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Abstract. The development of the Boron Neutron Capture Therapy (BNCT) facility in Malaysia 

can be performed at the thermal column of the Malaysia research reactor. TRIGA MARK II is one 

of the facilities that can provide neutron source for BNCT facility. The specification of neutron flux 

and the gamma dose rate must consider for the development of the BNCT facility as a safety 

precaution for this research. Based on previous research, the thermal column identified as a suitable 

place for BNCT facility. To design the neutron collimator for BNCT purpose, the characterization 

of material towards thermal neutron flux explored using TLD and Microspec-6 and the collimator 

design was simulate using Monte Carlo N-Particle (MCNP) software based on the characterize 

materials in order to produce high thermal neutron flux. The combination of lead, HDPE, 30% 

borated polyethylene and aluminium as collimator design D1 simulate the highest thermal neutron 

1.5770 x 109 neutron.cm-2s-1 and suitable for BNCT research purpose at the thermal column.  

 

 

1.  Characterization of material for BNCT collimator 

The nuclear application, such as BNCT required explicit material to avoid any radiation leaking for 

safety purpose. Therefore, to design the suitable collimator for BNCT, the characteristic of the material 

towards neutron flux must be studied. The characterization of material for BNCT collimator done by an 

experimental approach (TLD and Microspec-6) at the thermal column. The characterization of material 

was essential to ensure the material used for design the collimator can optimize the thermal neutron 

beam and reduces other ionizing particles. The collimator for BNCT facility required high thermal 

neutron compared to the epithermal neutron and fast neutron [1]. The material selected based on the 

previous study, as summarized in table 1,2 and 3. Table 1 shows the list of neutrons shielding material 

and the thickness required to shield neutron and photon for BNCT by a few researchers. Table 2 shows 

the neutron collimator material studied by a few researchers for BNCT purpose, while table 3 shows a 

list of neutron moderator material used by a few researchers for BNCT. All of the materials list from the 

table was useful in this research to design and modify the collimator for BNCT research facility. 

However, in this research, only a few materials were used due to the availability and cost of the material. 
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Table 1. Neutron shielding material studied by a few researchers for BNCT purpose. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Neutron collimator material studied by a few researchers for BNCT purpose. 

 

 

 

 

 

 

 

 

 

 

Table 3. Neutron moderator material studied by a few researchers for BNCT purpose. 

 

 

1.1.  Thermoluminescent dosimeter 

This research is conducted using two thermoluminescent dosimeters (TLD) which are TLD-600 and 

TLD-700 that have commonly used around the world as personal dosimetry. The name of TLD-600 and 

TLD-700 based on the material used as a detector. TLD-700 made from lithium-7 isotope fluoride with 

adequate atomic number (Z) for photoelectric absorption of 8.2. Besides that, TLD-700 have about 

35000-6000 ranges of emission spectra equally with TLD-600 that made from the lithium-6 isotopes 

fluoride with 8.2 atomic number (Z). The main difference between TLD-600 and TLD-700 is the 

composition of Li-6 in TLD-700 is 0.0007% and 95 for TLD-600. Meanwhile, the composition of Li-7 

in TLD-700 is 99% while only 4.38 for TLD-600. The main reason for using TLD for the research 

because of the characteristic of TLD towards the radiation itself. TLD was well known with the 

capability for a long term of data storage and highest sensitivity towards radiation. The different types 

of TLD have a different function, and for example, the TLD-700 can only measure photon while the 

TLD-600 are sensitive with both photon and neutron [1]. Moreover, the element of LiF inside the TLD 

detector is similar enough with the human tissue in terms of atomic density which make use of TLD is 

convenient. Both TLD-600 and TLD-700 are determined to have practically been equipped to detect 

both thermal neutron and gamma-ray. TLD-700 dosimeter was less sensitive towards the thermal 

neutron because of the low probability of Li capture the thermal neutron reaction [12]. 

 

1.2.  Microspec- 6 N probe spectrometer 

In this research, the Microspec-6 N probe spectrometer has been used to measure the neutron spectrum 

at the BNCT facilities during the experimental work and to study the characteristic of material towards 
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neutron and gamma. Basically, the measurement of neutron energy is to measure the neutron dose in 

order to maximize the radiation shielding [13]. The Microspec-6 was built to measure a low neutron 

flux which is suitable to measure the neutron energy spectra that expect to have higher thermal neutron 

(slow neutron) flux for BNCT purpose. In order to get sufficient result, the experiment must be 

conducted after two or more days the reactor being shutdown to avoid unnecessary radiation that can 

damage the Microspec-6 and get poor result with the dead time more than 25% (which is consider as 

unaccepted result).  Microspec-6 spectrometer can be used not only to measure neutron energy spectrum, 

but can be used to measure gamma, x-ray and beta energy spectrum as well based on the probe use. As 

this research was considering neutron as a main focus, the N-probe (neutron probe) has been used. In 

general, Microspec-6 spectrometer was recognized as dominant portable spectroscopy system as the 

capabilities to handle widely task such as measurement, detection, dosimetry, identification of ionizing 

radiation and the radiation mapping. Figure 1 shows the Microspec-6 N-probe spectrometer. 

 

 

 
 

Figure 1. The Microspec-6N-probe spectrometer [4]. 

 

From the figure 1, the Microspec-6 N-probe spectrometers have two separate detectors. Both 

detectors are functional to detect the neutron with the energy range from 0.025 keV to 20 MeV. The 

neutron with the energy ranges from 0.025 keV and 800 keV are done using He3  proportional counter. 

Meanwhile, the neutrons with an energy range from 800 keV to 20 MeV are determined using liquid 

scintillator [14]. Figure 2 shows the setup of the Microspec-6N-probe spectrometer in the material 

characterization experiment carried out at the thermal column in this research. 
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Figure 2. The Microspec-6N-probe spectrometer setup for material 

characterization experiment. 

 

1.3.  Background radiation measurement 

The background radiation measurement important as a safety precaution during handling the experiment 

in this research. The background of gamma dose and neutron dose must be measure to avoid external 

radiation exposure and ensure the experiment was safely performed. The neutron background radiation 

dose is done by fixed the detector such film badge or TLD with placed on the suitable area for the 

suitable period time at the research reactor hall. In order to measure the gamma dose, the portable survey 

meter is used in three phase which is Phase 1 (pre-experiment), Phase 2 (during the experiment) and 

Phase 3 (post experiment). In Phase 1, the background radiation was measured before the experiment 

when the research reactor did not operate for at least overnight. This is to ensure, there are no abnormal 

exposure for the safety purpose. After that, in the Phase 2, the background radiation was measured 

during the ongoing experiment. The Phase 2 was the most important phase to measure background 

radiation because the research reactor is operated thus the radiation dose at the surrounding will increase 

linearly. As a safety precaution, the background radiation in Phase 2 was measured all the time to ensure 

the radiation exposure does not exceed safety limits.in the Phase 3 (post-experiment), the portable survey 

meter was used to measure the background radiation after the experiment and the research reactor being 

shut down. This procedure is required to maintain the radiation dose at the safety level of the reactor. 

Figure 3 shows the portable survey meter.  

 

 
Figure 3. Portable survey meter. 
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2.  Characterization of material for collimator design 

The collimator design must consider three types of material purpose which are moderator material, 

shielding material and neutron collimator material. In this research, the material such as Polyethylene, 

Paraffin, HDPE (High Density Polyethylene), Lead, Cadmium, 30% Borated Polyethylene, and 5% 

Borated Polyethylene was used based on the previous study and the availability and the cost.   

 

2.1.  Characterization of material using Microspec-6  

The study of a characteristic of material using Microspec-6 is important as to ensure the material purpose 

and characteristic towards the neutron. The neutron spectrum profiles are recorded using Mobile 

Microspec software which directly counts from neutron probe. Neutron release from the thermal column 

is used as the neutron source for this experiment. The use of the thermal neutron as a neutron source can 

validate the characteristic and the criterion for the preliminary collimator material composition and 

arrangement for BNCT. Material sample specification for this experiment was 5 cm for thickness, 10 

cm for width and 25 cm for height for all material. 

 

2.1.1. Neutron spectrum profiles. The neutron spectrum profiles from the open source were recorded as 

shown in figure 4 at the optimal reactor power TRIGA MARK with 100 kW. The intensity of neutron 

delivered to the Microspec-6 from open source is counted starting from 2.20 x 104 n/cm2 and was 

decrease as the energy increase. 

 

 

Figure 4. Neutron spectrum profile obtained from the open beam source. 

 

From the figure 4 show that the open source of neutron source has high thermal or low neutron energy 

as expected and was decreasing as the neutron [15]. Even though there are some disturbance and noise 

which lead to little error in figure 4, but the average pattern shows the same trend line which can be used 

for this experiment analysis. All the neutron spectrum profile for other samples are shown in figure 5.  

 



Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 062023

IOP Publishing

doi:10.1088/1757-899X/736/6/062023

6

 
 

 

Figure 5. Neutron spectrum profile obtained from Microspec-6 detector for paraffin, 

HDPE, polyethylene, 5% borated polyethylene, 30% borated polyethylene, lead and 

cadmium. 

 

Based on the figure 5, all the material shows the same trend line with higher fluence on the thermal 

neutron energy region except for lead material that have higher fluence on epithermal neutron energy 

region and fast neutron energy region. Most of the material have high fluence at the thermal neutron 

energy region because of the neutron source coming from the thermal column mostly was thermal 

neutron. This show that the neutron source from the thermal column was reliable to be used for BNCT 

purpose. The graphical in figure 5 also show that cadmium has the highest fluence compare to others 

material with more than 10,000 neutron/cm2 on the region of thermal neutron and followed by lead and 

30% BPE with the fluence range of 5,000 and 6,000 neutron/cm2 and others material obtained less than 

4,000 neutron/cm2. Based on the entire material sample tested, the arrangement of the thermal peak of 

the neutron spectrum profile is tabulated in table 4. From the table 1, this research can observe the 

different of each sample thermal peaks. 

 

Table 4. Thermal peaks recorded. 

Material Thermal Neutron 

Peak(neutron/cm2) 

Paraffin 5.81 x 103 

Polyethylene 4.88 x 103 

Lead 8.90 x 103 

Cadmium 1.25 x 102 

30 % Borated Polyethylene 8.28 x 103 

5% Borated Polyethylene 5.87 x 103 

High Density Polyethylene 4.52 x 103 

 

All samples measured the decrement of the thermal neutron peaks when irradiated with the neutron 

source. This proved the readable signal of neutron source use for this measurement was relevant and 

healthy. In correlation, the RTP have efficient and sufficient neutron source for BNCT research. The 
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thermal neutron peaks show the tendency of each material to moderate, absorb and shield the thermal 

neutron from the neutron source of RTP. The lowest thermal neutron peaks recorded show that the 

material have strong absorption of thermal neutron characteristic. Otherwise, the higher thermal neutron 

peak was the types of materials were suitable to be proposed as neutron collimator material for BNCT 

facility at thermal column. Based on table 4, the highest thermal neutron peaks were recorded by lead 

with 8.90 x 103 neutron/cm2 then followed by 30% borated polyethylene and the least was measured by 

cadmium with 1.25 x 102 neutron/cm2.  

 

2.1.2. Neutron and gamma attenuation coefficient. The effective shielding material for collimator can 

be determined based on the gamma attenuation coefficient calculated from each irradiated material 

sample based with the gradual decrease in gamma intensity against the thickness of the material sample. 

Distinctly, the neutron attenuation coefficient is the probability of the radiation interaction with matter 

per unit length and depend on the intensity of the incident neutron [8]. In consideration of material for 

BNCT collimator, the effective shielding material was crucial to reduce the annual accumulated dose of 

research and radiation worker involved in this BNCT research. Generally, the neutron intensity by 

shielding material was directly proportional to the gamma ray. Hypothesis stated that the lower neutron 

intensity along the material thickness means the lower gamma produced [1]. The formulation of neutron 

attenuation coefficient can be calculated. The gamma and fast neutron attenuation coefficient data has 

been tabulated on the figure 6 in term of the percentage of reduction of gamma and fast neutron on the 

material sample. A fast neutron can be converted into the slow neutron based on the material use while 

gamma was negotiable for BNCT purpose. Thus, the attenuation coefficient for fast neutron and gamma 

are important to identify the material used for moderate and shielding neutron and material that can be 

used to shield gamma for the collimator design. As expected, the lead slab resulted in high gamma 

absorption. As the results, lead are widely use in radiation therapy room as a gamma shielding. However, 

the lead has the least percentage of fast neutron reduction but the high-density polyethylene has the 

highest percentage with 70% of the fast neutron being absorbing during the measurement. Based on this 

finding, the characteristic of material towards fast neutron and gamma ray was observed as lead have 

highest efficiency in shielding gamma ray while HDPE was effective in fast neutron shielding. Those 

materials were important to use in designing the BNCT collimator.  

 

 
 

Figure 6. The percentage of gamma and fast neutron shield by material based on linear 

attenuation coefficient. 
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Beside of the shielding characteristic, the neutron attenuation coefficient also has been used in order 

to identify the moderating material. The optimization of beam for BNCT purpose required maximal 

thermal neutron and minimal gamma and another beam. According to Da Silva et al. [16], the material 

which can be used as a neutron moderator should have considerable scattering cross section and reduced 

cross section for absorption. Unfortunately, there are no such material consist of all those characteristics. 

Based on the table 5, the neutron attenuation coefficient for HDPE and polyethylene resulted as the 

highest compared to other materials with 0.39 m−1. The result display that both HDPE and polyethylene 

have high characteristic as a moderating beam compare to other materials. This result than followed by 

paraffin, 5% borated polyethylene, lead, 30% borated polyethylene and lastly cadmium. The experiment 

result stated that the higher the density and purity of the polyethylene, the higher moderation effect 

towards neutron. On other side, cadmium was observed to have behavior as thermal neutron absorber 

rather than moderating due to the cross-section properties. 

 

Table 5. Neutron intensity of each material with neutron attenuation coefficient. 

Material 

 

Neutron Intensity, Id 

(neutron/cm-2) 

Attenuation coefficient µ(m-1) 

Paraffin 3.52 x 103 0.38 

Polyethylene 3.18 x 103 0.39 

Lead 5.44 x 103 0.28 

Cadmium 1.03 x 104 0.15 

30 % Borated Polyethylene 5.80 x 103 0.26 

5% Borated Polyethylene 3.95 x 103 0.34 

High Density Polyethylene 3.20 x 103 0.39 

 

2.2.  Thermoluminescence detector (TLD) 

After analysing the characteristic of material using Microspec-6 detector measurement. The neutron and 

gamma dose were measured using TLD 600 and TLD 700 detectors. The data measured was recorded 

in table 6. 

 

Table 6. The TLD measurement of gamma dose and neutron dose. 

Material 

 

Neutron Dose 

(mSv) 

Gamma Dose 

(mSv) 

Paraffin 0.29 0.49 

Polyethylene 0.21 0.46 

Lead 0.096 0.15 

Cadmium 0.20 0.28 

30 % Borated Polyethylene 0.23 0.53 

5% Borated Polyethylene 0.25 0.54 

High-Density Polyethylene 0.19 0.42 

 

At 100 kW of reactor power, the sample was put inside the shielding box and the TLD detector was 

positioned at the back of sample material. The result display in table 4.10 shows that lead has high 

absorption of neutron and gamma dose with the reduction for almost 68% from the background and 75 

% for gamma dose rate. In contrast, the neutron dose counts from the paraffin superior to the other 

materials with 0.29 mSv while the 5% borated polyethylene resulted in higher gamma dose with 0.54 

mSv. In order to construct the valid result for collimator material selection, the measurement using 

Microspec-6 and TLD 600 and 700 to ensure the valid material to be used for BNCT collimator design. 

All the result displays the characteristic for each material sample in terms of neutron collimate 
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behaviour, thermal neutron peak, gamma and neutron shielding and the moderator behaviour towards 

neutron. The data from both detectors was normalized into the percentage of neutron and gamma reduce 

as shown in figure 7 for neutron comparison and figure 8 for gamma. 

 

 
Figure 7. The percentage of neutron produce by using Microspec-6 and TLD detector. 

 

Based on figure 7 the result shows that the paraffin has strong moderation and collimate the thermal 

neutron based on the percentage of neutron produce from both detectors although there was the higher 

difference of percentage by both detectors with 17%. Previously [8], the research concluded that the 

material paraffin can be used as a neutron moderator and collimate for BNCT based on the research by 

using Microspec-2. In terms of gamma based on figure 8, a side of paraffin, the 30% borated 

polyethylene, polyethylene and 5% borated polyethylene show the similar characteristic as paraffin 

between Microspec-6 and TLD detector for neutron and gamma. In contrast, the sample of lead, 

cadmium and high-density polyethylene for gamma and neutron have the same characteristic as a 

shielding. Based on figure 6 and figure 7, lead have a high percentage of shielding compared to other 

materials. This was followed by cadmium and high-density polyethylene. Between that material, only 

cadmium display the higher percentage different between Microspec-6 and TLD with 23%. The high 

percentage different of cadmium due to the functionality of Microspec-6 and TLD. The neutron 

spectrum from the Microspec-6 was including the thermal neutron, epithermal neutron, and fast neutron 

while the TLD detector more focuses to count the slow neutron (thermal neutron and epithermal). Both 

TLD-600 and TLD-700 have more sensitivity towards thermal neutron with more than 86% [17]. 

Besides that, according to Devine [18], the Microspec- 6 N-probe give a coarser spectrum due to the 

significant bias in term of energy between the transition region of fast and thermal that caused the 

spectrum in many cases.  The measurement by using both Microspec-6 and TLD demonstrated the same 

pattern.   
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Figure 8. The percentage of gamma produce by using Microspec-6 and TLD detector. 

 

According to result and discussion from both experiment, paraffin and 30% borated polyethylene 

were chosen for further research based on their characters as the neutron moderator and neutron 

collimator. Even though 5% borated polyethylene have same characteristic with 30% borated 

polyethylene, but due to the less of boron-containing on the polyethylene have make 5% borated 

polyethylene was least choice for the BNCT collimator design. The presence of boron as the neutron 

absorber could controlled the nuclear reactions [19]. In terms of material shielding, lead and HDPE was 

chosen for further research. The lead was chosen due to the characteristic of gamma shielding and have 

high thermal neutron peak that can be used to increase the thermal neutron intensity for BNCT purpose. 

On other hands, HDPE was selected based on the performance of reducing fast neutron and high neutron 

attenuation coefficient. Besides that, HDPE also have strong moderation characteristic also in contrast, 

the cadmium was least choice due to the higher cost of cadmium itself and the cadmium have lowest 

thermal neutron peak which is suitable for produce high epithermal neutron for BNCT purpose. The 

collimator design on this research for BNCT purpose was aim to focus on a beam of thermal neutron 

compare to the epithermal neutron.  

 

3.  Design of BNCT collimator using MCNP simulation 

Subsequently the selection of material based on the material characterization toward the neutron being 

finalized. All the material selected are used in the designing of collimator for BNCT purpose based on 

their characterization towards neutron and gamma. From all the material used in designing collimator, 

only aluminium is fixed as a casing for the collimator because of the low activation energy characteristic 

compare to other material. According to Chandler [20], aluminium is commonly and widely used in 

nuclear reactor and nuclear applications such as nuclear waste storage and etc. There are 10 designs of 

collimator geometry are shown as figure 9 by using VisEd software and table 7 for summarization of 

material used for collimator designed.  
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Figure 9. The collimator design D1-D10. 

 

Table 7. Summarization of materials used in collimator. 

No. of Collimator 

Design 

Material 

D1 HDPE + Aluminium + Lead + 30% BPE 

D2 HDPE + Aluminium + Lead + Paraffin 

D3 HDPE + Aluminium + Lead  

D4 HDPE + Aluminium + Lead + Cadmium 

D5 HDPE + Aluminium + Lead + 5% BPE 

D6 Paraffin + Aluminium + Lead 

D7 Paraffin + Aluminium + Lead + HDPE 

D8 Paraffin + Aluminium + Lead + Cadmium 

D9 Paraffin + Aluminium + Lead + 5% BPE 

D10 Paraffin + Aluminium + Lead + 30% BPE 
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The shielding materials used in the collimator were selected based on the characterization using 

Microspec-6 and TLD. It is divided into two types of shielding material which is neutron shielding 

materials and gamma shielding materials. Neutron shielding materials consist of paraffin and high-

density polyethylene (HDPE) while gamma shielding materials consist of lead. For neutron collimate 

material, different material was used in this collimator design. Figure 10, show the cell card design of 

collimator using MCNP. The input source for this collimator design is cell number 2 and the output 

source was at the number 21 cell. The simulation of MCNP result for all the collimator design was 

tabulated at table 5 and figure 11 for neutron flux produce from the collimator. 

 

 
Figure 10. Collimator cell card. 

 

Based on table 8 and figure 11, the simulation shows that most of the collimator design have the 

same range of neutron flux (thermal, epithermal and fast). For the thermal neutron flux, average flux 

produce was obtained was 3.75 x 109 neutron.cm-2s-1 and the highest thermal neutron produced was from 

design D1 that comprise of lead, 30% borated polyethylene, HDPE and aluminium. All the design used 

HDPE as collimate material (D1, D2, D3, D4 and D5) simulate with higher thermal neutron compared 

to the paraffin-based design (D6, D7, D8, D9 and D10) with 7.8% of relative different between the 

averages. In addition, the design of collimator using HDPE also obtained higher epithermal neutron flux 

compared to paraffin with only 7% of different percentage. For epithermal neutron flux, the used of 

HDPE on D3 had resulted 1.77 x 107 neutron.cm-2s-1. The strong moderation characteristic from paraffin 

lead to most of the design used paraffin as neutron collimate material was obtained lower epithermal 

flux compared to the HDPE. Besides that, the effectiveness of HDPE as neutron fast shielding and 

moderator was proved on the fast neutron flux measurement. All the design from D1-D5 simulate low 

fast neutron flux compared to paraffin (D6-D10). In conjunction, the design D1 was qualified for BNCT 

collimator based on the MCNPX resulted on highest thermal neutron flux and epithermal neutron flux 

compared to other design even though there are less than 1% different of fast neutron with the highest 

design. 

 

Table 8. Simulation results of neutron flux across the beam line of BNCT collimator using different 

material. 

Collimator design Neutron Flux, neutron.cm-2s-1 

Thermal Epithermal Fast 

D1 1.5770 x 109 1.7744 x 107 9.7484 x 106 

D2 1.5599 x 109 1.7744 x 107 9.7476 x 106 

D3 1.5611 x 109 1.7751 x 107 9.7486 x 106 

D4 1.5610 x 109 1.7750 x 107 9.7317 x 106 

D5 1.5610 x 109 1.7750 x 107 9.7313 x 106 

D6 1.4997 x 109 1.6994 x 107 9.6319 x 106 

D7 1.4998 x 109 1.6994 x 107 9.6325 x 106 

D8 1.4997 x 109 1.6994 x 107 9.6326 x 106 

D9 1.4999 x 109 1.6994 x 107 9.6327 x 106 

D10 1.4997 x 109 1.6994 x 107 9.6345 x 106 
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Figure 11. Graph of neutron flux across the beam line of collimator with different material. 

 

4. Conclusion 

After determining the material characteristic towards neutron at the thermal column of RTP, research 

was continued to identify the suitable material for BNCT collimator design. There are seven materials 

being tested which are paraffin, polyethylene, cadmium, lead, 30% borated polyethylene, 5% borated 

polyethylene and HDPE (high density polyethylene). All the samples have the same thickness of 5 cm 

and was irradiated by RTP and dose reading were measured TLD and Microspec-6 detector. The 

characteristic of material was observe based on their behaviour towards thermal neutron peak, 

attenuation coefficient and neutron spectrum profile. Lead provide highest thermal neutron peak with 

5.81 x103n/cm2 and shielded more than 60% of gamma from neutron beam by both TLD and Microspec-

6 detector. This research also found that HDPE was efficient to shield the fast neutron by more than 

70%. Based on the measurement, the data was used to classify the samples material into shielding, 

collimate and neutron moderator for BNCT collimator design. Lead was expected to provide good 

shielding of gamma and HDPE has better shielding for fast neutron. In terms of neutron moderator, 

paraffin has sufficient moderation and collimation of neutron then followed by 30% BPE. The used of 

the ideal collimator based on D1 design have optimized the beam by increase the thermal neutron and 

the epithermal neutron at the end of collimator. 
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