rise 85
 4.3.4 Mass Fraction Burned 86
 4.3.5 Ignition Delay 89
4.4 Analysis of Engine Performance 90
 4.4.1 Brake Specific Fuel Consumption 90
 4.4.2 Brake Thermal Efficiency 93
 4.4.3 Exhaust Gas Temperature 95
4.5 Analysis of Exhaust Emission 97
 4.5.1 Nitrogen Oxides Emissions 97
4.5.2 Carbon Monoxide Emissions 99

4.6 Analysis of Cyclic Variation 101
 4.6.1 Cyclic Variation in Peak In-cylinder Pressure (p_{max}) 101
 4.6.2 Cyclic Variation in Indicated Mean Effective Pressure (IMEP) 105
 4.6.3 Analysis of Wavelet Power Spectrum 108

4.7 ANN Prediction Model 111
 4.7.1 Model Performance 113
 4.7.2 Model Correlation 118
 4.7.3 Prediction Equations 122

4.8 Multiple Regression Model 125

4.9 Model Validation 126

4.10 Model Accuracy 128

4.11 Summary 132

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 134

5.1 Introduction 134

5.2 Conclusions of the Research 134
 5.2.1 Engine Combustion, Performance and Emission 134
 5.2.2 Engine Cyclic Variation 135
 5.2.3 Prediction Model 136

5.3 Contribution of the Study 136

5.4 Recommendations for Future Work 137

REFERENCES 138

APPENDIX A1 PALM BIODIESEL SPECIFICATION 152

APPENDIX A2 PALM BIODIESEL CERTIFICATE 153

APPENDIX A3 DIESEL FUEL SPECIFICATION 155
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Summary of past biodiesel research on marine diesel engine</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Basic properties of palm biodiesel and diesel fuel</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Mixing percentage of the test samples</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Marine diesel engine specifications</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Dynamometer specifications</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Pressure transducer specifications</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Gas analyser measurement specifications</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Engine test operating conditions</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Basic properties of diesel, palm biodiesel blends and neat palm biodiesel fuel</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>FTIR measurement results of the test fuel</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Crank angle positions corresponding to SOI, SOC, CA10 and CA90</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Detailed variations in p_{max} of diesel fuel and palm biodiesel blends</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Detail variations in IMEP of diesel fuel and palm biodiesel blends</td>
<td>108</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>ANN model learning algorithm, network structure and transfer function</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Weight and bias values for BSFC prediction parameters</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Weight and bias values for BTE prediction parameters</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Weight and bias values for EGT prediction parameters</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Weight and bias values for NOx prediction parameters</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Analysis of ANOVA on MR model</td>
<td>126</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Maximum allowable NOx limits according to IMO regulation 2
Figure 2.1 Geometry of diesel engine cylinder and piston 12
Figure 2.2 Basic geometry of the reciprocating internal combustion engine 17
Figure 2.3 Four-stroke diesel engine cycles 18
Figure 2.4 Two-stroke diesel engine cycles 19
Figure 2.5 p-V diagram of an ideal diesel cycle 20
Figure 2.6 Productivity of major biodiesel feedstocks 25
Figure 2.7 Production cost of major biodiesel feedstocks 25
Figure 2.8 Average emission impact of biodiesel in automotive engines 35
Figure 2.9 The human brain neuron network 41
Figure 2.10 Feed-forward neural network model 42
Figure 2.11 Block diagram of a simple neuron model 43
Figure 3.1 Strategy of the framework for the study 47
Figure 3.2 Potable digital density meter (Kyoto DA-130N) 50
Figure 3.3 Cannon-Fenske viscometer 50
Figure 3.4 Kinematic viscosity bath (Koehler KV1000) 51
Figure 3.5 Bomb calorimeter (Parr 6772) 52
Figure 3.6 Layout of the insulated container 52
Figure 3.7 FTIR instrument (Shimadzu IRTracer-100) 54
Figure 3.8 Attenuated total reflection cell 54
Figure 3.9 Schematic diagram of the engine test rig 55
Figure 3.10 Full setup of the marine diesel engine 55
Figure 3.11 Engine piston crown 56
Figure 3.12 Eddy-current dynamometer 57
Figure 3.13 Cross-section detail of eddy current dynamometer 58
Figure 3.14 Heat exchanger for engine and lubricant cooling systems 59
Figure 3.15 Flow rate totaliser 59
Figure 3.16 Taylor intake air flowmeter 60
Figure 3.17 Location of exhaust gas temperature thermocouple 61
Figure 3.18 Pressure transducer installation process 62
Figure 3.19 TFX graphical user interface 63
Figure 3.20 KANE gas analyser 64
Figure 3.21 Data acquisition unit 64
Figure 4.28 CO emissions as a function of engine speed at 50% engine load
Figure 4.29 CO emissions as a function of engine load at 1400 rpm
Figure 4.30 Cyclic variation in p_{max} of diesel fuel and palm biodiesel blends
Figure 4.31 Frequency distribution in p_{max} of diesel fuel and palm biodiesel blends
Figure 4.32 COV of diesel fuel and palm biodiesel blends
Figure 4.33 Cycle-to-cycle variation in IMEP of diesel fuel and palm biodiesel blends
Figure 4.34 Frequency distribution in IMEP of diesel fuel and palm biodiesel blends
Figure 4.35 COV of diesel fuel and palm biodiesel blends
Figure 4.36 Wavelet power spectrum and global wavelet spectrum of the B0 IMEP time series
Figure 4.37 Wavelet power spectrum and global wavelet spectrum of the B10 IMEP time series
Figure 4.38 Wavelet power spectrum and global wavelet spectrum of the B20 IMEP time series
Figure 4.39 Wavelet power spectrum and global wavelet spectrum of the B30 IMEP time series
Figure 4.40 MSE and R values of varied number of neurons in the hidden layer
Figure 4.41 The performance curve of BSFC prediction model
Figure 4.42 The performance curve of BTE prediction model
Figure 4.43 The performance curve of EGT prediction model
Figure 4.44 The performance curve of NOx prediction model
Figure 4.45 The error histogram of BSFC prediction model
Figure 4.46 The error histogram of BTE prediction model
Figure 4.47 The error histogram of EGT prediction model
Figure 4.48 The error histogram of NOx prediction model
Figure 4.49 The regression plot between outputs and targets of BSFC dataset
Figure 4.50 The regression plot between outputs and targets of BTE dataset
Figure 4.51 The regression plot between outputs and targets of EGT dataset
Figure 4.52 The regression plot between outputs and targets of NOx dataset
Figure 4.53 Validation of ANN and MR models against experimental data for BSFC
Figure 4.54 Validation of ANN and MR models against experimental data for BTE
Figure 4.55 Validation of ANN and MR models against experimental data for EGT
Figure 4.56 Validation of ANN and MR models against experimental data for NOx 128
Figure 4.57 R-values of ANN and MR prediction models 129
Figure 4.58 MRE percentage of ANN and MR prediction models 130
Figure 4.59 Prediction error of BSFC parameter of ANN and MR models 131
Figure 4.60 Prediction error of BTE parameter of ANN and MR models 131
Figure 4.61 Prediction error of EGT parameter of ANN and MR models 132
Figure 4.62 Prediction error of NOx parameter of ANN and MR models 132
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Crank radius</td>
</tr>
<tr>
<td>(A)</td>
<td>Area</td>
</tr>
<tr>
<td>(b)</td>
<td>Bias value</td>
</tr>
<tr>
<td>(B)</td>
<td>Cylinder bore diameter</td>
</tr>
<tr>
<td>(c)</td>
<td>Specific heat</td>
</tr>
<tr>
<td>(c_p)</td>
<td>Specific heat at constant pressure</td>
</tr>
<tr>
<td>(c_v)</td>
<td>Specific heat at constant volume</td>
</tr>
<tr>
<td>(C)</td>
<td>Absolute gas velocity</td>
</tr>
<tr>
<td>(l)</td>
<td>Connecting rod length</td>
</tr>
<tr>
<td>(\dot{m})</td>
<td>Fuel mass</td>
</tr>
<tr>
<td>(n)</td>
<td>Wavelet time index</td>
</tr>
<tr>
<td>(N)</td>
<td>Crankshaft rotational speed, cycle number, total number of data</td>
</tr>
<tr>
<td>(o)</td>
<td>Output value</td>
</tr>
<tr>
<td>(p)</td>
<td>Cylinder pressure</td>
</tr>
<tr>
<td>(p_{\text{max}})</td>
<td>Peak cylinder pressure</td>
</tr>
<tr>
<td>(P)</td>
<td>Power</td>
</tr>
<tr>
<td>(q)</td>
<td>Heat amount</td>
</tr>
<tr>
<td>(Q)</td>
<td>Heat transfer</td>
</tr>
<tr>
<td>(Q_{\text{HV}})</td>
<td>Fuel heating value</td>
</tr>
<tr>
<td>(Q_n)</td>
<td>Net heat release</td>
</tr>
<tr>
<td>(Q_{\text{out}})</td>
<td>Heat rejected</td>
</tr>
<tr>
<td>(r)</td>
<td>Radius</td>
</tr>
<tr>
<td>(R)</td>
<td>Coefficient of correlation</td>
</tr>
<tr>
<td>(s)</td>
<td>Distance between crank axis to piston pin</td>
</tr>
<tr>
<td>(t)</td>
<td>Target value</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature, Torque</td>
</tr>
<tr>
<td>(V)</td>
<td>Cylinder volume</td>
</tr>
<tr>
<td>(V_c)</td>
<td>Clearance volume</td>
</tr>
<tr>
<td>(V_d)</td>
<td>Displaced cylinder volume</td>
</tr>
<tr>
<td>(V_t)</td>
<td>Total cylinder volume</td>
</tr>
<tr>
<td>(w)</td>
<td>Weight value</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>W_{in}</td>
<td>Work input</td>
</tr>
<tr>
<td>W_{out}</td>
<td>Work output</td>
</tr>
<tr>
<td>W_s</td>
<td>Wavelet transform</td>
</tr>
<tr>
<td>x</td>
<td>Input value</td>
</tr>
<tr>
<td>Y</td>
<td>Output value</td>
</tr>
<tr>
<td>β</td>
<td>Equation coefficient</td>
</tr>
<tr>
<td>γ</td>
<td>Specific heat ratio</td>
</tr>
<tr>
<td>η</td>
<td>Time parameter</td>
</tr>
<tr>
<td>θ</td>
<td>Crank angle</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>π</td>
<td>Normalisation factor</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>φ</td>
<td>Activation function</td>
</tr>
<tr>
<td>ψ</td>
<td>Non-dimensional wavelet</td>
</tr>
<tr>
<td>ω</td>
<td>Wave number</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing Materials</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflection</td>
</tr>
<tr>
<td>BDC</td>
<td>Bottom dead centre</td>
</tr>
<tr>
<td>BSFC</td>
<td>Brake specific fuel consumption</td>
</tr>
<tr>
<td>BP</td>
<td>Back-propagation</td>
</tr>
<tr>
<td>BTE</td>
<td>Brake thermal efficiency</td>
</tr>
<tr>
<td>CA</td>
<td>Crank angle</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO\textsubscript{2}</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COI</td>
<td>Cone of influence</td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CWT</td>
<td>Continuous wavelet transformation</td>
</tr>
<tr>
<td>DI</td>
<td>Direct injection</td>
</tr>
<tr>
<td>EGT</td>
<td>Exhaust gas temperature</td>
</tr>
<tr>
<td>EN</td>
<td>European Norms</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl ester</td>
</tr>
<tr>
<td>FFNN</td>
<td>Feed-forward neural network</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>GWS</td>
<td>Global wavelet spectrum</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>IDI</td>
<td>Indirect injection</td>
</tr>
<tr>
<td>IMEP</td>
<td>Indicated mean effective pressure</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>MARPOL</td>
<td>Marine pollution</td>
</tr>
<tr>
<td>MCR</td>
<td>Maximum continuous rating</td>
</tr>
<tr>
<td>MFB</td>
<td>Mass fraction burned</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi-layer perception</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MRE</td>
<td>Mean relative error</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean square error</td>
</tr>
<tr>
<td>NBP</td>
<td>National Biofuel Policy</td>
</tr>
<tr>
<td>NDIR</td>
<td>Non-dispersive infrared</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>PFAD</td>
<td>Palm fatty acid distillate</td>
</tr>
<tr>
<td>PFAME</td>
<td>Palm fatty acid methyl ester</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RoHR</td>
<td>Rate of heat release</td>
</tr>
<tr>
<td>RoPR</td>
<td>Rate of pressure rise</td>
</tr>
<tr>
<td>SOC</td>
<td>Start of combustion</td>
</tr>
<tr>
<td>SOI</td>
<td>Start of injection</td>
</tr>
<tr>
<td>SO<sub>x</sub></td>
<td>Sulphur oxides</td>
</tr>
<tr>
<td>TDC</td>
<td>Top dead centre</td>
</tr>
<tr>
<td>ULSD</td>
<td>Ultra-low sulphur diesel</td>
</tr>
<tr>
<td>VDC</td>
<td>Voltage direct current</td>
</tr>
<tr>
<td>WPS</td>
<td>Wavelet power spectrum</td>
</tr>
</tbody>
</table>
REFERENCES

